关于正三角形的几个结论

合集下载

全等三角形证明方法总结

全等三角形证明方法总结

❸由中点想到的辅助线 在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线加倍延长及其相关性质 (等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。
8
(1)中线把原三角形分成两个面积相等的小三角形 即如图 1,AD 是 ΔABC 的中线,则 SΔABD=SΔACD= SΔABC(因为 ΔABD 与 ΔACD 是等底同高的)。
成全等三角形
全等
造全等,则 P 是中点
三角形
图中有角平分线,可向两边 图中有角平分线,沿它对折 角平分线加垂线,“三线合 角平分线+平行线,等腰三
作垂线
关系现
一”试试看
角形必呈现
角平分线的常见倒角模型及相关结论 已知△ABC 中,BP,CP 分别为角平分线且交于点 P,探讨∠BPC 与∠A 的关系
角平 分线 倒角 模型
证法二:连接 AD,并延长交 BC 于 F
G
E
D
∵∠BDF 是△ABD 的外角 ∴∠BDF>∠BAD,同理,∠CDF>∠CAD ∴∠BDF+∠CDF>∠BAD+∠CAD
B
F
C
图2 1
即:∠BDC>∠BAC。
注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内 角位置上,再利用不等式性质证明。
分析:因为∠BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠
BDC 处于在外角的位置,∠BAC 处于在内角的位置;
证法一:延长 BD 交 AC 于点 E,这时∠BDC 是△EDC 的外角,
A
∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC

高中数学常见结论

高中数学常见结论

高中数学常见结论三角形中的结论 1、三角形中,任意两角的余弦之和大于零,即coscos 0,cos cos 0,cos cos 0A B A C B C +>+>+>2、三角形中,tan tan tan tan tan tan A B C A B C ++=⨯⨯3、三角形中,sin sin A B A B >⇔>,其他同理4、锐角三角形中,任意一个角的正弦值大于另一个角的余弦值,即sincos ,sin cos A B A C >>,其他同理5、钝角三角形中(角C 为钝角),一个锐角的正弦值小于另一个锐角的余弦值。

即sin cos ,sin cos A B B A <>6、直角三角形中的结论都有逆定理7、三角形内切圆的半径:2S r a b c ∆=++,特别地,直角三角形中:2a b cr +-=8、三角形中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…函数中的结论1、函数()y f x =在定义域D 上单调递增⇔对任意的12,,x x D ∈若12x x >,都有12()()f x f x >⇔对任意的12,,x x D ∈1212()(()())0x x f x f x -->⇔对任意的12,,x x D ∈1212()()0f x f x x x ->- ⇔对任意的,x D ∈/()0f x ≥恒成立⇔对任意的,x D ∈总存在t>0,使()()f x t f x +>2、函数()y f x =在定义域D 上单调递减,对应以上结论是什么?3、函数单调递增、递减的运算性质:(加、减、乘、除、开方) (1)增+增=增,减+减=减,增-减=增,减-增=减,(2)()k f x ⨯与()f x 的单调性的关系是 (3)1()f x 与()f x 的单调性的关系是 (4()f x 的单调性的关系是4、对称轴、对称中心、周期之间的结论是:(1)若函数y=f(x)满足:f(x+a)=f(a-x)↔x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x)=f(2a-x) ↔ x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x+a)=f(b-x) ↔ x=2a b+是y=f(x)的一条对称轴.(2)函数y=f(x)满足:f(x+a)=-f(a-x) ↔A (a,0)是y=f(x)的一个对称中心. 函数y=f(x)满足:f(x)=-f(2a-x) ↔A (a,0)是y=f(x)的一个对称中心.函数y=f(x)满足:f(x+a)=-f(b-x) ↔A(2a b+,0)是y=f(x)的一个对称中心 (3)函数y=f(x)满足:f(x+T)=f(x) ↔T 是y=f(x)的一个周期函数y=f(x)满足:f(x+a)=f(x+b) ↔T=a-b 是y=f(x)的一个周期(a >b ) 函数y=f(x)满足:f(x+a)=-f(x) ,则T=2a 是y=f(x)的一个周期(4)若x=a,x=b 是函数y=f(x)的两条对称轴,则T=2(a-b) (a >b ) ,反之也成立若A(a,0),B(b,0)是函数y=f(x)的两个对称中心,则T=2(a-b) (a >b ), 反之也成立 若x=a,B(b,0)分别是函数y=f(x)的对称轴和对称中心,则T=4(a-b) (a >b )5、若两个函数()y f x a =+,()y f b x =-有对称轴,则对称轴是2b a x -=6、函数奇偶性:函数y=f(x)是定义域D 上的偶函数⇔对任意的,x D ∈()()0f x f x --=恒成立⇔对任意的,x D ∈()1()f x f x -=恒成立7、函数y=f(x)是定义域D 上的奇函数⇔对任意的,x D ∈()()0f x f x -+=恒成立⇔对任意的,x D ∈()1()f x f x -=-恒成立8、函数奇偶性的运算性质:加减乘除:偶+偶=偶,偶-偶=偶,偶⨯偶=偶,偶÷偶=偶奇+奇=奇,奇-奇=奇,奇⨯奇=奇,奇÷奇=奇 偶⨯偶=偶,偶⨯奇=奇,奇⨯奇=偶 除法运算结论依然 9、奇偶性与单调性的关系:奇函数在关于原点对称的两区间上的单调性相同 偶函数在关于原点对称的两区间上的单调性相反 10、奇函数定义域中若有0,则(0)0f =11、奇函数定义域中若有最大值M 和最小值N ,则M+N=0 12、奇偶性与导数的关系:奇函数的导函数是偶函数 偶函数的导函数是奇函数 13、若函数y=f(x)是偶函数,则()()f x f x =14、若函数y=f(x)是D 上的上凸函数⇔对12,,x x D ∈有1212()()()22f x f x x x f ++<15、若函数y=f(x)是D 上的上凹函数⇔对12,,x x D ∈有1212()()()22f x f x x xf ++>16、二次函数2y ax bx c =++是偶函数⇔b=0三次函数32y ax bx cx d=+++是奇函数⇔b=d=017、二次函数在限定区间上的最值问题:讨论对称轴与区间的位置关系----大大小小(1)当a>0时,求最小值讨论对称轴在区间的左、内、右,求最大值讨论对称轴与区间中点的位置关系(2)当a<0时,求最大值讨论对称轴在区间的左、内、右,求最小值讨论对称轴与区间中点的位置关系18、二次函数2y ax bx c =++的对称轴是2b x a=-,三次函数32y ax bx cx d =+++的对称中心是,()33b b f aa ⎛⎫--⎪⎝⎭19、若函数y=f(x)在定义域D 上连续可导,且在定义域的任何子区间上导函数不恒为0,则/()0f x ≥⇔y=f(x)在D 上单调递增/()0f x ≤⇔y=f(x)在D 上单调递减20、若函数y=f(x)在定义域D 上连续可导,/0()0f x =不能保证0()f x 为极值,反之成立。

阿基米德三角形常用结论及证明

阿基米德三角形常用结论及证明

阿基米德三角形常用结论及证明嘿,伙计们!今天我们要聊聊一个超级有趣的数学问题——阿基米德三角形!你们知道吗?这个名字来源于古希腊的伟大科学家阿基米德,他可是解决了无数难题呢!那么,阿基米德三角形到底是个啥东西呢?别着急,我们一起来揭开它的神秘面纱吧!咱们来简单介绍一下阿基米德三角形。

