八上数学复习专题之压轴题(一次函数)(含答案)

合集下载

专题08 一次函数与几何综合的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题08 一次函数与几何综合的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题08一次函数与几何综合的五种考法类型一、等腰三角形存在性问题(1)求直线CB的解析式;(2)点E在x轴上,【答案】(1)12y x =+(2)(4,0)、(16,0)-、当10BE AB ==时,1E 点的坐标为(4,0),2E 点的坐标为当AB AE =时,点B 与点E 是关于y 轴对称,E 当EA EB =时,设点E 坐标为(,0)x ,则2228(6)x x +=+,解得:73x =4E 点的坐标为7(,0)3,(1)当点P 在线段BO 上时,①求证:AOP BOQ ≌△△;②若点P 为BO 的中点,求△(2)在点P 的运动过程中,是否存在某一位置,的坐标;若不存在,请说明理由.当点P 在线段OB 上时,若OC OQ =,由于OP OQ =,则有在OCP △中,OPC AOP ∠=∠+OC OP ∴>,即OC OQ =不可能;若CQ OQ =,由于OP OQ =,则有过点C 作CH x ⊥轴于点H ,显然即CQ OQ =不可能,∴当COQ 是等腰三角形时,只有当点P在BO的延长线上时,同理可得:(0,424)P--,综上所述:(0,424)P-或P【点睛】本题考查了一次函数与几何图形综合,图形是解题的关键.【变式训练2】如图,在平面直角坐标系中,一次函数分别交于点B、A,点P为y(1)求点A、B的坐标;(2)当点P在y轴负半轴上,且ABP的面积为6时,求点(3)是否存在点P使得ABP为等腰三角形?若存在,求出点设()()0,0P n n <,则2PA =-所以()22224PA n n n =-=-+所以224416n n n -+=+解得3n =-,所以此时点P 的坐标为(0,3-综上所述,存在点P 使得ABP 例.如图,直线24y x =+与x 轴交于点A ,与y 轴交于点B ,点C 是OB 的中点.(1)求点C 的坐标:(2)在x 轴上找一点D ,使得ACD ABC S S = ,求点D 的坐标;(3)在x 轴上是否存在一点P ,使得ABP 是直角三角形?若存在,请写出点P 的坐标;若不存在,请说明理由.【答案】(1)()0,2C (2)点D 的坐标为()4,0-或()0,0(3)存在,满足条件的P 点的坐标为()0,0或()8,0(1)填空:b =,m =,k =;(2)如图2,点D 为线段BC 上一动点,将ACD 沿直线AD 翻折得到AED △,线段AE 交轴于点F .①求线段AE 的长度;②当点E 落在y 轴上时,求点E 的坐标;③若DEF 为直角三角形,请直接写出满足条件的点D 的坐标.【答案】(1)8,2-,12-(2)①45;②点E 的坐标为()0,4219-;③点D 的坐标为()20,或()254,0-【分析】(1)根据待定系数法求解即可;(2)①过点A 作AH y ⊥轴于点H ,作AG x ⊥轴于点G ,根据勾股定理得到()222262480AE AC ==++=,于是得到结论;②利用勾股定理求出219HE =,可得2194OE =-,即可得答案;③分两种情况讨论,当90EDF ∠=︒时,求出135ADC ∠=︒,得45ADO ∠=︒,得DG AD ==得点D 坐标;当90DFE ∠=︒时,设DF x =,则8DE DC x ==-,由勾股定理得:()()2228454x x -=+-,求出DF ,得点D 坐标.【详解】(1)解:把()40B -,代入2y x b =+,∵()024b =⨯-+,∴8b =,∴直线AB :28y x =+,把()4A m ,代入28y x =+,∴2m =-,∵ACD 翻折得到AED△∴()222262480AE AC ==++=,∴45AE =②当E 点落在y 轴上时,在Rt AHE △中,∵222AE AH HE -=∴222802HE AE AH =-=-=∴2194OE HE OH =-=-,∴点E 的坐标为()04219-,;③如下图,当90EDF ∠=︒时,由翻折得ADC ∠∴1359045ADO ∠︒︒=-=︒,∵4AG =,∴4DG AG ==,∴422OD DG OG =-=-=,∴点D 的坐标为()20,;如下图,当90DFE ∠=︒时,80AE AC ==设DF x =,则8DE DC x ==-,在Rt DEF △中,由勾股定理得:(解得:252x =-,∴254OD DF OF =-=-,∴点D 的坐标为()254,0-,综上,点D 的坐标为()20,或(2【点睛】本题考查了一次函数的综合题,勾股定理,角平分线的性质,直角三角形的性质和判定,翻折的性质,解题的关键是作辅助线.(1)如图1,求出AOP 的面积;(2)如图2,已知点C 是直线85y x =上一点,若APC △是以AP 为直角边的等腰直角三角形,求点C 的坐标.【答案】(1)AOP 的面积为40(2)点C 的坐标为()1016,或162,⎛⎫⎪∵直线l x ∥轴,点B ∴8PH OB ==,∴12AOP S OA PH == 故答案为:40;(2)设点(),8P n (n ≠过点P 作直线FE ,交APC 为等腰直角三角形,则90APE FPC ∴∠+∠=︒,APE FCP ∴∠=∠,90PEA CFP ∠=∠=︒ ,(AAS)PEA CFP ∴ ≌,同理可得:(AAS)AMP ANC ≌AM AM ∴=且MP NC =,8|10|m ∴=-或8105n m -=解得:2565m n =⎧⎪⎨=⎪⎩或181945m n =⎧⎪⎨=⎪⎩(1)求直线l 的解析式;(2)求证:ABC 是等腰直角三角形;(3)将直线l 沿y 轴负方向平移,当平移恰当的距离时,直线与在直线CD 上存在点P ,使得A △的坐标.【答案】(1)142y x =-+∴90DPE A PB ''∠=∠=︒,∴A PD B PE ''∠=∠,∵90A FP CEB ''∠=∠=︒,∴A FP CEB '' ≌,∴4,PE PF A F B E ''===,此时点P 的坐标为()44--,;如图,若以点P 为直角顶点时,过点同理此时点P 的坐标为()44-,;如图,若以点B '为直角顶点时,过点P 作同理A OB B GP ''' ≌,∴44OB PG OF t '====+,B '∴8t =-或0(舍去),∴8B G OA ''==,∴12OG =,∴此时点P 的坐标为()412--,;如图,若以点B '为直角顶点时,过点B '作B M CD '⊥轴于点M ,则4B M OF '==,OB MF '=,同理PB M A B O ''' ≌,∴44B M B O t ''===+,82PM OA t '==+,∴0=t (舍去);如图,若以点A '为直角顶点时,同理A PF B A O ''' ≌,∴,PF A O B O A F '''==,∴4482t t --=---,解得:8t =-,∴8PF =,此时点P 的坐标为()48-,;如图,若以点A '为直角顶点时,同理A PF B A O ''' ≌,∴,PF A O B O A F '''==,∴4824t t --=++,解得:163t =-,∴83PF =,∴此时点P 的坐标为84⎛⎫--,;(1)①A 的坐标是_____________②求直线AB 的表达式;(2)点P 是直线y =(3)当ABP 为等腰直角三角形时,请直接写出【答案】(1)①(0,3【分析】(1)把x(3)解:如图1,当点P 为顶点时,过点P 作PE x ⊥轴,过点A 作AF 垂直于PE 的延长线于点F ,∵ABP 是等腰直角三角形,AP PB ∴=,APB ∠=90︒,=90FAP APF +∠︒ ,=90APF BPE ∠+∠︒,=FAP BPE ∴∠∠,在AFP 和PEB △中,F E FAP EPB AP PB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFP PEB AAS ∴≅ ,AF PE ∴=,BE PF =,===90O F E ∠∠∠︒ ,∴四边形AOEF 是矩形,==AF PE OB BE ∴+,===AO FE FP PE BE PE ++,==2AO BE OB BE BE OB +++,()0,3A 、()1,0B ,=3AO ∴,1OB =,21=3BE ∴+,=1BE ∴,==31=2PE AO BE --,==11=2OE OB BE ∴++,∴点P 的坐标为()2,2;如图2,当点B 为顶点时,过点P 作PG x ⊥轴,ABP 是等腰直角三角形,AB BP ∴=,=90ABO OAB ∠+∠︒ ,=90ABO PBG ∠+∠︒,=OAB PBG ∴∠∠,在AOB 和BGP 中,O PGB OAB PBG AB BP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOB BGP AAS ∴≅ ,=PG OB ∴,BG AO =,()0,3A 、()1,0B ,=3AO ∴,1OB =,==13=4OG OB BE ∴++,=1PG ,∴点P 的坐标为()4,1;如图3,当点A 为顶点时,过点P 作PM y ⊥轴,PAB △是等腰直角三角形,PA AB ∴=,=90PAB ∠︒,90MAP OAB ∠+∠=︒ ,90MAP MPA ∠+∠=︒,=MPA OAB ∴∠∠,在PMA △和AOB 中,M O MPA OAB AP AB ∠=∠⎧⎪∠=∠⎨⎪=⎩()PMA AOB AAS ∴≅ ,=MP AO ∴,=MA OB ,()0,3A 、()1,0B ,=3AO ∴,1OB =,3MP ∴=,==13=4OM MA AO ++,∴点P 的坐标为()3,4,故答案为:()2,2;()4,1;()3,4.【点睛】本题考查了一次函数的综合运用,等腰直角三角形的性质和矩形的性质及全等三角形的性质的判定,熟练求一次函数的解析式和构造全等三角形是解题的关键.类型四、全等问题(1)点A坐标为________,点B坐标为(2)当BOP△的面积是4时,求点(3)在y轴上是否存在点Q,使得以接写出所有符合条件的点P的坐标,否则请说明理由.【答案】(1)(3,0),(0,4),12 5(2)4(2,)20(2,)125OM OQ ==,12(0,)5Q 或12(0,)5-,6(5P ,12)5或24(5,12)5-;②如图3,图4,当OMP PQO ≌△△时,125PQ OM ∴==,12(5P ∴-,36)5或12(5,4)5;综上所述:P 点坐标为(65,12)5或24(5,12)5-或12(5-,36)5或12(5,4)5.【点睛】本题考查一次函数的图象及性质,判定及性质,分类讨论,数形结合是解题的关键.【变式训练1】如图,一次函数364y x =+的图象与于点C ,点P 在直线AB 上运动,点Q 在(1)求点A ,B 的坐标;(2)求OC 的长;(3)若以O ,P ,Q 为顶点的三角形与【答案】(1)()8,0A -,(B (3)Q 的坐标为120,5⎛⎫ ⎪⎝⎭或0,⎛ ⎝则OC PQ=,∴245PQ =,∴245m=-,∴33241266 4455m⎛⎫+=⨯-+=⎪⎝⎭,∵PQ OC=,∴245 PQ=.∴245=m,∴33244866 4455m+=⨯+=,∴48 0,5Q⎛⎫ ⎪⎝⎭;则245 OQ OC==,∴240,5Q⎛⎫ ⎪⎝⎭;综上所述,Q的坐标为12 0,5⎛⎫ ⎪⎝⎭或(1)求点B 的坐标及直线BC 的函数表达式;(2)在坐标系平面内,存在点D ,使以点A ,B ,D 为顶点的三角形与ABC 全等,画出ABD ,并求出点D 的坐标.【答案】(1)点B 的坐标为(0,3),33y x =-+;(2)图见解析,点D 的坐标为(4-,3)或(3-,4)或(0,1)-.【分析】(1)将点点(3A -,0)代入解析式得出3b =,继而得出点B 的坐标为(0,3),根据:3:1OB OC =得出1OC =,即点C 的坐标为(1,0),然后待定系数法求解析式即可求解;(2)分在x 轴上方:BAD ABC ≌和(ABD ABC ≌如图1)和点D 在y 轴上(如图②)两种情况,根据全等三角形的性质即可求解.【详解】(1)解:∵直线AB :y x b =+过点(3A -,0),03b ∴=-+,3b ∴=.当0x =时,3y x b b =+==,∴点B 的坐标为(0,3),即3OB =.OB :3OC =:1,1OC ∴=.点C 在x 轴正半轴,∴点C 的坐标为(1,0).设直线BC 的解析式为()0y kx c k =+≠,将(0B ,3)、(1C ,0)代入y kx c =+,得:30c k c =⎧⎨+=⎩,解得:33k c =-⎧⎨=⎩,∴直线BC 的函数表达式为33y x =-+.(2)分在x 轴上方:BAD ABC ≌和(ABD ABC ≌如图1)和点D 在y 轴上(如图②)两种情况考虑:如图①:①当BAD ABC ≌时,3OA OB == ,45BAC ∴∠=︒.BAD ABC ≌,45ABD BAC ∴∠=∠=︒,4BD AC ==,BD ∴∥AC ,∴点D 的坐标为(4-,3);②当ABD ABC ≌时,45BAD BAC ∠=∠=︒,4AD AC ==,90DAC ∴∠=︒,∴点D 的坐标为(3-,4).如图②当ABD BCA ≌时,4BD AC ==,1OD ∴=,∴点D 的坐标为(0,1)-.综上所述,点D 的坐标为(4-,3)或(3-,4)或(0,1)-.【点睛】本题考查了一次函数与几何图形,坐标与图形,全等三角形的性质与判定,数形结合是解题的关键.【变式训练3】如图①,已知直线24y x =-+与x 轴、y 轴分别交于点A 、C ,以OA OC ,为边在第一象限内作长方形OABC .类型五、角度之间关系过点P 作EF y ⊥轴于点E ,过点H 作∴45POG ∠=︒,∵()3,1P ,∴1,3EP OE ==∵OA OB =,45AOB ∠=︒∴AOB 是等腰直角三角形,∵45APO EOP ∠+∠=︒,PQO APO∠=∠∴45PQO EOP ∠+∠=︒又∵9045EOP GOQ POG ∠+∠=︒-∠=∴GOQ GQO∠=∠∴GQ GO =,即点G 在OG 的垂直平分线上,∵90OEP PFH OPH ∠=∠=∠=︒,∴90OPE FPH PHF ∠=︒-∠=∠,(1)求直线AB的关系式;(2)连接PD,当线段PD AB⊥时,直线AD上有一点动M∴1284,2525S ⎛⎫-- ⎪⎝⎭,∵45,DKR DAO KT RK ∠=∠=︒⊥∴45DKR DKT ∠=︒=∠,∴KT KP =,∴P ,T 关于直线AD 对称,连接TS 交AD 于M ,交x 轴于N 4y x =-+12x =-得y =∵3,4OB OA ==,∴34PH PH AH HW==,设3PH t =,则4AH HW t ==∴5PW t OW ==,∵4OW HW AH OA ++==,∵12POA BAO ∠=∠,∴2POA APO POA ∠+∠=∠∴APO POA ∠=∠,∴4AO AP ==,∵34PF OB AF AF ==,∴165AF =36(1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线于点Q .①若PQB △的面积为83,求点M 的坐标.②连接BM ,如图2,在点M 的运动过程中是否存在点P ,使∠求出点P 坐标,若不存在,请说明理由.则113(3)22PQ m m m =-+-+=,则PQB ∆的面积21122PQ BD m =⋅=故点M 的坐标为43(3,0)或4(-②如图,当点M 在y 轴的左侧时,点C 与点A 关于y 轴对称,AB BC ∴=,BAC BCA ∴∠=∠,BMP BAC ∠=∠ ,BMP BCA ∴∠=∠,90BMP BMC ∠+∠=︒ ,90BMC BCA ∴∠+∠=︒(1)求点A,B的坐标;(2)若直线AC⊥AB交y轴负半轴于点(3)在y轴上是否存在点P,使以求出点P的坐标;若不存在,请说明理由.【答案】(1)A(−1,0);B(0,2)(2)1.25;(3)y轴上存在点P,使以A,当BA=BP时,BP=∴点P1的坐标为(0,当PB=PA时,设OP ∴(2−x)2=1+x2,解得:∴点P3的坐标为(0,当AB=AP时,OP=∴点P4的坐标为(0,综上所述:y轴上存在点标为(0,2+5)或(0(1)填空:=a ______,b =______;(2)在射线CD 上有一动点E ,过点E 作EF 平行于y 轴交直线AB 时,求点E 的坐标;(3)点M 为直线AB 上一点,且45CDM ∠=︒,求点M 的坐标.【答案】(1)1,2-1112132⎛⎫∴90QCP QPC ∠+∠=︒,∵CP CD ⊥,∴90QCP DCL ∠+∠=︒∴QPC DCL ∠=∠,∴QPC LCP ≌△△,∵()1,1C -,()0,2D -,∴CG HK =,GH KD =,∵()1,1C -,()0,2D -,设(,H c d ∴2c =-,1d =-,∴()2,1H --,可得直线DH 的解析式为联立12213y x ⎧=--⎪⎪⎨,解得721x ⎧=-⎪⎪⎨(1)求点C的坐标;∥轴交AB于点(2)如图2,过点C作直线CD x①求线段CD的长;②在坐标平面内,是否存在点M(除点B外),全等?若存在,请直接写出所有符合条件的点M DC≌△BDC时,当△1M和点B关于直线则点1M的坐标为:(-1∴点1M CD≌△BDC时,当△2。