它是一个特殊的三角形,每条边上的三个顶点都在一个圆上。

这个圆心就是三角形的重心。

你们可能听过一个成语叫做“百折不挠”,其实就是形容阿基米德三角形的特点。

因为无论你怎么旋转这个三角形,它的形状都不会改变,永远都是一个特殊的三角形。

现在,我们来说说阿基米德三角形的一些常用结论。

第一个结论是:阿基米德三角形的内切圆半径等于外接圆半径。

这个结论有点儿难理解,我们来举个例子说明一下。

假设我们有一个阿基米德三角形ABC,其中AB=AC=3,BC=4。

我们可以用勾股定理求出这个三角形的高AD=√(AC^2-CD^2)=√5。

接下来,我们用正弦定理求出外接圆的半径R:R=√(AD^2+BD^2)/2=(√5+2)/2。

然后,我们用面积公式求出内切圆的半径r:S=1/2(BC+AC+AB)*r=1/2*9*r,解得r=(4-√5)/2。

所以,阿基米德三角形的内切圆半径等于外接圆半径,都等于(4-√5)/2。

第二个结论是:阿基米德三角形的周长等于三条边的和。

这个结论很简单,因为周长就是三条边的长度之和嘛!所以,如果我们知道一条边AB的长度,那么另外两条边的长度之和就等于AB。

这就像我们在生活中遇到的一些问题一样,只要知道了一部分信息,就能推导出其他的信息。

接下来,我们来说说阿基米德三角形的一个重要性质:当一个角的对边与另一个角的邻边成比例时,这两个角相等。

这个性质有时候在解决几何问题时非常有用。

比如,我们知道一个角的对边与另一个角的邻边成比例,那么我们就可以用正弦定理求出这两个角的大小。

具体方法是:设这两个角分别为A和B,那么根据正弦定理,有sin(A)/sin(B)=对边/邻边。

初中平面几何的60个定理

初中平面几何的60个定理

1、勾股定理(毕达哥拉斯定理)小学都应该掌握的重要定理2、射影定理(欧几里得定理)重要3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1 的两部分重要4、四边形两边中心的连线的两条对角线中心的连线交于一点学习中位线时的一个常见问题,中考不需要,初中竞赛需要5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

完全没有意义,学习解析几何后显然的结论,不用知道6、三角形各边的垂直一平分线交于一点。

重要7、从三角形的各顶点向其对边所作的三条垂线交于一点重要8设三角形ABC的外心为0,垂心为H,从0向BC边引垂线,设垂足不L ,则AH=20L中考不需要,竞赛中很显然的结论9、三角形的外心,垂心,重心在同一条直线上。

高中竞赛中非常重要的定理,称为欧拉线10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,高中竞赛中的常用定理11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线( 欧拉线) 上高中竞赛中会用,不常用12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

高中竞赛的题目,不用掌握13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半重要14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点重要15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P,则有AB2+AC2=2(AP2+BP2)初中竞赛需要,重要16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n >AB2+m< AC2=(m+n)AP2+mnm+nBC2高中竞赛需要,重要17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点 E 的直线垂直于CD 显然的结论,不需要掌握18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D 为直径两端点的定圆周上高中竞赛需要,重要19 、托勒密定理:设四边形ABCD 内接于圆,则有ABXCD+AD< BC=AC初中竞赛需要,重要20、以任意三角形ABC 的边BC、CA、AB 为底边,分别向外作底角都是30度的等腰厶BDC、△ CEA、△ AFB,则△ DEF是正三角形,学习复数后是显然的结论,不需要掌握21、爱尔可斯定理1:若厶ABC和三角形△都是正三角形,则由线段AD 、BE、CF 的重心构成的三角形也是正三角形。

初中平面几何知识的60个定理

初中平面几何知识的60个定理

初中平面几何知识的60个定理1、勾股定理、勾股定理((毕达哥拉斯定理毕达哥拉斯定理) )小学都应该掌握的重要定理小学都应该掌握的重要定理 2、射影定理、射影定理((欧几里得定理欧几里得定理) )重要重要3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分的两部分重要重要4、四边形两边中心的连线的两条对角线中心的连线交于一点、四边形两边中心的连线的两条对角线中心的连线交于一点学习中位线时的一个常见问题,中考不需要,初中竞赛需要学习中位线时的一个常见问题,中考不需要,初中竞赛需要5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

完全没有意义,学习解析几何后显然的结论,不用知道完全没有意义,学习解析几何后显然的结论,不用知道6、三角形各边的垂直一平分线交于一点。

、三角形各边的垂直一平分线交于一点。

重要重要7、从三角形的各顶点向其对边所作的三条垂线交于一点、从三角形的各顶点向其对边所作的三条垂线交于一点重要重要8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 中考不需要,竞赛中很显然的结论中考不需要,竞赛中很显然的结论9、三角形的外心,垂心,重心在同一条直线上。

、三角形的外心,垂心,重心在同一条直线上。

高中竞赛中非常重要的定理,称为欧拉线高中竞赛中非常重要的定理,称为欧拉线1010、、(九点圆或欧拉圆或费尔巴赫圆九点圆或欧拉圆或费尔巴赫圆))三角形中,三角形中,三边中心、三边中心、三边中心、从各顶点向其对边所引垂线的垂从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,高中竞赛中的常用定理高中竞赛中的常用定理1111、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线((欧拉线欧拉线))上 高中竞赛中会用,不常用高中竞赛中会用,不常用1212、库立奇、库立奇、库立奇**大上定理:大上定理:((圆内接四边形的九点圆圆内接四边形的九点圆) ) ) 圆周上有四点,过其中任三点作三角形,圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

第 4讲 正三角形

第 4讲 正三角形

第4讲 正三角形【知识体系】等边三角形是学习等腰三角形知识的一个拓展,同时也是学习其它知识的基础. 从知识性来看,应明确等边三角形的性质和判定方法; 从应用性上看, 它有其不同寻常的生活价值. 通过等边三角形的学习, 可以解决生活中的许多实际问题. 所以, 这一内容无论从知识性还是技能上来讲,在教学中都占有重要的地位, 在实践中都有其发展的必要.【热身训练】1. 如图已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使1CE C D ==,连接DE ,则DE = .2. 如图正六边形DEFGHI 的顶点都在边长为6cm 的正三角形ABC 的边上,则这个正六边形的边长是 cm .3. 如图,△ABC ,△ADE 及△EFG 都是等边三角形,D 和G 分别为AC 和AE 的中点. 若AB =4时,则图形ABCDEFG 外围的周长是 ( )A .12B .15C .18D .214. 我们把两个三角形的中心之间的距离叫做中心距,在同一个平面内有两个边长相等的等边三角形,如果当它们的一边重合时,中心距为2,那么 当它们的一对角成对顶角时,中心距为 . 5. 如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内的两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6,DE =2,EDCB AI HCGF BEDA CDE FGAB 第1题图 第2题图 第3题图CDE A例1. 证明:已知等边ΔABC 和点P ,设点P 到ΔABC 三边AB 、AC 、BA 的距离分别为 123,,h h h ,ΔABC 的高为h ,若点P 在一边BC 上(如图1),此时30h =,可得结论123h h h h ++=.请直接应用上述信息解决下列问题:当点P 在ΔABC 内(如图2),和点P 在ΔABC 外 (如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,123,,h h h与h 之间又有怎样的关系,请写出你的猜想,不需证明.图1 图2 图3CE FPM BDACE FP M BDAMPFE DCBA解析:由图1,连结AP ,得APB APC ABC S S S ∆∆∆+=,可得12DP•AB+12PE•AC=12AM•BC ,化简得DP+PE=AM ,此时30h =,即123h h h h ++=;同理在图2中,连结AP ,BP ,CP ,由ABC APB APC PBC S S S S ∆∆∆∆=++,化简得123h h h h ++=. 同样道理在图3中,可得123h h h h +-=.简答:(1)92PB t =-cm ;5BQ t =cm ;小敏与同桌小聪讨论后,进行了如下解答:(1) 特殊情况•探索结论:当点E 为AB 的中点时,如图1,确定线段AE 与的DB 大 小关系.请你直接写出结论:AE DB (填“>,<,=”).(2)特例启发•解答題目:题中AE 与DB 的大小关系是:AE DB (填“>,<,=”). 理由如下:如图2,过点E 作EF ∥BC ,交AC 于点F ,(请你完成以下解答过程) (3) 拓展结论•设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线 BC 上,且ED =EC .若△ABC 的边长为1,AE =2,求CD 的长(请你直接写出结果).例4. 联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图1,若P A=PB ,则点P 为△ABC 的准外心.应用:如图2,CD 为等边三角形ABC 的高,准外心P 在高CD 上,且PD=1AB ,求 ∠APB 的度数.探究:已知△ABC 为直角三角形,斜边BC=5, AB=3,准外心P 在AC 边上,试探究P A 的长.解析: ① 若PB=PC ,连接PB ,则∠PCB=∠PBC ,,∠PCB=30°. ∴∠PCD=∠PBC=30°,∴PD=3DB=6AB . 与已知PD 12=AB 矛盾;② 若P A=PC ,连接P A ,同理可得P A ≠PC ; ③ 若P A=PB ,由PD12=AB ,得PD=AD=BD ,∴∠APD=∠BPD=45°. ∴∠APB=90°. 探究:∵BC=5,AB=3,∴4== . ① 若PB=PC ,设P A=x ,则2223(4)x x +=- ,∴78x =,即P A=78; ② 若P A=PC ,则P A=2; ③若P A=PB ,由图知,在Rt △P AB 中,不可能. ∴ PA=2或78.例5. 已知:等边ABC △的边长为a .探究(1):如图1,过等边ABC △的顶点A B C 、、依次作AB BC CA 、、的垂线围成△MNG ,求证:MNG △是等边三角形且.MN =;探究(2):在等边ABC △内取一点O ,过点O 分别作,,OD AB OE BC OF CA ⊥⊥⊥, 垂足分别为点,,D E F .① 如图2,若点O 是ABC △的重心,我们可利用三角形面积公式及等边三角形性质 得到两个正确结论:结论1.OD OE OF ++=;结论2.32AD BE CF a ++=.② 如图3,若点O 是等边ABC △内任意一点,则上述结论1,2是否仍然成立?如果 成立,请给予证明;如果不成立,请说明理由.解析:如图1,ABC △为等边三角形,60ABC ∴∠=°,BC MN BA MG ⊥⊥ , ∴90CBM BAM ∠=∠=°,9030ABM ABC ∴∠=∠=︒°-,60M ∴∠=︒,同理:60N G ∠=∠=︒MNG ∴△为等边三角形. 在Rt ABM △中,3BM a =,在Rt BCN △中,3BN =,MN BM BN ∴=+= (2)结论1成立.证明:如图2,连接AO BO CO 、、, 由ABC AOB BOC AOC S S S S =++△△△△=()12a OD OE OF ++ , 可证得OD OE OF ++=. 结论2成立.证明:过顶点A B C 、、依次作边AB BC CA 、、的垂线围成△MNG ,由(1)得MNG △为等边三角形且MN ,过点O 分别作OD MN '⊥于D ',OE NG '⊥于NG 于点E OF MG ''⊥,于点F ',由结论1得:32OD OE OF a '+'+'==; 又OD AB AB MG OF MG ⊥⊥'⊥ ,,,90ADO DAF OF A ∴∠=∠'=∠'=︒,∴四边形ADOF '为矩形,OF ∴'=AD ,同理:OD BE '=,OE CF '=,32AD BE CF OD OE OF a ∴++='+'+'=【独立尝试】A .3B .4C .5D .66. 如图所示,已知等边△ABC 的边长为a ,P 是△ABC 内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,点D 、E 、F 分别在BC 、AC 、AB 上,则PD+PE+PF= .7. 如图,凸六边形ABCDEF 的六个角都是120°,边长AB=2cm ,BC=8cm ,CD=11cm ,DE=6cm ,则这个六边形的周长 .8. 如图,是由9个等边三角形(三条边都相等的三角形)组成的装饰图案,已知中间最小的等边三角形(阴影部分)边长为1cm ,现欲将此图案的周边镶上一根彩线,则彩线至少需要 .9. 若三角形的三边为a ,b ,c ,且满足444222222a b c a b b c c a ++=++,则该三角形为 三角形.10. 如图,△ABC 是等边三角形,P 为△ABC 内部一点,将△ABP 绕点A 逆时针旋转后能与△ACP′重合,如果AP=3,则PP′ .11. ①请你在等边三角形ABC 所在平面上找到一点P ,使△P AB ,△P AC ,△PBC 均为等腰三角形,满足条件的点P 有多少种可能?②请你在正方形ABCD 所在平面上找到一点P ,使△P AB,△PBC ,△PCD ,△PDA 均为等腰三角形,满足条件的P 有多少种可能?请同学们进一步思考,若将“正方形”改为正五边形,结果如何?12. 阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形中是否存在奇异三角形呢?问题(1)根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?问题(2)在Rt △ABC 中,∠ACB=90°,AB=c ,AC=b ,BC=a ,且b a >,若CE PDBFAFEDCBABP 'PCB A第6题图 第7题图 第8题图 第10题图Rt△ABC是奇异三角形,求::a b c.13.如图,已知线段AB的同侧有两点C、D满足∠ACB=∠ADB=60°,∠ABD=90°-12∠DBC.求证:AC=AD.【拓展提升】(2)求△MNP 面积的最大值.6. 如图,正三角形ABC 的边长为a ,D 是BC 的中点,P 是AC 边上的动点,连结PB 和PD 得到△PBD . 求:(1)当点P 运动到AC 的中点时,△PBD 的周长; (2)△PBD 的周长的最小值.【挑战探索】我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.问题提出:如何把一个正方形分割成n (n ≥9)个小正方形? 为解决上面问题,我们先来研究两种简单的“基本分割法”.基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.① ② ③ ④ ⑤ ⑥问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n (n ≥9)个小正方形.(1)把一个正方形分割成9个小正方形.一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成459+=(个)小正方形.另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就+=(个)小正方形.可增加3个小正方形,从而分割成639(2)把一个正方形分割成10个小正方形.方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加+⨯=(个)小正方形.⨯个小正方形,从而分割成4321032(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)(4)把一个正方形分割成n(n≥9)个小正方形.方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n(n≥9)个小正方形.从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形.【热身训练】1.2. 23. B4. 45. 86. 34- 提示:过F 作FG BE ⊥,可求出BE 边上的高FG . 7.(1)甲、乙的结论都正确;(2)证明略.8. (1)△COD 是等边三角形.(2)∵AD 2+OD 2=()()22212n n -+=()221n +=AO 2, ∴△AOD 是直角三角形,且∠ADO=90°,∵△COD 是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=150°,根据旋转的性质,α=∠ADC=150°;(3)∵α=∠ADC ,∠CDO=60°,∴∠ADO=α-60°,又∵∠AOD=190°-α,∴∠DAO=50°,∵△AOD 是等腰三角形,∴①∠AOD=∠ADO 时,190°-α=α-60°,解得α=125°,②∠AOD=∠DAO 时,190°-α=50°,解得α=140°,③∠ADO=∠DAO 时,α-60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD 是等腰三角形.9. (1)图中有5个等腰三角形,EF=BE+CF ;(2)还有两个等腰三角形,为△BEO 、△CFO ,EF=BE+CF 存在;(3)有等腰三角形:△BEO 、△CFO ,此时EF=BE -CF .【独立尝试】1—4. BBBB 5. D 提示:2个正四面体拼接的形状.6. a 提示:过P 点作三边平行线7. 46cm8. 设AB=x ,则BH=2x ,GH=GF=FE=x+1,ED=CD=x+2,BC=x+3,又∵BH=BC ,∴2x=x+3,解得x=3,则可求出这根彩线至少长30cm .9. 等边三角形 10. 3.11. (1)10种 (2) 9种.12. 提示:(1)真命题;(2)在Rt △ABC 中,2c b a =+ , ∵ 0>>>a b c ,∴2222b a c +>,2222c b a +<,∴若Rt △ABC 为奇异三角形,一定有2222c a b += ,∴()22222b a a b ++= ,∴222a b = 得a b 2=, ∵22223a a b c =+= ,∴a c 3=,∴3:2:1::=c b a .ED 的长就是PB+PD 的最小值,即当点P 运动到ED 与AC 的交点G 时,△PBD 的周长最小. 从点D 作DF ⊥BE ,垂足为F .因为BC a =,所以1,2BD a BE ===,因为030DBF ∠=,所以1124DF BD a ==,4BF ==,4EF BE BF =-=,2DE a ==, 所以△PBD 的周长的最小值是a a a 2712721+=+ 【挑战探索】提示:把一个正方形分割成11个小正方形(如图⑥).。