一次函数与几何压轴(十大题型)(解析版)—2024-2025学年八年级数学上册(浙教版)

一次函数与几何压轴(十大题型)(解析版)—2024-2025学年八年级数学上册(浙教版)

一次函数与几何压轴(十大题型)【题型1 一函数中面积问题】【题型2 一次函数中等腰三角形的存在性问题】【题型3 次函数中直角三角形的存在性问题】【题型4 一次函数中等腰直角三角形的存在性问题】【题型5 一次函数中平行四边形存在性问题】【题型 6 一次函数中菱形的存在性问题】【题型7 一次函数中矩形的存在性问题】【题型8 一次函数中正方形的存在性问题】【题型9 一次函数与相等角/2倍角的问题】【题型10 一次函数中45°角问题】【技巧点睛1】铅锤法求三角形面积【技巧点睛2】处理与一次函数相关的面积问题,有三条主要的转化途径:①知底求高、转化线段;②图形割补、面积和差;③平行交轨、等积变换。

【技巧点睛3】处理线段问题(1)在平面直角坐标系中,若线段与y轴平行,线段的长度时端点纵坐标之差(上减下,不确定时相减后加绝对值),若线段与x轴平行,线段的长度时端点横坐标之差(右减左,不确定时相减后加绝对值);(2)线段相关计算注意使用”化斜为直”思想。

【技巧点睛4】角度问题(1)若有角度等量关系,不能直接用时,我们要学会角度转化,比如借助余角、补角、外角等相关角来表示,进行一些角度的和差和角度的代换等,直到转化为可用的角度关系。