全等三角形的判定方法

公共角一定是对应角,有对顶角,对顶角也是对 应角
3.注意正确地书写证明格式(顺序和对应关系).
作业布置:
课本P27:7、8、9
知识梳理:
A
AAA
B
C
SSA不能
A
判定全等
BBB
CC
DD
B D
二、几种常见全等三角形基本图形
A
D
AD
B
CE
如:课本P15 第2题 课本P16 第9题 课本P27 第8题
FB
E
C
F
平移
A E
D F
B
C
E
A
E
B
D
C
B
如:课本P16 第10题 课本P26 第3题
旋转
D A
C
A
A
E
C
B
翻折
C
B
D
D
A
B
如图,已知AD平分∠BAC,A
D
要使△ABD≌△ACD,
根据“SAS”需要添加条件 AB=AC ; C
根据“ASA”需要添加条件∠BDA=∠CDA

根据“AAS”需要添加条件 ∠B=∠C ;
友情提示:添加条件的题目.首先要 找到已具备的条件,这些条件有些是 题目已知条件 ,有些是图中隐含条件.
12
D
E
M
N
B
C
创造条件! ? 21
例3 :如图, AC∥ DB, AC=2DB,E是AC A
的中点,求证:BC=DE
D
E
证明:∵AC=2DB,AE=EC
(已知) ∴DB=EC DB=EC
B
C
∵BE=EB (公共边)

正方形内接正三角形的面积最大值

正方形内接正三角形的面积最大值正方形内接正三角形的面积最大值在我们的数学世界里,有很多优美的几何学问题。

其中之一就是我们今天要讨论的:正方形内接正三角形的面积最大值。

1. 问题的提出首先,我们要了解问题的提出。

在一个正方形内,如何选取一个正三角形,使得正三角形的面积最大。

2. 解题思路针对这个问题,我们可以使用数学知识和方法进行求解。

具体来说,可以采用如下思路:(1)设正方形的边长为a,则正三角形的边长为a/√2;(2)设正三角形的高为h,则根据勾股定理,可以得到h^2+(a/2)^2=(a/√2)^2;(3)化简得到h=a/2√2;(4)正三角形的面积为S=(√3/4)*h^2=(3a^2)/(32√2);(5)求导得到当a=4√2时,正三角形的面积达到最大值,值为3√2。

3. 证明过程那么,上述的解题思路是如何得出来的呢?下面我们来说明。

首先,我们设正方形的边长为a,正三角形的边长为x,正三角形的高为h。

因为正三角形是在正方形中内接的,所以正三角形的边长应该小于等于正方形的边长,即x≤a。

正方形的面积是a*a,正三角形的面积是(√3/4)x^2。

由于正三角形是在正方形中内接的,所以正方形的对角线等于正三角形的底边。

又因为正三角形的高垂直于正三角形的底边,所以正方形的对角线和正三角形的高相等,即a=2h。

根据勾股定理可以得到 h^2+(a/2)^2=x^2。

代入a=2h可以得到h=(√2/2)x。

将h代入正三角形的面积公式中可以得到S=(√3/4)x^2=(3√2x^2)/(16)。

为了使正三角形的面积最大,需要对S求导。

即dS/dx=(3√2/8)x=0,解得x=4√2。

此时正三角形的面积最大,值为3√2。

4. 结论因此,我们可以得出结论:在正方形内,内接的正三角形的面积最大值为3√2。

感谢您耐心地阅读了本文。

希望这篇文章能够对您解决同类问题有所帮助。

三角形类比四面体的相关结论

三角形类比四面体的相关结论近几年来高考数学命题的类比问题也已经从幕后走到前台,成为考查学生学习潜能的良好素材,在培养学生的发散思维和创新思维能力方面有其独特的作用。

本文对三角形的性质在空间中类比推广做了进一步的探究,以期对大家有所启发,起抛砖引玉的作用。

题目.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想并证明。

(教74页例3)分析:考虑到直角三角形的两条边互相垂直,所以可以选取有三个面两两垂直的四面 体,作为直角三角形的类比对象,将直角三角形中的三边关系与四面体中的四个面的面积关系进行类比。

解:在Rt ▲ABC 中由勾股定理得222b a c +=,类比直角三角形的勾股定理可知:在四面体P -ABC 中,PA PC PC PB PB PA ⊥⊥⊥,,,则2222PCA PBC PAB ABC S S S S ∆∆∆∆++=,证明:设c PC b PB a PA ===,,,则ab S PAB 21=∆,ac S PAC 21=∆,bc S PBC 21=∆,故PAB S ab ∆=2,PAC S ac ∆=2,PBC S bc ∆=2, 222222221a c b c b c b S ABC+++=∆22222221a c b a c b ++= 23222144421S S S ++=.232221S S S ++= 故2222PCA PBC PAB ABC S S S S ∆∆∆∆++= 点评:从平面几何到空间几何,从二维平面到三维空间,应注意其相应的度量元素的变化,其次是从问题解决的办法寻找相似点作为问题解决的突破口.变式一。

在平面几何中有命题:“正三角形内任意一点到三边距离之和是一个定值”,那么在正四面体中类似的命题是什么?解:平面几何中该命题的证明方法:面积分割法,即将该点与三角形的三个顶点连接所得的3个小三角形面积的和等于正三角形的面积,化简可得PD +PE+PF 为定值,即正三角形的高度。

三角形中的几个重要几何模型(知识梳理与考点分类讲解)(人教版)(教师版)24-25学年八年级数学上册

专题11.12三角形中的几个重要几何模型(知识梳理与考点分类讲解)第一部分【模型归纳】【模型一】燕尾模型如图:这样的图形称之为“燕尾模型”结论:∠BDC=∠A+∠B+∠C【模型二】8字模型如图:这样的图形称之为“8字模型”结论:∠A+∠D=∠B+∠C【模型三】三角形角平分线(内分分模型)如图:这样的图形称之为“三角形双内角平分线模型”条件:BI、CI 为角平分线结论:01902BIC A ∠=+∠【模型四】三角形角平分线(内外分模型)如图:这样的图形称之为“三角形内外角平分线模型”条件:BP、CP 为角平分线结论:12P A ∠=∠【模型五】三角形角平分线(外外分模型)如图:这样的图形称之为“三角形双外角平分线模型”条件:BP、CP 为角平分线结论:01902P A ∠=-∠【模型六】角平分线+平行线模型条件:CP 平分∠ACB,DE 平行于BC结论:ED=EC第二部分【题型展示与方法点拨】【题型1】燕尾模型【例1】如图所示,已知四边形ABDC ,求证BDC A B C ∠=∠+∠+∠.【答案】见解析【分析】方法1连接BC ,根据三角形内角和定理可得结果;方法2作射线AD ,根据三角形的外角性质得到31B ∠=∠+∠,42C ∠=∠+∠,两式相加即可得到结论;方法3延长BD ,交AC 于点E ,两次运用三角形外角的性质即可得出结论.解:方法1如图所示,连接BC .在ABC 中,180A ABC ACB ∠+∠+∠= ,即12180A ABD ACD ∠+∠+∠+∠+∠= .在BCD △中,12180BDC ∠+∠+∠= ,++BDC A ABD ACD ∴∠=∠∠∠;方法2如图所示,连接AD 并延长.3∠ 是ABD △的外角,31+ABD ∴∠=∠∠.同理,42ACD ∠=∠+∠.3412ABD ACD ∴∠+∠=∠+∠+∠+∠.即BDC A ABD ACD ∠=∠+∠+∠.方法3如图所示,延长BD ,交AC 于点E .DEC ∠ 是ABE 的外角,DEC A ABD ∴∠=∠+∠.BDC ∠ 是DEC 的外角,BDC DEC ACD ∴∠=∠+∠.BDC A ABD ACD ∴∠=∠+∠+∠.【点拨】本题考查了三角形的外角性质:解题的关键是知道三角形的任一外角等于与之不相邻的两内角的和.也考查了三角形内角和定理.【变式1】(2021九年级·全国·专题练习)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果52,25A B ︒︒∠=∠=,30,35,72C D E ︒︒︒∠=∠=∠=,那么F ∠的度数是().A .72︒B .70︒C .65︒D .60︒【答案】B 【分析】延长BE 交CF 的延长线于O ,连接AO ,根据三角形内角和定理求出,BOC ∠再利用邻补角的性质求出DEO ∠,再根据四边形的内角和求出DFO ∠,根据邻补角的性质即可求出DFC ∠的度数.解:延长BE 交CF 的延长线于O ,连接AO ,如图,∵180,OAB B AOB ∠+∠+∠=︒∴180,AOB B OAB ∠=︒-∠-∠同理得180,AOC OAC C ∠=︒-∠-∠∵360,AOB AOC BOC ∠+∠+∠=︒∴360BOC AOB AOC∠=︒-∠-∠360(180)(180)B OAB OAC C =︒-︒-∠-∠-︒-∠-∠107,B C BAC =∠+∠+∠=︒∵72,BED ∠=︒∴180108,DEO BED ∠=︒-∠=︒∴360DFO D DEO EOF∠=︒-∠-∠-∠36035108107110,=︒-︒-︒-︒=︒∴180********DFC DFO ∠=︒-∠=︒-︒=︒,故选:B .【点拨】本题考查三角形内角和定理,多边形内角和,三角形的外角的性质,邻补角的性质,解题关键是会添加辅助线,将已知条件联系起来进行求解.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;邻补角性质:邻补角互补;多边形内角和:180(2)n ︒-.【变式2】如图,A B C D E ∠+∠+∠+∠+∠=.【答案】180︒/180度【分析】连接CE ,根据三角形内角和定理得到A B OEC OCE ∠+∠=∠+∠,然后根据三角形内角和定理求解.解:如图所示,连接CE ,∵180A B AOB ∠+∠+∠=︒,180OEC OCE COE ∠+∠+∠=︒,AOB COE∠=∠∴A B OEC OCE ∠+∠=∠+∠,∵DEC DEO OEC ∠=∠+∠,DCE DCO OCE ∠=∠+∠,∴A B ACD D DEB∠+∠+∠+∠+∠OCE OEC ACD D DEB=∠+∠+∠+∠+∠()()OCE ACD OEC DEB D=∠+∠+∠+∠+∠DCE DEC D=∠+∠+∠180=︒.故答案为:180︒.【点拨】此题考查了三角形内角和定理,解题的关键是熟练掌握三角形内角和定理.【题型2】8字模型【例2】如图,求A B C D E F ∠+∠+∠+∠+∠+∠的度数.【答案】360A B C D E F ∠+∠+∠+∠+∠+∠=︒.【分析】连接CD ,将A B C D E F ∠+∠+∠+∠+∠+∠转化为四边形CDEF 的内角和即可求出答案.解:如图所示,连接CD .由对顶三角形得,A B ACD BDC ∠+∠=∠+∠,∴A B C D E F ∠+∠+∠+∠+∠+∠360CDE DCF E F =∠+∠+∠+∠=︒.【点拨】本题考查了三角形、四边形的内角和定理、对顶角的性质等知识.将所求角的度数和转化为四边形内角和是解题的关键.【变式1】如图,AB 和CD 相交于点O ,∠A =∠C ,则下列结论中不能完全确定正确的是()A .∠B =∠DB .∠1=∠A +∠DC .∠2>∠D D .∠C =∠D【答案】D 【分析】利用三角形的外角性质,对顶角相等逐一判断即可.解:∵∠A +∠AOD +∠D =180°,∠C +∠COB +∠B =180°,∠A =∠C ,∠AOD =∠BOC ,∴∠B =∠D ,∵∠1=∠2=∠A +∠D ,∴∠2>∠D ,故选项A ,B ,C 正确,故选D .【点拨】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.【变式2】下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ∠,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应(填“增加”或“减少”)度.【答案】减少10【分析】先通过作辅助线利用三角形外角的性质得到∠EDF与∠D、∠E、∠DCE之间的关系,进行计算即可判断.解:∵∠A+∠B=50°+60°=110°,∴∠ACB=180°-110°=70°,∴∠DCE=70°,如图,连接CF并延长,∴∠DFM=∠D+∠DCF=20°+∠DCF,∠EFM=∠E+∠ECF=30°+∠ECF,∴∠EFD=∠DFM+∠EFM=20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD=110°,则∠EFD减少了10°,若只调整∠D的大小,由∠EFD=∠DFM+∠EFM=∠D+∠DCF+∠E+∠ECF=∠D+∠E+∠ECD=∠D+30°+70°=∠D+100°,因此应将∠D减少10度;故答案为:①减少;②10.【点拨】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.【题型3】三角形的角平分线(内内分模型)【例3】(22-23八年级上·江西赣州·期中)如图,在△ABC中,(1)如果AB=4cm,AC=3cm,BC是能被3整除的的偶数,求这个三角形的周长.(2)如果BP、CP分别是∠ABC和∠ACB的角平分线.a、当∠A=45°时,求∠BPC的度数.b、当∠A=x°时,求∠BPC的度数.【答案】(1)13cm(2)a、112.5°;b、90°+12 x°【分析】(1)利用三角形的三边关系:两边之和大于第三边,两之差小于第三边,得出BC的取值范围为1<BC<7,再根据BC是能被3整除的偶数,得到BC=6cm,再求出周长为13cm.(2)利用三角形的内角和等于180°,先求出∠ABC+∠ACB,再利用角平分线平分角的知识,求出∠PBC+∠PCB,然后再一次用三角形内角和等于180°,求出∠BPC.