(2)遇45°角要学会先构造等腰直角三角形,然后构造“三垂直”全等模型,一般情况下是以已知点作为等腰直角三角形的直角顶点【技巧点睛5】最值问题(1)求线段和最值,可以从“两点之间线段最短”“垂线段最短”“三角形两边之和大于第三边,两边之差小于第三边”的模型去考虑;(2)注意“转化思想”的运用,将不可用线段进行转化,变成我们熟悉的模型【技巧点睛6】特殊三角形存在问题等腰三角形存在性问题1、找点方法:①以AB 为半径,点A 为圆心做圆,此时,圆上的点(除 D 点外)与A、B构成以 A 为顶点的等腰三角形(原理:圆上半径相等)②以AB 为半径,点B 为圆心做圆,此时,圆上的点(除 E 点外)与A、B构成以 B 为顶点的等腰三角形(原理:圆上半径相等)③做AB 的垂直平分线,此时,直线上的点(除F 点外)与A、B 构成以C 为顶点的等腰三角形(原理:垂直平分线上的点到线段两端的距离相等)2、求点方法:二、直角三角形存在性问题若▲ABC是直角三角形,则分三种情况分类讨论:∠A=90°,∠B=90°,∠C=90°,然后利用勾股定理解题。

一次函数压轴题(含答案)

一次函数压轴题(含答案)

一次函数压轴题(含答案)如图,已知直线 $y=2x+2$ 与 $y$ 轴。

$x$ 轴分别交于$A$。

$B$ 两点,以 $B$ 为直角顶点在第二象限作等腰直角三角形 $\triangle ABC$。

1)求点 $C$ 的坐标,并求出直线 $AC$ 的关系式。

2)如图,在直线 $CB$ 上取一点 $D$,连接 $AD$,若$AD=AC$,求证:$BE=DE$。

3)如图,在(1)的条件下,直线 $AC$ 交 $x$ 轴于$M$,$P(,k)$ 是线段 $BC$ 上一点,在线段 $BM$ 上是否存在一点$N$,使直线$PN$ 平分$\triangle BCM$ 的面积?若存在,请求出点 $N$ 的坐标;若不存在,请说明理由。

考点:一次函数综合题。

分析:(1)如图,作 $CQ\perp x$ 轴,垂足为 $Q$,利用等腰直角三角形的性质证明 $\triangle ABO\cong \triangle BCQ$,根据全等三角形的性质求 $OQ$,$CQ$ 的长,确定$C$ 点坐标;2)同(1)的方法证明 $\triangle BCH\cong \triangle BDF$,再根据线段的相等关系证明 $\triangle BOE\cong \triangle DGE$,得出结论;3)依题意确定 $P$ 点坐标,可知 $\triangle BPN$ 中$BN$ 变上的高,再由 $\frac{1}{2}S_{\trianglePBN}=\frac{1}{2}S_{\triangle BCM}$,求 $BN$,进而得出$ON$。

解答:解:(1)如图,作$CQ\perp x$ 轴,垂足为$Q$。

因为 $\angle OBA+\angle OAB=90^\circ$,$\angleOBA+\angle QBC=90^\circ$,所以$\angle OAB=\angle QBC$。

又因为 $AB=BC$,$\angle AOB=\angle Q=90^\circ$,所以 $\triangle ABO\cong \triangle BCQ$。

八上期末复习《一次函数》压轴题含答案解析

八上期末复习《一次函数》压轴题含答案解析

一次函数综合题选讲及练习例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是,BC=.(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM 的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP 时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。

八上期末复习《一次函数》 压轴题含答案

八上期末复习《一次函数》    压轴题含答案

一次函数综合题选讲及练习例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是 ,BC= .(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M 从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x 轴负半轴上移动时,求△COM的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B 的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC 于G.利用△CAO∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得 m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得 a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得 a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC 于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A(8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试卷(包含答案解析)(3)

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试卷(包含答案解析)(3)