解:(1)∵AB=4cm,AC=3cm∴1<BC<7∴BC=6cm∴三角形的周长为:C△ABC=AB+AC+BC=4+3+6=13cm(2)a、当∠A=45°时,由三角形的内角和可知:∠ABC+∠ACB=180°−∠A=180°−45°=135°∵BP、CP分别是∠ABC和∠ACB的角平分线∴∠PBC=12∠ABC ,∠PCB=12∠ACB∴∠PBC+∠PCB=12∠ABC+12∠ACB =12(∠ABC+∠ACB)=12×135°=67.5°∴∠BPC=180°−(∠PBC+∠PCB)=180°−67.5°=112.5°b 、当∠A =x °时,由三角形的内角和可知:∠ABC +∠ACB =180°−∠A =180°−x °∵BP 、CP 分别是∠ABC 和∠ACB 的角平分线∴∠PBC =12∠ABC ,∠PCB =12∠ACB∴∠PBC +∠PCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB )=12×(180°−x °)=90°−12x °∴∠BPC =180°−(∠PBC +∠PCB )=180°−(90°−12x °)=90°+12x °【点拨】本题考查有关三角形的知识.第一小问的解题关键是运用三角形的三边关系:两边之和大于第三边,两之差小于第三边进行解答;第二小问的解题关键是运用三角形的内角和等于180°,以及角平分线平分角的知识结合一起解答,在求角度时,有时不一定需要每个角都求出来,可以利用整体思想.【变式1】如图,ABC 中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDFV和CEF△都是等腰三角形②DE BD CE=+;③BF CF>;④若80ABFC∠=︒.∠=︒,则130其中正确的有()个A.1B.2C.3D.4【答案】C【分析】根据等腰三角形的判断与性质和平行线的性质及三角形三边的关系即可求解.解:①∵BF是∠ABC的角平分线,CF是∠ACB的角平分线,∴∠ABF=∠CBF,∠ACF=∠BCF,∵DE∥BC,∴∠CBF=∠BFD,∠BCF=∠EFC(两直线平行,内错角相等),∴∠ABF=∠BFD,∠ACF=∠EFC,∴DB=DF,EF=EC,∴△BDF和△CEF都是等腰三角形,∴①选项正确,符合题意;②∵DE=DF+FE,∴DB=DF,EF=EC,∴DE=DB+CE,∴②选项正确,符合题意;③根据题意不能得出BF>CF,∴④选项不正确,不符合题意;④∵若∠A=80°,∴∠ABC+∠ACB=180°-∠A=180°-80°=100°,∵∠ABF=∠CBF,∠ACF=∠BCF,∴∠CBF+∠BCF=12×100°=50°,∴∠BFC=180°-∠CBF-∠BCF=180°-50°=130°,∴④选项正确,符合题意;故①②④正确.故选C【点拨】等腰三角形的判断与性质和平行线的性质及三角形三边的关系,解题关键是逐个判断选项即可得出正确答案.【变式2】如图,在ABC 中,已知70A ∠=︒,ABC ∠、ACB ∠的平分线OB 、OC 相交于点O ,则BOC ∠的度数为.【答案】125︒【分析】根据三角形的内角和定理求出ABC ACB ∠+∠,再根据角平分线的定义求出OBC OCB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.解:在ABC 中,180 ********ABC ACB A ∠+∠=︒-∠=︒-︒=︒,∵ABC ∠与ACB ∠的角平分线,BO CO 相交于点O ,∴()111105522OBC OCB ABC ACB ∠+∠=∠+∠=⨯︒=︒,在BOC 中,()1 801 80 55 1 25BOC OBC OCB ∠=︒-∠+∠=︒-︒=︒,故答案为:125︒.【点拨】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.【题型4】三角形的角平分线(内外分模型)【例4】如图,在△ABD 中,∠ABD 的平分线与∠ACD 的外角平分线交于点E ,∠A=80°,求∠E 的度数【答案】40°【分析】由题意:设∠ABE=∠EBC=x ,∠ACE=∠ECD=y ,利用三角形的外角的性质构建方程组解决问题即可.解:由题意:设∠ABE=∠EBC=x ,∠ACE=∠ECD=y ,则有2=2=y x A y x E +∠⎧⎨+∠⎩①②,①-2×②可得∠A=2∠E ,∴∠E=12∠A=40°.【点拨】本题考查三角形的外角的性质,角平分线的定义等知识,解题的关键是学会利用参数构建方程组解决问题.【变式1】如图,BA 1和CA 1分别是△ABC 的内角平分线和外角平分线,BA 2是∠A 1BD 的角平分线CA 2是∠A 1CD 的角平分线,BA 3是A 2BD ∠的角平分线,CA 3是∠A 2CD 的角平分线,若∠A 1=α,则∠A 2013为()A .2013αB .20132αC .2012αD .20122α【答案】D解:∵BA 1和CA 1分别是△ABC 的内角平分线和外角平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,又∵∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,∴∠A 1BC+∠A 1=12(∠A+∠ABC)=12∠A+12∠ABC=12∠A+∠A 1BC ,∴∠A 1=12∠A ;,同理可得:∠A 2=12∠A 1=2α,∠A 3=12∠A 2=4α,L ,∠A n =12∠A n-1=12n α-,∴∠A 2013=20122α.故选D .点拨:利用三角形外角的性质和三角形内角和定理结合角平分线的定义推导得到∠A 1和∠A 的关系是解这道题的关键,由此可推导出∠A 2与∠A 1的关系,进一步推广到∠A n 和∠A n-1的关系就可找到规律求得∠A 2013.【变式2】如图,1BA 和1CA 分别是ABC 的内角平分线和外角平分线,2BA 是1A BD ∠的平分线,2CA 是1A CD ∠的平分线,3BA 是2A BD ∠的平分线,3CA 是2A CD ∠的平分线,……以此类推,若A α∠=,则2020A ∠=.【答案】20202α【分析】根据角平分线的定义可得∠A 1BC =12∠ABC ,∠A 1CD =12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1BC +∠A 1,整理即可得解112A A ∠=∠,同理求出∠A 2,∠A 3,可以发现后一个角等于前一个角的12,根据此规律即可得解.解:∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC =12∠ABC ,∠A 1CD =12∠ACD ,又∵∠ACD =∠A +∠ABC ,∠A 1CD =∠A 1BC +∠A 1,∴12(∠A+∠ABC )=12∠ABC+∠A1,∴∠A1=12∠A ,∵∠A=α.∠A1=12∠A=12α,同理可得∠A2=12∠A1=212α,根据规律推导,∴2020A ∠=20202α,故答案为20202α.【点拨】本题主要考查的是三角形外角性质,角平分线定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.【题型5】三角形的角平分线(外外分模型)【例5】如图,已知在ABC ∆中,B ∠、C ∠的外角平分线相交于点G ,若ABC m ∠=︒,ACB n ∠=︒,求BGC ∠的度数.【答案】()12BGC m n ∠=+ 【分析】运用角平分线的知识列出等式求解即可.解答过程中要注意代入与之有关的等量关系.解:∠B 、∠C 的外角平分线相交于点G ,在BCG ∆中,∠BGC=180°-(12∠EBC+12∠BCF )=180°-12(∠EBC+∠BCF )=180°-12(180°-∠ABC+180°-∠ACB )=180°-12(180°-m°+180°-n°);=()12+ m n 【点拨】本题考查的是三角形内角和定理以及角平分线的知识.此类题的关键是找出与之相关的等量关系简化计算得出.【变式1】如图,在△ABC 中,∠ABC 和∠ACB 的外角平分线交于点O ,设∠A =m ,则∠BOC =()A.B.C.D.【答案】B【分析】根据三角形的内角和,可得∠ABC+∠ACB,根据角的和差,可得∠DBC+∠BCE,根据角平分线的定义,可得∠OBC+∠OCB,根据三角形的内角和,可得答案.