一、选择题1.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到 2.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( )A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 3.在平面直角坐标系中,一次函数1y x =-的图象是( ) A . B . C . D . 4.如图,已知直线3:3l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ,…,按此作法继续下去,则点2020A 的坐标为( )A .()0,2020B .()0,4040C .()20200,2D .()20200,4 5.已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是( ) A . B . C . D . 6.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y(升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A .B .C .D .8.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③ 9.一次函数y=3x ﹣6的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1 2 3 4 … 水池中水量/3m 48 46 44 42 … A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m12.已知A 、B 两地相距810千米,甲车从A 地匀速前往B 地,到达B 地后停止.甲车出发1小时后,乙车从B 地沿同一公路匀速前往A 地,到达A 地后停止.设甲乙两车之间的距离为y(千米),甲车出发的时间为x (小时),y 与x 的关系如图所示,对于以下说法:①乙车的速度为90千米/时;②点F 的坐标为(9,540);③图中a 的值是13.5;④当甲乙两车相遇时,两车相遇地距A 地的距离为360千米.其中正确的结论是( )A .①②③B .①②④C .②③④D .①③④二、填空题13.若一次函数(1)2=-+-y m x m 的图象经过第二、三、四象限,则m 的取值范围是_______.14.在平面直角坐标系xOy 中,直线y =﹣34x +3分别与x 轴、y 轴交于点A 、B ,将△AOB 沿过点A 的直线折叠,使点B 落在x 轴的负半轴上,记作点C ,折痕与y 轴交于点D ,则直线AD 的解析式为_____.15.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 16.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________. 17.已知函数2(1)3k y k x =-+是一次函数,则k =_________.18.若式子23x x +-有意义,则x 的取值范围为______. 19.甲、乙两车分别从,A B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 地的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地,设两车行驶的时间为()x h ,两车之间的距离为()y km ,y 与x 之间的函数关系如图所示,则,A C 两地相距________千米.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C .(1)求点C 的坐标;(2)求△OBC 的面积.22.一辆汽车的油箱中现有汽油60升,汽车行驶时正常的耗油量为0.1升/千米.油箱中的油量y (升)随行驶里程x (千米)的变化而变化.(假定该汽车不加油,能工作至油量为零)(1)求y 关于x 的函数表达式(2)利用图象说明,当行驶里程超过400千米后油箱内的汽油量23.在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第一象限,斜靠在两条坐标轴上,且点A (0,3),点C (1,0),BE ⊥x 轴于点E ,一次函数y x b =+经过点B ,交y 轴于点D .(1)求证△AOC ≌△CEB ;(2)求B 点坐标;(3)求ABD S ∆24.某地区的电力资源缺乏,未能得到较好的开发.该地区一家供电公司为了居民能节约用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图象如图所示.(1)月用电量为50度时,应交电费多少元?(2)当100x ≥时,求y 与x 之间的函数关系式;(3)月用电量为150度时,应交电费多少元?25.甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.26.剧院举行新年专场音乐会,成人票每张20元,学生票每张5元,剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x (人),付款总金额为y (元),分别表示这两种方案; (2)请计算并确定出最节省费用的购票方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一次函数图象平移规律,直接判断即可.【详解】解:∵一次函数图象向上平移m (m>0)个单位,常数项增加m ,∴函数y =2x 的图像向上平移1个单位可以得到y =2x +1的图像,故选:C .【点睛】本题考查了一次函数图象平移的规律,解题关键是掌握一次函数图象平移的规律:上加下减常数项,左加右减自变量.2.A解析:A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子:(1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.3.A解析:A【分析】先确定一次函数解析式中k 与b 的符号,然后再利用一次函数图象及性质即可解答.【详解】解:一次函数y=1-x其中k=-1,b=1其图象为:.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数的图象与性质是解答本题的关键. 4.D解析:D【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2020坐标即可.【详解】解:∵直线l 的解析式为y =, ∴直线l 与x 轴的夹角为30.∵AB x 轴,∴30ABO ∠=︒.∵1OA =,∴2OB =.∴1A B ⊥直线l ,130BAO ∠=︒, ∴124A O OB ==,∴()10,4A .同理可得()20,16A ,…∴2020A 的纵坐标为20204,∴()202020200,4A .故选D .【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A 、A 1、A 2、A 3…的点的坐标是解决本题的关键. 5.D解析:D【详解】∵正比例函数y kx =,且y 随x 的增大而减少,0k .∴< 在直线2y x k =+中,200k ><,,∴函数图象经过一、三、四象限.故选D .6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是:y=kt+b ,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=12×4×(6-x)=-2x+12(0<x<6),∴B符合.故选:B.【点睛】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.8.B解析:B【分析】由图象经过第一,二,三象限,可得k>0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k>0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.9.B解析:B【分析】分析:根据一次函数y=kx+b (k≠0,b 为常数)的性质可知,k>0时,y 随x 的增大而增大;b <0时,直线与y 轴相交于负半轴,据此即可判断一次函数所过象限.详解:∵一次函数y=3x−6中,3>0,−6<0,∴一次函数图象过一、三、四象限,故函数图象不过第二象限,故选B.点睛:此题考查一次函数的性质,直线y=kx+b (k≠0,b 为常数)图象时一条经过(-b k ,0)和(0,b )的直线.k 的正负决定直线的倾斜方向,k>0时,y 随x 的增大而增大,k<0时,y 随x 的增大而减小;b 的正负决定直线与y 轴交点的位置:b <0时,直线与y 轴相交于负半轴,b>0时,直线与y 轴相交于正半轴,b=0时,直线过原点.由此即可判断直线经过的象限,【详解】请在此输入详解!10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可; 【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.12.D解析:D【分析】通过对运动过程及函数图象的分析可得:CD 段为甲车提前出发的1小时,即可求解甲车速度;DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米即可求出乙车速度,逐一判断即可求解.【详解】解:由图象可知CD 段为甲车提前出发的1小时,可得甲车速度为81075060km/h -=, DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米, ∴乙车的速度为7506090km/h 5-=,故①正确; 此时两车距A 地的距离为606360⨯=,故④正确; ∴甲车到达B 地时对应时间为810=13.5h 60, 乙车到达A 地时对应时间为81011090+=, ∴图中a 的值是13.5,故③正确;点F 的坐标为(10,600),故②错误;综上,正确的结论有①③④,故选:D .本题考查一次函数的应用,根据图象与题干分析出每一段的状态是解题的关键.二、填空题13.【分析】由一次函数经过第二三四象限可得:m -1<0m -2<0将两个不等式联立解不等式组即可【详解】由题意得:解得:m<1故答案为:m<1【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系解析:1m <【分析】由一次函数经过第二、三、四象限可得:m -1<0,m -2<0,将两个不等式联立,解不等式组即可.【详解】由题意得:1020m m -<⎧⎨-<⎩, 解得:m <1.故答案为:m <1.【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系,掌握不等式组的解法,熟记一次函数图像与系数的关系是解题关键.14.y =﹣【分析】分别将x=0y=0代入直线y=-x+3中求出与之对应的yx 值由此即可得出点BA 的坐标根据折叠的性质结合勾股定理可求出AC 的长度进而可得出点C 的坐标设OD=m 则CD=BD=3-m 在Rt △解析:y =﹣1433x +【分析】分别将x=0、y=0代入直线y=-34x+3中求出与之对应的y 、x 值,由此即可得出点B 、A 的坐标,根据折叠的性质结合勾股定理可求出AC 的长度,进而可得出点C 的坐标,设OD=m ,则CD=BD=3-m ,在Rt △COD 中利用勾股定理可求出m 的值,进而可得出点D 的坐标,则可求出答案.【详解】解:如图,当x =0时,y =﹣34x +3=3, ∴点B 的坐标为(0,3), 当y =0时,有﹣34x +3=0, 解得:x =4,∴点A 的坐标为(4,0).由折叠性质可知,△ABD ≌△ACD ,∴AC =AB ,BD =CD .在Rt △AOB 中,AB 22OA OB +5,∴AC =5,∴OC =AC ﹣OA =5﹣4=1,∴点C 的坐标为(﹣1,0).设OD =m ,则CD =BD =3﹣m ,在Rt △COD 中,OC 2+OD 2=CD 2,即12+m 2=(3﹣m )2,解得:m =43, ∴OD =43, ∴点D 的坐标为(0,43). 设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0)、D (0,43)代入y =kx +b , 4043k b b +=⎧⎪⎨=⎪⎩, 解得:1343k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD 的解析式为y =1433x -+. 故答案为:y =1433x -+. 【点睛】 本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及翻折变换,解题的关键是熟练掌握折叠的性质.15.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩ , 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C (7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S 的最小值为2,最大值为3,解S =12|t ﹣3|×2﹣12|t ﹣3|×1=3,得t =9或﹣3,∵当S =2时,得t =7或﹣1,∴若S 的最小值为2,最大值为3,点C 的横坐标t 的取值范围为7≤t≤9或﹣3≤t≤﹣1; 故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.16.【分析】根据正比例函数的定义列出式子计算求出参数m 的值【详解】解:∵函数y=(m-2)x+4-m2是关于x 的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m =-【分析】根据正比例函数的定义列出式子计算求出参数m 的值.【详解】解:∵函数y=(m-2)x+4-m 2是关于x 的正比例函数,∴4-m 2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.17.-1【分析】根据一次函数的定义即可求出k 的值【详解】解:∵是一次函数∴解得:;故答案为:【点睛】本题考查了一次函数的定义解题的关键是熟练掌握一次函数的定义进行解题解析:-1【分析】根据一次函数的定义,即可求出k 的值.【详解】解:∵2(1)3k y k x =-+是一次函数, ∴2110k k ⎧=⎨-≠⎩, 解得:1k =-;故答案为:1-.【点睛】本题考查了一次函数的定义,解题的关键是熟练掌握一次函数的定义进行解题. 18.x >-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x -3≠0再解即可【详解】由题意得:x+2≥0且x -3≠0解得:x >-2且x≠3故答案为:x>-2且x≠3【点睛解析:x>-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x-3≠0,再解即可.【详解】由题意得:x+2≥0,且x-3≠0,解得:x>-2,且x≠3故答案为:x>-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.19.300【分析】当x=0时y=300故此可得到AB两地的距离为3003小时后两车相遇从而可求得两车的速度之和然后依据5小时后两车的距离最大可知甲车到达B地用5小时从而可乙车的速度设甲乙两车出发后经过t解析:300【分析】当x=0时,y=300,故此可得到AB两地的距离为300,3小时后两车相遇,从而可求得两车的速度之和,然后依据5小时后两车的距离最大,可知甲车到达B地用5小时,从而可乙车的速度,设甲、乙两车出发后经过t小时同时到达C地,根据甲乙两车的路程相差300千米,列方程可求得t的值,最后根据乙的路程得到B、C之间的距离,则可得出A、C之间的距离.【详解】解:由图象可得:当x=0时,y=300,∴AB=300千米.∴甲车的速度=300÷5=60千米/小时,又∵300÷3=100千米/小时,∴乙车的速度=100-60=40千米/小时,设甲、乙两车出发后经过t小时同时到达C地,依题意可得60t-40t=300,解得t=15,∴B,C两地的距离=40×15=600千米,∴A,C两地的距离=600-300=300千米.故答案为:300.【点睛】本题以行程问题为背景,主要考查了一次函数的应用,解决问题的关键是根据函数图象理解题意,求得两车的速度,并根据两车行驶路程的数量关系列出方程.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x的图象经过第一三象限可得:k-1>0则k>1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩, 一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)16010=-+y x(2)小于20升【分析】(1)根据题意,可以写出y与x的函数关系式,并写出x的取值范围;(2)根据(1)中的函数解析式和画函数图象的方法,可以画出相应的函数图象,结合图象进行解答即可.【详解】解:(1)由题意可得,y=60-0.1x,当y=0时,0=60-0.1x,得x=600,即y与x的函数关系式为y=60-0.1x(0≤x≤600);(2)y=60-0.1x,列表:x0600y600所以,当行驶里程超过400千米后油箱内的汽油量小于20升.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)见解析;(2)B(4,1);(3)12【分析】(1)根据等腰直角三角形的性质,可得AC=BC,∠ACB=90°,根据余角的性质,可得∠OAC=∠BCE,根据AAS,可得答案;(2)根据全等三角形的性质,可得B点坐标;(3)先求得b的值,再根据三角形的面积公式,可得答案.【详解】(1)(1)证明:∵BE⊥CE∴∠BEC=90°∵△ABC是等腰直角三角形∴AC=BC,∠ACB=90°∴∠AOC=∠BEC=90°∵∠OAC + ∠ACO = 90°,∠ACO +∠BCE =90°,∴∠OAC =∠BCE .在Rt △AOC 和Rt △CEB 中,∠AOC =∠CEB∠OAC =∠BCEAC =BC∴△AOC ≌△CEB (AAS ).(2)∵△AOC ≌△CEB∴CE =AO =3,EB =OC =1∴B 点坐标(4,1)(3)将B 点坐标代入y =x +b 中可求b =-3∴D (0,-3)∴AD =6∴S △ABD =12AD•B x =12×6×4=12 【点睛】本题考查了一次函数综合题,利用余角的性质得出∠OAC=∠BCE 以及利用待定系数法求出b 值是解答本题的关键.24.(1)30元;(2) 1.480y x =-;(3)130元【分析】(1)求出0100x <≤时一次函数的解析式,即可求解;(2)当100x ≥时, y 与x 之间的函数关系式为y kx b =+,把点()()100,60,200,200代入求解即可;(3)把150x =代入解析式即可得到答案;【详解】 解:()10100x <≤时,35y x =月用电量为50度时,应交电费30元; ()2当100x ≥时,设y 与x 之间的函数关系式为y kx b =+,点()()100,60,200,200在函数y kx b =+的图象上,10060200200k b k b +=⎧∴⎨+=⎩解得 1.480k b =⎧⎨=-⎩, 即当100x ≥时,y 与x 之间的函数关系式为 1.480y x =-;()3当150x =时, 1.415080130y =⨯-=,即月用电量为150时,应交电费130元.【点睛】本题主要考查了一次函数的图象应用,准确分析计算是解题的关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入, 152520b k b =⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y 1=5x +60;y 2=4.5x +72;(2)当购买24张票时,两种优惠方案付款一样多;4≤x <24时,优惠方案1付款较少;x >24时,优惠方案2付款较少【分析】(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去4人后的学生票金额; 优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y 关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.【详解】(1)按优惠方案1可得:y 1=20×4+(x -4)×5=5x +60,按优惠方案2可得:y 2=(5x +20×4)×90%=4.5x +72,(2)y1-y2=0.5x-12(x≥4),①当y1-y2=0时,得0.5x-12=0,解得x=24,∴当购买24张票时,两种优惠方案付款一样多;②当y1-y2<0时,得0.5x-12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案1付款较少.③当y1-y2>0时,得0.5x-12>0,解得x>24,∴当x>24时,y1>y2,优惠方案2付款较少.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.。

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试(有答案解析)(1)

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试(有答案解析)(1)

一、选择题1.正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x ﹣k 的图象大致是( ) A .B .C .D .2.一次函数y=2x-1的图象大致是( )A .B .C .D .3.已知正比例函数()0y kx k =≠的函数值随的增大而增大,则一次函数1y x k =+的图象大致是( )A .B .C .D .4.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D .5.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D .6.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,每min 的进水量和出水量是两个常数.容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图所示.根据图象提供的信息,则下列结论错误的是( )A .第4min 时,容器内的水量为20LB .每min 进水量为5LC .每min 出水量为1.25LD .第8min 时,容器内的水量为25L7.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③8.一次函数y=kx+b ,当k >0,b <0时,它的图象是( )A .B .C .D .9.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .10.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④11.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( ) A .2B .0C .-1D .-212.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .C .D .二、填空题13.已知1(2)23k y k xk -=-+-是关于x 的一次函数,则这个函数的解析式是_______.14.如图,在平面直角坐标系中,Rt ABC 的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x 轴上有一点P ,使得PA+PB 的值最小,则点P 的坐标为______________15.声音在空气中传播的速度(/)y m s (简称声速)与气温x (℃)的关系如下表所示: 气温x /℃ 0 5 10 15 20 … 声速/(/)y m s331334337340343…照此规律可以发现,当气温x 为__________℃时,声速y 达到352/m s .16.已知函数1(1);24(1).x x y x x +≤⎧=⎨-+>⎩当函数值为-2时,自变量x 的值为__________. 17.将直线y =x 沿y 轴正方向平移2个单位后过点(1,a ﹣2),则a =_____. 18.如果一次函数y =x ﹣3的图象与y 轴交于点A ,那么点A 的坐标是_____. 19.正比例函数y =kx 的图象经过点(2,3),则k =______.20.在一次函数()15y m x =++中,y 随x 的增大而减小,则m 的取值范围是_______.三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C . (1)求点C 的坐标; (2)求△OBC 的面积.22.如图,公路上有A 、B 、C 三站,一辆汽车在上午8时从离A 站10千米的P 地出发向C 站匀速前进,15分钟后离A 站20千米.(1)设出发x小时后,汽车离A站y千米,求y与x之间的函数关系式;(2)当汽车行驶到离A站150千米的B站时,接到通知要在中午12点前赶到离B站30千米的C站.汽车若按原速能否按时到达?请说明理由.23.如图,平面直角坐标系中,直线3944y x=-+与直线3922y x=+交于点B,与x轴交于点A.(1)求点B的坐标.(2)若点C在x轴上,且ABC是以AB为腰的等腰三角形,求点C的坐标.24.如图1,在平面直角坐标系xOy中,已知点A(0,3),B(2,3),OC=a.将梯形ABCO沿直线y=x折叠,点A落在线段OC上,对应点为E.(1)求点E的坐标;(2)①若BC//AE,求a的值,探究线段BC与AE的数量关系,说明理由.②如图2,若梯形ABCO的面积为2a,且直线y=mx将此梯形面积分为1∶2的两部分,求直线y=mx的解析式.25.某童装店以每件25元的价格购进某种品牌的童装若干件,销售了部分童装后,剩下的童装每件降价10元销售,全部售完.销售总额y(元)与销售量x(件)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前该童装的销售单价是元/件;(2)求降价后销售总额y(元)与销售量x(件)之间的函数关系式,并写出自变量的取值范围;(3)求该童装店这次销售童装盈利多少元?26.某技工培训中心有钳工20名、车工30名.现将这50名技工派往,A B两地工作,设派往A地x名钳工,余下的技工全部派往B地,两地技工的月工资情况如下表:钳工/(元/月)车工/(元/月)A地36003200B地32002800y x x 的取值范围;(2)根据预算,这50名技工的月工资总额不得超过155000元.当派往A地多少名钳工时,这些技工的月工资总额最大?月工资总额最大为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据正比例函数的性质可得出k>0,进而可得出-k<0,由1>0,-k<0利用一次函数图象与系数的关系,可找出一次函数y=x-k的图象经过第一、三、四象限,此题得解.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而增大,∴k>0,∴﹣k<0.∴一次函数y =x ﹣k 的图象经过第一、三、四象限. 故选:B . 【点睛】本题考查了正比例函数的性质以及一次函数图象与系数的关系,牢记“k >0,b <0⇔y=kx+b 的图象在一、三、四象限”是解题的关键.2.B解析:B 【分析】根据一次函数的性质进行判断即可. 【详解】 解:∵k=2>0,∴直线y=2x-1经过第一、三象限; ∵b=-1,∴直线y=2x-1与y 轴的交点在x 轴下方, ∴直线y=2x-1经过第一、三、四象限, ∴B 选项符合题意. 故选:B . 【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数的性质是解题的关键.对于b≠0的一次函数,其图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.3.A解析:A 【分析】先根据正比例函数y=kx (k≠0)的增减性判断k 的符号,然后即可判断一次函数1y x k =+的大致图象. 【详解】解:∵正比例函数y=kx (k≠0)的函数值y 随x 的增大而增大, ∴k >0,∴一次函数1y x k =+的图象经过一、三、二象限. 故选A . 【点睛】此题主要考查一次函数的图像和性质,熟练掌握一次函数的图象和性质是解题关键.4.D【分析】求出小汽车在AB、BC上运动时,MQ的表达式即可求解.【详解】解:设小汽车所在的点为点Q,①当点Q在AB上运动时,AQ=t,则MQ2=MA2+AQ2=1+t2,即MQ2为开口向上的抛物线,则MQ为曲线,②当点Q在BC上运动时,同理可得:MQ2=22+(1-t+2)2=4+(3-t)2,MQ为曲线;故选:D.【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.5.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.6.C解析:C【分析】根据选项依次求解,由图可知,第4min时,对应的容器内的水量为20L,从某时刻开始的4min内只进水不出水,在随后的8min内既进水又出水,可确定两段函数的关系式,即可求出每min 进水量为5L ,第8min 时容器内的水量为25L ,最后根据图像每分钟出水的量为3.75L . 【详解】A 项,由图可知,第4min 时,对应的容器内的水量y 为20L ,A 不符合题意;B 项,由题意可知,从某时刻开始的4min 内只进水不出水,0~4min 时的直线方程为:y =kx (k ≠0),通过图像过(4,20),解得k =5,所以每min 进水量为5L ,B 不符合题意;C 项,由B 项可知:每min 进水量为5L ,每分钟出水量=[(12-4)×5-(30-20)]÷(12-4)=3.75L ,C 符合题意;D 项,由题意可知,从某时刻开始的4min 内只进水不出水,0~4min 时的直线方程为:y =kx+b (k ≠0,k 、b 为常数),通过图像过(4,20),(12,30),解得k =54,b =15,所以第8min 时,容器内的水量为25L ,D 不符合题意; 故选C . 【点睛】此题考查了一次函数的实际应用和识图能力,解题时首先应正确理解题意,然后根据图像的坐标,利用待定系数法确定函数解析式,接着利用函数的性质即可解决问题.7.B解析:B 【分析】由图象经过第一,二,三象限,可得k >0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③ 【详解】解:∵图象过第一,第二,第三象限, ∴k >0,b>0,∴0kb >,①正确, y 随x 增大而增大, ∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数, ∴这部分图像的纵坐标y>b ,③正确, 故①③正确 故选:B . 【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.8.C解析:C 【解析】 试题根据题意,有k>0,b<0,则其图象过一、三、四象限;故选C.9.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C图像可得函数y=mx+n过一,二,三象限,故m>0,n>0,故y=nx+m也过一,二,三象限,故A,C错误;由B,D图像可得函数y=mx+n过一三四象限,故m>0,n<0,故y=nx+m过一,二,四象限,故B正确,D错误;故选B.【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II卷(非选择题)请点击修改第II卷的文字说明10.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160>150,②不正确;当乙在B地停留1h时,甲前进80km,甲乙相距=160-80=80km,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键,11.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键. 12.A解析:A【分析】由图知,函数y =kx +b 图象过点(0,1),即k >0,b =1,再根据一次函数的特点解答即可.【详解】解:∵由函数y =kx +b 的图象可知,k >0,b =1,∴y =2kx +b =2kx +1,2k >0,∴2k >k ,可见一次函数y =2kx +b 图象与x 轴的夹角,大于y =kx +b 图象与x 轴的夹角.∴函数y =2kx +1的图象过第一、二、三象限且与x 轴的夹角比y =kx +b 与x 轴的夹角大.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k 与b 的关系是解题的关键.二、填空题13.=-4-7【分析】根据一次函数的定义先求出k 的值然后求出一次函数的解析式【详解】解:∵是关于的一次函数∴解得:(负值已舍去);∴这个函数的解析式是:;故答案为:【点睛】本题考查了一次函数的定义解题的 解析:y =-4x -7【分析】根据一次函数的定义,先求出k 的值,然后求出一次函数的解析式.