解:如图:,由三角形内角和定理,得∠ABC+∠ACB=180°-∠A=180°-m,由角的和差,得∠DBC+∠BCE=360°-(∠ABC+∠ACB)=180°+m,由∠ABC和∠ACB的外角平分线交于点O,得∠OBC+∠OCB=12(∠DBC+∠BCE)=90°+12m,由三角形的内角和,得∠O=180°-(∠OBC+∠OCB)=90°-12 m.故选:B.【点拨】本题考查了三角形内角和定理,利用三角形内角和定理,角的和差,角平分线的定义是解题关键.【变式2】如图,△ABC中,分别延长△ABC的边AB、AC到D、E,∠CBD与∠BCE的平分线相交于点P,爱动脑筋的小明在写作业的时发现如下规律:(1)若∠A=60°,则∠P=°;(2)若∠A=40°,则∠P=°;(3)若∠A=100°,则∠P=°;(4)请你用数学表达式归纳∠A与∠P的关系.【答案】(1)65;(2)45;(3)40;(4)∠P =90°-12∠A【分析】(1)若∠A =50°,则有∠ABC +∠ACB =130°,∠DBC +∠BCE =360°-130°=230°,根据角平分线的定义可以求得∠PBC +∠PCB 的度数,再利用三角形的内角和定理即可求得∠P 的度数;(2)、(3)和(1)的解题步骤类似.解:(1)∵∠A =50°,∴∠ABC +∠ACB =180°-50°=130°,∴∠DBC +∠BCE =360°-130°=230°,∵BP ,CP 分别为∠CBD 与∠BCE 的平分线,∴12CBP CBD ∠=∠,12BCP BCE ∠=∠,∴()11152CBP BCP CBD BCE ∠+∠=∠+∠=︒,∴()18065P CBP BCP ∠=︒-∠+∠=︒;(2)∵∠A =40°,∴∠ABC +∠ACB =180°-40°=140°,∴∠DBC +∠BCE =360°-140°=220°,∵BP ,CP 分别为∠CBD 与∠BCE 的平分线,∴12CBP CBD ∠=∠,12BCP BCE ∠=∠,∴()11102CBP BCP CBD BCE ∠+∠=∠+∠=︒,∴()18070P CBP BCP ∠=︒-∠+∠=︒;(3)∵∠A =100°,∴∠ABC +∠ACB =180°-100°=80°,∴∠DBC +∠BCE =360°-80°=280°,∵BP ,CP 分别为∠CBD 与∠BCE 的平分线,∴12CBP CBD ∠=∠,12BCP BCE ∠=∠,∴()11402CBP BCP CBD BCE ∠+∠=∠+∠=︒,∴()18040P CBP BCP ∠=︒-∠+∠=︒;(4)∠ABC +∠ACB =180°-∠A ,∴()360180DBC BCE ABC ACB A ∠+∠=︒-∠+∠=︒+∠,∵BP ,CP 分别为∠CBD 与∠BCE 的平分线,∴12CBP CBD ∠=∠,12BCP BCE ∠=∠,∴()119022CBP BCP DBC BCE A ∠+∠=∠+∠=︒+∠,∴()1180902P CBP BCP A ∠=︒-∠+∠=︒-∠.故答案为:∠P =90°-12∠A .【点拨】本题主要考查三角形内角和定理,三角形的外角性质.关键是熟练掌握三角形的一个外角等于和它不相邻的两个内角的和的性质以及角平分线的定义.【题型6】角平分线+平行线模型【例6】(23-24八年级上·四川泸州·期末)如图,在ABC 中,84A BO ∠=︒,平分ABC CO ∠,平分ACB ∠,过点O 作BC 的平行线与,AB AC 分别相交于点M N ,.若6,8AB AC ==.(1)求BOC ∠的度数;(2)求AMN 的周长.【答案】(1)132︒(2)14【分析】本题考查了三角形内角和定理及角平分线定义,平行线的性质,熟练掌握知识点是解题的关键.(1)先利用三角形内角和定理及角平分线定义得出1902OBC OCB A ∠+∠=︒-∠,再根据内角和定理求解即可;(2)根据角平分线的定义和平行线的性质可证明MO BM =,NO NC =,进而求解即可.(1)解:180A ABC ACB ,Ð+Ð+Ð=°180ABC ACB A ∴∠+∠=︒-∠,BO 平分ABC ∠,CO 平分ACB ∠,()()111111809022222OBC OCB ABC ACB ABC ACB A A \�����窗-��,()11809090421322BOC OBC OCB A \Ð=°-Ð+Ð=°+Ð=°+°=°;(2)解:BO 平分ABC ∠,ABO CBO ∴∠=∠,MN BC ∥ ,MOB CBO ∴∠=∠,ABO MOB ∴∠=∠,MO BM ∴=,同理可得:NO NC =,AM MN AN AM MO ON AN AM BM AN NC AB AC ∴++=+++=+++=+,6,8AB AC == ,AMN ∴ 的周长=14AB AC +=.【变式1】如图,△EFG 的三个顶点E ,G 和F 分别在平行线AB ,CD 上,FH 平分∠EFG ,交线段EG 于点H ,若∠AEF =36°,∠BEG =57°,则∠EHF 的大小为()A .105°B .75°C .90°D .95°【答案】B 【分析】首先根据∠AEF =36°,∠BEG =57°,求出∠FEH 的大小;然后根据AB ∥CD ,求出∠EFG 的大小,再根据FH 平分∠EFG ,求出∠EFH 的大小;最后根据三角形内角和定理,求出∠EHF 的大小为多少即可.解:∵∠AEF =36°,∠BEG =57°,∴∠FEH=180°-36°-57°=87°;∵AB ∥CD ,∴∠EFG=∠AEF=36°,∵FH 平分∠EFG ,∴∠EFH =12∠EFG =12×36°=18°,∴∠EHF =180°-∠FEH -∠EFH =180°-87°-18°=75°.故选:B .【点拨】此题主要考查了三角形内角和定理的应用,角平分线的性质和应用,以及平行线的性质和应用,要熟练掌握.【变式2】如图,EFG 的三个顶点E ,G 和F 分别在平行线AB ,CD 上,FH 平分EFG ∠,交线段EG 于点H ,若36AEF ∠=︒,57BEG ∠=︒,则EHF ∠的大小为.【答案】75°.【分析】首先根据∠AEF =36°,∠BEG =57°,求出∠FEH 的大小;然后根据AB ∥CD ,求出∠EFG 的大小,再根据FH 平分∠EFG ,求出∠EFH 的大小;最后根据三角形内角和定理,求出∠EHF 的大小为多少即可.解:∵∠AEF =36°,∠BEG =57°∴∠FEH=180°-∠AEF-∠BEG=87°∵//AB CD∴∠EFG=∠AEF=36°∵FH 平分∠EFG∴∠EFH=12∠EFG=18°∴∠EHF=180°-∠FEH-∠EFH=75°故答案为:75.︒【点拨】此题主要考查了三角形内角和定理的应用,角平分线的性质和应用,以及平行线的性质和应用,要熟练掌握.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2024·四川达州·中考真题)如图,在ABC 中,1AE ,1BE 分别是内角CAB ∠、外角CBD ∠的三等分线,且113E AD CAB ∠=∠,113E BD CBD ∠=∠,在1ABE 中,2AE ,2BE 分别是内角1E AB ∠,外角1E BD ∠的三等分线.且2113E AD E AB ∠=∠,2113E BD E BD ∠=∠,…,以此规律作下去.若C m ∠=︒.则n E ∠=度.【答案】13nm 【分析】本题考查了三角形的外角定理,等式性质,熟练掌握知识点是解题的关键.先分别对1,ABC E AB △△运用三角形的外角定理,设1E AD α∠=,则3CAB α∠=,1E BD β∠=,则3CBD β∠=,得到1E βα=+∠,33C βα=+∠,同理可求:2211133E E C ⎛⎫∠=∠=∠ ⎪⎝⎭,所以可得13n n E C ⎛⎫∠=∠ ⎪⎝⎭.解:如图:∵113E AD CAB ∠=∠,113E BD CBD ∠=∠,∴设1E AD α∠=,1E BD β∠=,则3CAB α∠=,3CBD β∠=,由三角形的外角的性质得:1E βα=+∠,33C βα=+∠,∴113E C ∠=∠,如图:同理可求:2113E E ∠=∠,∴2213E C ⎛⎫∠=∠ ⎪⎝⎭,……,∴13nn E C ⎛⎫∠=∠ ⎪⎝⎭,即13n nE m ∠=︒,故答案为:13n m .【例2】(2019·辽宁铁岭·中考真题)如图,在CEF △中,80E ∠=︒,50F ∠=︒,AB CF ,AD CE ,连接BC ,CD ,则A ∠的度数是()A .45°B .50°C .55°D .80°【答案】B 【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.