【详解】解:∵1(2)23k y k x k -=-+-是关于x 的一次函数,∴1120k k ⎧-=⎨-≠⎩,解得:2k =-(负值已舍去);∴这个函数的解析式是:47y x =--;故答案为:47y x =--.【点睛】本题考查了一次函数的定义,解题的关键是正确求出k 的值.14.(-20)【分析】作点B 关于x 轴的对称点D 连接AD 则AD 与x 轴交点即为点P 位置利用待定系数法求出AD 解析式再求出点P 坐标即可【详解】解:作点B 关于x 轴的对称点D 则点D 坐标为(0-4)连接AD 则AD 与解析:(-2,0)【分析】作点B 关于x 轴的对称点D ,连接AD ,则AD 与x 轴交点即为点P 位置,利用待定系数法求出AD 解析式,再求出点P 坐标即可.【详解】解:作点B 关于x 轴的对称点D ,则点D 坐标为(0,-4),连接AD ,则AD 与x 轴交点即为点P 位置.设直线AD 解析式为y=kx+b (k≠0),∵点A 、D 的坐标分别为(-3,2),(0,-4),∴324k b b -+=⎧⎨=-⎩ 解得24k b =-⎧⎨=-⎩ ∴直线AD 解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P 的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B 关于x 轴对称点D ,确定点P 位置是解题关键.15.35【分析】由题意观察图表数据可得气温每升高5℃音速增加3然后写出x 的表达式把音速y=352代入函数解析式求得相应的x 的值即可【详解】解:设函数解析式该函数图象经过点解得该解析式为:y=x+331当解析:35【分析】由题意观察图表数据可得气温每升高5℃,音速增加3,然后写出x 的表达式,把音速y=352代入函数解析式,求得相应的x 的值即可.【详解】解:设函数解析式y kx b =+该函数图象经过点()0331,,()5334, 3315334b k b =⎧∴⎨+=⎩解得35331k b ⎧=⎪⎨⎪=⎩ ∴该解析式为:y=35x+331, 当y=352时,352=35x+331, 解得x=35.即当声音在空气中的传播速度为352米/秒,气温是35℃.故答案为:35.【点睛】本题考查一次函数的应用.读懂题目信息答案,观察并发现气温每升高5℃,音速增加3是解题的关键. 16.或【分析】把代入计算求解即可【详解】解:代入可得:故答案为:或【点睛】本题主要考查了函数的概念和不等式的性质利用函数与函数值的等量关系代入函数值计算是解题的关键解析:3或3-【分析】把=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩计算求解即可. 【详解】解:=-y 2代入1(1);y 24(1).x x x x +≤⎧=⎨-+>⎩可得:21(1)224(1)x x x x -=+≤⎧⎨-=-+>⎩⇒3(1)3(1)x x x x =-≤⎧⎨=>⎩故答案为:3或3-【点睛】本题主要考查了函数的概念和不等式的性质,利用函数与函数值的等量关系代入函数值计算是解题的关键.17.5【分析】根据平移规律可得直线y =x 沿y 轴正方向平移2个单位后得y =x+2然后把(1a ﹣2)代入即可求出a 的值【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x+2根据题意将(1a ﹣2)代入解析:5【分析】根据平移规律可得,直线y =x 沿y 轴正方向平移2个单位后得y =x +2,然后把(1,a ﹣2)代入即可求出a 的值.【详解】解:将直线y =x 沿y 轴正方向平移2个单位后得y =x +2,根据题意,将(1,a ﹣2)代入,得:1+2=a ﹣2,解得:a =5,故答案为:5.【点睛】此题主要考查了坐标与图形变化-平移,直线平移后的解析式有这样的规律“左加右减,上加下减”.18.(0﹣3)【分析】代入x=0求出与之对应的y 值进而可得出点A 的坐标【详解】解:当x =0时y =x ﹣3=﹣3∴点A 的坐标为(0﹣3)故答案为:(0﹣3)【点睛】本题考查一次函数图象上点的坐标特征牢记直线解析:(0,﹣3)【分析】代入x=0求出与之对应的y 值,进而可得出点A 的坐标.【详解】解:当x =0时,y =x ﹣3=﹣3,∴点A 的坐标为(0,﹣3).故答案为:(0,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b 是解题关键.19.【分析】将点(23)代入解析式即可求出答案【详解】将点(23)代入y=kx 中得2k=3解得k=故答案为:【点睛】此题考查了正比例函数求值已知点的坐标即可将点的坐标代入解析式求出参数解析:32【分析】将点(2,3)代入解析式即可求出答案.【详解】将点(2,3)代入y=kx 中,得2k=3,解得k=32, 故答案为:32. 【点睛】 此题考查了正比例函数求值,已知点的坐标即可将点的坐标代入解析式求出参数. 20.m <-1【分析】根据y 与x 的关系判断出k 的符号进而求得m 的取值范围【详解】∵随的增大而减小∴一次函数的比例系数k <0即m+1<0解得:m <-1故答案为:m <-1【点睛】本题考查一次函数的性质当k >0解析:m <-1【分析】根据y 与x 的关系,判断出k 的符号,进而求得m 的取值范围.【详解】∵y 随x 的增大而减小∴一次函数的比例系数k <0,即m+1<0解得:m <-1故答案为:m <-1.【点睛】本题考查一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,则反之.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩,一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)y=40x+10;(2)汽车若按原速不能按时到达【分析】(1)先求出汽车的速度,再根据路程=速度×时间求得关系式即可;(2)由(1)中函数关系式求出汽车到达C 站的时间即可得出结论.【详解】解:(1)由题意知汽车的速度为2010401560-=(千米∕时),∴y 与x 之间的函数关系式为y=40x+10;(2)当y=150+30=180时,由180=40x+10得:x=4.25,∵12﹣8=4(小时),且4<4.25,∴汽车若按原速不能按时到达.【点睛】本题考查一次函数的应用、解一元一次方程,掌握行程问题中的等量关系,建立函数模型是解答的关键.23.(1)(1,3)B -;(2)123(5,0),(2,0),(8,0)C C C --【分析】(1)联立两直线解析式构建二元一次方程组求解即可;(2)由题意易得点A 的坐标,然后分AB=AC 和AB=BC 两种情况结合等腰三角形的性质可进行分类求解.【详解】解:(1)由题意可联立解析式得:39443922y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:13x y =-⎧⎨=⎩, ∴(1,3)B -;(2)由直线3944y x =-+可令y=0得:(3,0)A , ①若A 为顶角顶点,如图所示:由(1)及两点距离公式可得, ∴22435AC AB ==+=,∴22OC =,38OC =,②若B 为顶角顶点,∴5BC BA ==,过点B 作BD ⊥x 轴于点D ,则有14C D AD ==,∴15OC =,∴综上所述:当△ABC 以AB 为腰的等腰三角形,则有123(5,0),(2,0),(8,0)C C C --.【点睛】本题主要考查等腰三角形的性质、勾股定理及一次函数的性质,熟练掌握等腰三角形的性质、勾股定理及一次函数的性质是解题的关键.24.(1)E (3,0);(2)①a=5,BC=AE ,理由见解析;②619y x =或1211y x =. 【分析】(1)由折叠的性质可知OE=OA ,由OA 的长即可确定出点E 的坐标;(2)①由平行四边形的性质可知EC=AB ,BC=AE ,结合OE 的长即可求得a 的值; ②根据梯形的面积公式以及梯形的面积可求得a 的值,从而可求得梯形的面积,由直线y =mx 将梯形面积分为1∶2两部分,可得分成的三角形面积有两种情况,然后根据三角形的面积公式可求直线y=mx 与直线BC 交点的纵坐标,利用待定系数法可得直线BC 的函数表达式,将交点的纵坐标分别代入即可求得直线y =mx 的解析式【详解】解(1)∵点A 坐标为(0,3),∴OA=3∵直线y=x 是第一象限的角平分线,点A 落在x 轴上,∴OE=OA=3,∴E (3,0)(2)①∵//BC AE , //AB CE∴四边形ABCE 是平行四边形∴CE =AB =2∴OC =OE +CE =5∴a =5∵四边形ABCE 是平行四边形∴BC=AE②如图2,由梯形面积可知,3(2)22a a += 解得:a=6,梯形面积为12∴由B(2,3),C(6,0),可得直线BC 的解析式为3942=-+y x 若直线y=m 1x 分△OCG 1的面积为梯形面积的13时,直线y=m 1x 与BC 交于点G 1,过G 1作G 1 H 1垂直于x 轴于点H 1∴△OCG 1的面积为4,OC=6,∴G 1 H 1=43 可得点G 1384(,)93 ∴619y x = 若直线y=m 2x 分△OCG 2的面积为梯形面积的23时,直线y=m 2x 与BC 的交于点G 2,过G 2作G 2 H 2垂直于x 轴于点H 2∴△OCG 2的面积为8,OC=6,∴G 2 H 2=83 可得点G 2228(,)93∴1211y x =由上可得619y x =或1211y x = 【点睛】 本题主要考查了一次函数解析式的求法,熟练掌握待定系数法,应用分类讨论思想是解决本题的关键25.(1)45 ;(2)35400y x =+(4055)x< ;(3)该童装店这次销售童装盈利950元.【分析】(1)根据函数图象中的数据,可以计算出降价前该童装的销售单价=降价前的销售总额÷降价前的销售量;(2)设降价后销售金额y (元)与销售量x (千克)之间的函数解析式为y kx b =+,由图像可知过点(40,1800),(55,2325),两点代入求出解析式,并写出自变量的取值范围; (3)根据函数图象中的数据和题目中的数据,可以计算出该童装店这次销售童装盈利=销售总额-进价单价×销售量.【详解】(1)由图可得:降价前该童装的销售单价是:1800÷40=45元/件,故答案为:45(2)设降价后销售金额y (元)与销售量x (件)之间的函数关系式为:y kx b =+, 由题意知,该函数过点(40,1800),(55,2325) 则:180040232555k b k b =+⎧⎨=+⎩, 解之得:35400k b =⎧⎨=⎩∴35400y x =+(4055)x< (3)该童装店这次销售童装盈利了: 2325-55×25=950(元)∴ 该童装店这次销售童装盈利950元.【点睛】本题考查了一次函数的应用,解答本题明确题意,利用一次函数的性质和数形结合的思想解答.26.(1)()400148000020y x x =+≤≤;(2)17名,154800元【分析】(1)根据50名技工的月工资总额y (元)=派往A 地x 名钳工月工资+派往B 地(20)x -名钳工月工资+派往B 地30名车工月工资,即可得出月工资总额y (元)与x 之间的函数表达式,并写出x 的取值范围;(2)根据月工资总额不得超过155000元先求出x 的取值范围,即确定y 的最大值,使他们的工资总额最高.【详解】解:(1)由题意可得,36003200(20)280030400148000y x x x =+-+⨯=+,即这50名技工的月工资总额y (元)与x 之间的函数表达式是()400148000020y x x =+≤≤;(2)∵月工资总额不得超过155000元.∴400148000155000x +≤ ∴352x ≤ 又∵k =400>0,∴∴当17x =时,y 取得最大值154800元,即当派往A 地17名钳工时,这些技工的月工资总额最大,?月工资总额最大为154800元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用函数的思想解答.。

一次函数(压轴专练)(十大题型)(原卷版)—2024-2025学年八年级数学上册(北师大版)

一次函数(压轴专练)(十大题型)(原卷版)—2024-2025学年八年级数学上册(北师大版)

一次函数(压轴专练)(十大题型)(1)求直线AB 的解析式;(2)作直线OC ,当点C 运动到什么位置时,AOB V 的面积被直线OC 分成1:2的两部分;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使BCD △与AOB V 全等?若存在,求出点坐标;若不存在,说明理由.(1)求直线2l的函数表达式;(2)求四边形ABCD的面积;(3)在直线2l上是否存在点不存在,请说明理由.题型2:最值问题3.如图,直线392y x =-+交y 轴于点A ,交x 轴于点B ,点()4,C t 在第四象限,点(,0)P m 在线段OB 上.连接OC ,BC ,过点P 作x 轴的垂线,交边AB 于点E ,交折线段OCB 于点F .(1)求点A ,B 的坐标;(2)设点E ,F 的纵坐标分别为1y ,2y ,当04m ££时,12y y -为定值,求t 的值;(3)在(2)的条件下,分别过点E ,F 作EG ,FH 垂直于y 轴,垂足分别为点G ,H ,当06m ££时,求长方形EGHF 周长的最大值.(1)B 的坐标为_________,线段OA 的长为_________.(2)求直线CD 的解析式和点D 的坐标.(3)如图(2),点M 是线段CE 上一动点(不与点C ,E 重合),ON ①在点M 移动过程中,线段OM 与ON 数量关系是否不变,并证明;②连结MN ,当DMN V 面积最大时,求OM 的长度和DMN V 的面积.(1)求直线CD 解析式;(2)如图2,点M 是线段CE 上一动点(不与点C 、E 重合),ON ①点M 移动过程中,线段OM 与ON 数量关系是否不变,并证明;②当OMN V 面积最小时,求点M 的坐标和OMN V 面积.(1)若点E 坐标为2,3n æöç÷èø.ⅰ)求m 的值;ⅱ)点P 在直线2l 上,若3AEP BDE S S =V V ,求点P 的坐标;(2)点F 是线段CE 的中点,点G 为y 轴上一动点,是否存在点形.若存在,求出m 的值,若不存在,请说明理由.(1)经过点A 且与直线33y x =-平行的直线交x 轴于点B ,试求B (2)如图1,若()4,0B ,过()1,0M 的直线与直线AB 所夹锐角为45(3)如图2,在(1)的条件下,现有点(),C m n 在线段AB 上运动,点的中点.直接写出当C 从点A 开始运动,到点B 停止运动,M 点的运动路径长为(1)如图1,求A 、C 两点坐标.(2)点P 是AOC V 内一点,点P 的坐标为(,25)m m -+,点Q 在第二象限,连接PC ,QC ,PCQ Ð请用含m 的式子表示点Q 的坐标.(3)在(2)的条件下,点B 在x 轴上与点A 关于y 轴对称,过Q 做QE OC ⊥于点E ,延长延长MP 交x 轴于点N ,连接BM ,取BM 的中点G ,连接QG 并延长交x 轴于点H ,当QM 点P 的坐标.(1)求点A ,C 的坐标.(2)现有一动点P 沿折线O C B O ®®®以2个单位长度/秒的速度运动,运动时间为①当OAP △为等腰三角形时,求出所有满足条件的t 的值.②如图2,已知x 轴正半轴上有一动点Q ,当点P 在线段OB 上运动时,连接线CQ 的对称图形CQA ¢V ,作CPB △关于直线CP 的对称图形CPB ¢V ,射线10.在平面直角坐标系中,点O 为坐标原点,直线()40y kx k k =-¹交x 轴的正半轴于点A ,交y 轴的正半轴于点,B AB =.(1)求OB 的长;(2)如图1,点C 在x 轴的负半轴上,点D 在AB 上,连接CD 交y 轴于点E ,点E 为CD 的中点,设点C 的横坐标为,t ACD △的面积为S ,求S 与t 的函数解析式;(3)如图2,在(2)的条件下,将射线EC 绕点E 顺时针旋转45°,交x 轴的负半轴于点F ,连接BF ,若2BFE BED OEF Ð+Ð=Ð,求S 的值.11.如图,平面直角坐标系中,直线4y x =-+分别交x 、y 轴于A 、B 两点,点P 为线段AB 的中点.(1)直接写出点P的坐标;⊥交y轴正半轴于点(2)如图1,点C是x轴负半轴上的一动点,过点P作PD PCÐ的度数;分别是CD、OB的中点,连接MN,求MNO(3)如图2,点Q是x轴上的一个动点,连接PQ.把线段PQ绕点Q顺时针旋转+的值最小时,求此时点T的坐标.OT.当PT OT(1)则a = ,b = ,c = ;(2)如图1,在x 轴上是否存在点D ,使ACD 的面积等于V ABC 的面积?若存在,请求出点存在,请说明理由;(3)如图2,连接OC 交AB 于点M ,是否存在一点()0,N n 在y 轴上,使得积,若有,请求出n 的取值范围;若没有,请说明理由.(1)求点A的坐标;V(2)若点C在第二象限,ACD①求点C的坐标;x+>②直接写出不等式组4V沿x轴平移,点③将CAD(1)若33k =-,点P 是直角NOM △的“近N 点”,则OP 的长度可能是①1 ;②2 ;③3 ;④23(2)若线段MN 上的所有点(不含M 和)N 都是直角NOM △的“(3)当1k >时,若一次函数y x k =+与2y kx =+的交点恰好是直角值范围是______ .(1)当OA OB =时,求点A 坐标及直线l 的解析式;(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上的一点,作直线OQ ,过AB 、两点分别作于M ,BN OQ ⊥于N ,若8AM =,求BN 的长.(3)当m 取不同值时,点B 在y 轴正半轴上运动,分别以OB AB 、为边,点B 为直角顶点在第一、二象限内作等腰直角OBF V 和等腰直角ABE V ,连接EF 交y 轴于点P ,如图3,问:当点B 在y 轴正半轴上运动时,试猜想PB 的长度是否为定值?若是,请求出其值;若不是,说明理由.17.定义:在平面直角坐标系中,我们称直线(y ax b a =+,b 为常数)是点(,)P a b 的关联直线,点(,)P a b 是直线y ax b =+的关联点;特别地,当0a =时,直线y b =的关联点为(0,)P b .如图,直线:24AB y x =-+与x 轴交于点A ,与y 轴交于点B .【定义辨析】(1)直线AB 的关联点的坐标是( )A .(0,0)B .(0,4)C .(2,0)D .(2,4)-【定义延伸】(2)点A 的关联直线与直线AB 交于点C ,求点C 的坐标;;【定义应用】(3)点(1,)K m 的关联直线与x 轴交于点E ,=45ABE а,求m 的值.18.在平面直角坐标系xOy 中,对于任意两点()111P x y ,与()222P x y ,的“非常距离”,给出如下定义:若1212x x y y -³-,则点1P 与点2P 的“非常距离”为12x x -;若1212x x y y -<-,则点1P 与点2P 的“非常距离”为12y y -.例如:点()112P ,,点()235P ,,因为1325-<-,所以点1P 与点2P 的“非常距离”为253-=,也就是图1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点).(1)已知点102A æö-ç÷èø,B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,直接写出点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知点3,34C x x æö+ç÷èø是直线m 上的一个动点.①如图2,点D 的坐标是()01,,求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,正方形FGMN 的边长为1,边FG 在x 轴上,点E 是正方形FGMN 边上的一个动点,记d 为点C 与点E 的“非常距离”的最小值,当正方形FGMN 沿x 轴平移,在平移过程中点G 的横坐标大于等于0,且小于等于9时,直接写出d 的最大值.20.“一方有难、八方支援”,在某地发生自然灾害后,某公司响应“助力乡情献爱心”活动,捐出了九月份的全部利润.已知该公司九月份只售出了A、B、C三种型号的产品若干件,每种型号产品不少于4件,九月份支出包括这批产品进货款20万元和其他各项支出1.9万元(含人员工资和杂项开支).这三种产品的售价和进价如下表,人员工资1y(万元)和杂项支出2y(万元)分别与销售总量x(件)成一次函数关系(如图).型号A B C进价(万元/件)0.50.80.7售价(万元/件)0.8 1.20.9(1)写出1y与x的函数关系式为______;九月份A、B、C三种型号产品的销售的总件数为_____件.(2)设公司九月份售出A种产品n件,九月份总销售利润为W(万元),求W与n的函数关系式并直接写出n的取值范围;(3)请求出该公司这次爱心捐款金额的最大值.21.一队学生从学校出发去劳动基地,行进的路程与时间的函数图象如图所示,队伍走了0.8小时后,队伍中的通讯员按原路加快速度返回学校取材料.通讯员经过一段时间回到学校,取到材料后立即按返校时加快的速度追赶队伍,并比学生队伍早18分钟到达基地.