解:连接AC 并延长交EF 于点M .AB CF ,31∴∠=∠,AD CE ,24∴∠=∠,3412BAD FCE ∴∠=∠+∠=∠+∠=∠,180180805050FCE E F ∠=︒-∠-∠=︒-︒-︒=︒ ,50BAD FCE ∴∠=∠=︒,故选B .【点拨】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.【例3】(2020·北京·中考真题)如图,AB 和CD 相交于点O ,则下列结论正确的是()A .∠1=∠2B .∠2=∠3C .∠1>∠4+∠5D .∠2<∠5【答案】A 【分析】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.解:由两直线相交,对顶角相等可知A 正确;由三角形的一个外角等于它不相邻的两个内角的和可知B 选项为∠2>∠3,C 选项为∠1=∠4+∠5,D 选项为∠2>∠5.故选:A .【点拨】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.2、拓展延伸【例1】如图1所示的图形,像我们常见的学习用品——圆规.我们不妨把这样图形叫做“规形图”,请发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究BDC ∠与A B C ∠∠∠、、之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在ABC 上,使三角尺的两条直角边XY XZ 、恰好经过点B 、C ,若50A ∠=︒,直接写出ABX ACX ∠+∠的结果;②如图3,DC 平分ADB ∠,EC 平分AEB ∠,若50,130DAE DBE ∠=︒∠=︒,求DCE ∠的度数;③如图4,,ABD ACD ∠∠的10等分线相交于点291G G G 、、、 ,若1140,77BDC BG C ∠=︒∠=︒,求A ∠的度数.【答案】(1)BDC A B C ∠=∠+∠+∠,见解析(2)①40︒;②90︒;③70︒【分析】(1)首先连接AD 并延长,然后根据外角的性质,即可判断出BDC A B C ∠=∠+∠+∠;(2)①由(1)可得ABX ACX A BXC ∠+∠+∠=∠,然后根据40A ∠=︒,90BXC ∠=︒,即可求出ABX ACX ∠+∠的值;②由(1)可得DBE DAE ADB AEB ∠=∠+∠+∠,再根据50,130DAE DBE ∠=︒∠=︒,求出ADB AEB ∠+∠的值;然后根据()12DCE ADB AEB DAE ∠=∠+∠+∠,即可求出DCE ∠的度数;③设1ABG x ∠=︒,1ACG y ∠=︒,结合已知可得10ABD x ∠=︒,10ACD y ∠=︒,再根据(1)可得77A x y ∠+︒+︒=︒,1010140A x y ∠+︒+︒=︒,即可判断出A ∠的度数.解:(1)解:BDC A B C ∠=∠+∠+∠,理由如下:如图,连接AD 并延长.根据外角的性质,可得BDF BAD B ∠=∠+∠,CDF C CAD ∠=∠+∠,又∵BDC BDF CDF ∠=∠+∠,BAC BAD CAD ∠=∠+∠,∴BDC A B C ∠=∠+∠+∠,故答案为:BDC A B C ∠=∠+∠+∠;(2)①由(1)可得ABX ACX A BXC ∠+∠+∠=∠,∵50A ∠=︒,90BXC ∠=︒,∴905040ABX ACX ∠+∠=︒-︒=︒;②由(1)可得DBE DAE ADB AEB ∠=∠+∠+∠,∴1305080ADB AEB DBE DAE ∠+∠=∠-∠=︒-︒=︒,∴()8024120ADB AEB ∠+∠=︒÷=︒,∴()50490120DCE ADB AEB DAE ∠=∠+∠+∠=︒+︒=︒;③设1ABG x ∠=︒,1ACG y ∠=︒,则10ABD x ∠=︒,10ACD y ∠=︒,则77A x y ∠+︒+︒=︒,1010140A x y ∠+︒+︒=︒,解得7x y +=︒,所以77770A ∠=︒-︒=︒,即A ∠的度数为70︒.【点拨】此题还考查了三角形的外角的性质,要熟练掌握,解答此题的关键是要明确:三角形的外角等于和它不相邻的两个内角的和.【例2】如图①,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点P .(1)如果∠A =70°,求∠BPC 的度数;(2)如图②,作△ABC 外角∠MBC ,∠NCB 的角平分线交于点Q ,试探索∠Q ,∠A 之间的数量关系.(3)如图③,延长线段BP ,QC 交于点E ,在△BQE 中,存在一个内角等于另一个内角的3倍,求∠A 的度数.【答案】(1)125︒(2)1902Q A ∠=︒-∠(3)∠A 的度数是45︒或60︒或120︒或135︒【分析】(1)在△ABC 中,根据三角形内角和定理求出∠ABC +∠ACB =110°,根据角平分线的定义得出∠PBC =12∠ABC ,∠PCB =12∠ACB ,求出∠PBC +∠PCB =55°,再在△BPC 中,根据三角形内角和定理求出即可;(2)根据三角形外角性质得出∠MBC =∠ACB +∠A ,∠NCB =∠ABC +∠A ,求出∠MBC +∠NCB =∠ACB +∠A +∠ABC +∠A =180°+∠A ,根据角平分线的定义得出QBC =12∠MBC ,∠QCB =12∠NCB ,求出∠QBC+∠QCB=90°+12∠A,根据三角形内角和定理求出即可;(3)根据角平分线的定义得出∠ACF=2∠BCF,∠ABC=2∠EBC,根据三角形外角性质得出∠ECF=∠EBC+∠E,求出∠A=2∠E,求出∠EBQ=90°,分为四种情况:①∠EBQ=3∠E=90°,②∠EBQ=3∠Q,③∠Q=3∠E,④∠E=3∠Q,再求出答案即可解:(1)∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵点P是∠ABC和∠ACB的角平分线的交点,∴∠PBC=12∠ABC,∠PCB=12∠ACB,∴∠PBC+∠PCB=55°,∴∠BPC=180°﹣(∠PBC+∠PCB)=125°;(2)∵∠MBC=∠ACB+∠A,∠NCB=∠ABC+∠A,∴∠MBC+∠NCB=∠ACB+∠A+∠ABC+∠A=180°+∠A,∵点Q是∠MBC和∠NCB的角平分线的交点,∴∠QBC=12∠MBC,∠QCB=12∠NCB,∴∠QBC+∠QCB=12(∠MBC+∠NCB)=12(180°+∠A)=90°+12∠A,∴∠Q=180°﹣(∠QBC+∠QCB)=180°﹣(90°+12∠A)=90°﹣12∠A;(3)∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠BCF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠BC+2∠E,∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=12∠A,∵∠EBQ=∠EBC+∠CBQ=12∠ABC+12 MBC=12(∠ABC+∠A+∠ACB)=90°,如果△BQE中,存在一个内角等于另一个内角的3倍,那么分为四种情况:①∠EBQ=3∠E=90°,则∠E=30°,∠A=2∠E=60°;②∠EBQ=3∠Q,则∠Q=30°,∠E=60°,∠A=2∠E=120°;③∠Q=3∠E,则∠E=22.5°,∠A=2∠E=45°;④∠E=3∠Q,则∠E=67.5°,∠A=2∠E=135°,综合上述,∠A的度数是45°或60°或120°或135°.【点拨】本题考查了三角形的外角性质,三角形内角和定理,角平分线的定义等知识点,熟练掌握知识点及运用分类讨论思想是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于正三角形的几个结论
1. 正三角形的三条角都是直角。
2. 正三角形的三条边都是等长的。
3. 正三角形的内角和为180度。
4. 正三角形的每条对边相等,且与相邻角成直角。
5. 正三角形的边长都相等,且与对角成45度角。
6. 正三角形的角平分线相交于其垂心。
7. 正三角形的角平分线相等,且与对角成45度角。
8. 正三角形的外心和内心都在其垂心处。

相关文档
最新文档