如图,线段OD表示学生队伍距学校的路程y(千米)与时间x(小时)之间的函数关系,折线OABC表示通讯员距学校的路程y(千米)与时间x(小时)之间的函数关系,请你根据图象信息,解答下列问题:(1)学校与劳动基地之间的距离为________千米;(2)a=________,B点的坐标是________.(3)若通讯员与学生队伍的距离不超过3千米时能用无线对讲机保持联系,请你直接写出通讯员离开队伍后他们能用对讲机保持联系的时间的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八上数学复习专题之压轴题(一次函数)一、二条直线的交点问题:1.如图,平面直角坐标系中,函数3y x b =-+的图象与y 轴相交于点B ,与函数43y x =-的图象相交于点A ,且OB =5. (1)求点A 的坐标;(2)求函数3y x b =-+、43y x =-的图象与x 轴所围成的三角形的面积.2.如图,已知直线l 1经过点A (0,﹣1)与点P (2,3),另一条直线l 2经过点P ,且与y 轴交于点B (0,m ).(1)求直线l 1的解析式;(2)若△APB 的面积为3,求m 的值.3. 已知:如图,平面直角坐标系xOy 中,B (0,1),OB =OC =OA ,A 、C 分别在x 轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.(1)求∠OAB的度数及直线AB的解析式;(2)若△OCD与△BDE的面积相等,求点D的坐标.4. 如图,直线l1的解析式为443y x=+,与x轴,y轴分别交于A,B;直线l2与x轴交于点C(2,0)与y轴交于点D3(0,)2,两直线交于点P.(1)求点A,B的坐标及直线l2的解析式;(2)求证:△AOB≌△APC;(3)若将直线l2向右平移m个单位,与x轴,y轴分别交于点C'、D',使得以点A、B、C'、D'为顶点的图形是轴对称图形,求m的值?二、与等腰三角形结合的问题1.如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O →C →B 运动. (1)求直线AB 的解析式;(2)当△OPB 的面积是△OBC 的面积的14时,求出这时点P 的坐标; (3)是否存在点P ,使△OBP 是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.2.如图,在平面直角坐标系中,直线l 1的解析式为y =﹣x ,直线l 2与l 1交于点A (a ,﹣a ),与y轴交于点B (0,b ),其中a ,b 满足2(2)0a ++=. (1)求直线l 2的解析式;(2)在平面直角坐标系中第二象限有一点P (m ,5),使得S △AOP =S △AOB ,请求出点P 的坐标; (3)已知平行于y 轴且位于y 轴左侧有一动直线,分别与l 1,l 2交于点M 、N ,且点M 在点N 的下方,点Q 为y 轴上一动点,且△MNQ 为等腰直角三角形,请直接写出满足条件的点Q 的坐标.3. 在平面直角坐标系中,直线l 1的函数关系式为2y x b =+,直线l 2过原点且与直线l 1交于点P (﹣1,﹣5).(1)试问(﹣1,﹣5)可以看作是怎样的二元一次方程组的解?(2)设直线l1与直线y x=交于点A,求△APO的面积;(3)在x轴上是否存在点Q,使得△AOQ是等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.4. 如图,直线l:122y x=-+与x轴,y轴分別交于点A,B,在y轴上有一点C(0,4),动点M从点A出发以毎秒1个単位长度的速度沿x轴向左运动,设运动的时间为t秒.(1)求点A的坐标;(2)请从A,B两题中任选一题作答.A.求△COM的面积S与时间t之间的函数表达式;B.当△ABM为等腰三角形时,求t的值.5.在平面直角坐标系中,直线y=x+6与x轴、y轴分别交于B、A两点,点C在x轴的正半轴,且OB=OC,点D为AC的中点.(1)求直线AC的解析式;(2)点P 从点B 出发,沿射线BD t 秒,△APD 的面积为S ,求S 与t 的函数关系,并直接写出自变量的取值范围;(3)在(2)的条件下,连接AP 、CP ,当△ACP 是以PC 为腰的等腰三角形时,求点P 的坐标.三、面积问题:1. 如图,在平面直角坐标系中,直线l 1:y =﹣x ﹣1分别与x 轴,y 轴交于点A ,B ,将直线l 1向上平移3个单位长度,得直线l 2.经过点A 的直线l 3与直线l 2交于第一象限的点C ,过点C 作x 轴的垂线,垂足为点D ,且AD =2CD (1)求直线l 3的解析式. (2)连接BC ,求△ABC 的面积.2. 如图,直线l 1:3y x =+分别与直线2:(0)l y kx b k =+≠、直线3111:(0)l y k x b k =+≠交于A 、B 两点,直线l 1交y 轴于点E ,直线l 2与x 轴和y 轴分别交于C 、D 两点,已知点A 的纵坐标为32,B 的横坐标为1,l 2∥l 3,OD =1,连BD .(1)求直线l 3的解析式; (2)求△ABD 的面积.3. 当m ,n 是正实数,且满足m n mn +=时,就称点(,)mP m n为“完美点”. (1)若点E 为完美点,且横坐标为2,则点E 的纵坐标为 ;若点F 为完美点,且横坐标为3,则点F 的纵坐标为 ;(2)完美点P 在直线 (填直线解析式)上;(3)如图,已知点A (0,5)与点M 都在直线5y x =-+上,点B ,C 是“完美点”,且点B 在直线AM 上.若MC =AM = △MBC 的面积.4. 如图(含备用图),在直角坐标系中,已知直线y =kx +3与x 轴相交于点A (2,0),与y 轴交于点B .(1)求k 的值及△AOB 的面积;(2)点C 在x 轴上,若△ABC 是以AB 为腰的等腰三角形,直接写出点C 的坐标;(3)点M(3,0)在x轴上,若点P是直线AB上的一个动点,当△PBM的面积与△AOB的面积相等时,求点P的坐标.5. 图(1),在平面直角坐标系中,直线y=﹣x+4交坐标轴于A、B两点,过点C(﹣4,0)作CD⊥AB于D,交y轴于点E.(1)求证:△COE≌△BOA;(2)如图2,点M是线段CE上一动点(不与点C、E重合),ON⊥OM交AB于点N,连接MN.①判断△OMN的形状.并证明;②当△OCM和△OAN面积相等时,求点N的坐标.6.在直角坐标系中,点P(a,b)的“变换点”的坐标定义如下:当a≥b时,点P1的坐标为(a,﹣b);当a<b时,点P1的坐标为(b,﹣a).(1)直接写出点A(5,6)、B(3,2)、C(4,4)的变换点A1、B1、C1的坐标;(2)P(a,b)为直线y=﹣2x+6上的任一点,当a<b时,点P(a,b)的变换点在一条直线M上,求点M的函数解析式并写出自变量的取值范围;(3)直线y =﹣2x +6上所有点的变换点组成一个新的图形L ,直线y =kx +1与图形L 有两个公共点,求k 的取值范围.答案:一、 两直线交点问题:1. 解:(1)由OB =5可得B (0,﹣5),把(0,﹣5)代入3y x b =-+,可得b =﹣5, ∴函数关系式为y =﹣3x ﹣5,求两直线的交点坐标得:点A 的坐标为(﹣3,4); (2)设直线AB 与y 轴交于点C ,则点C 的坐标为5(,0)3-,CO =53,所围成的三角形即为△ACO ,过A 作AE ⊥x 轴于E ,由A (﹣3,4)可得AE =4,∴S △ACO =103. 2. 解:(1)设直线l 1的表达式为y =kx +b ,2,1k b ==-∴直线l 1的函数关系式为:y =2x ﹣1. (2)过P 作PH ⊥y 轴于H ,则PH =2,∵S △APB =3,∴AB =3,∵A (0,﹣1),∴B (0,2)或(0,﹣4),∴m =2或﹣4.3. 解:(1)∵OB =OC =OA ,∠AOB =90°,∴∠OAB =45°;∵B (0,1),∴A (1,0), 设直线AB 的解析式为y =kx +b . ∴直线AB 的解析式为y =﹣x +1;(2)∵S △COD =S △BDE ,1,1k b =-=∴S △COD +S 四边形AODE =S △BDE +S 四边形AODE ,即S △ACE =S △AOB , ∵点E 在线段AB 上,∴点E 在第一象限,且y E >0,点E 的纵坐标是12∴直线AB 的解析式得:=﹣x +1,设直线CE 的解析式是:y =mx +n ,∵C (﹣1,0),11(,)22E 代入得:解得:11,33m n ==, ∴直线CE 的解析式为1133y x =+,∴D 的坐标为1(0,)3.5. (1)解:当0x =时,4y =,∴点B 的坐标为(0,4); 当y =0时, 解得:x =﹣3,∴点A 的坐标为(﹣3,0). 设直线l 2的解析式为y kx b =+,将C (2,0)、D (0,)代入y kx b =+,得:33,42k b =-= ∴直线l 2的解析式为3342y x =-+. (2)证明:连接两直线解析式成方程组,解得点P 的坐标为612(,)55-. ∵A (﹣3,0),C (2,0),B (0,4), ∴AO =3,AC =5,AB =5,AP =3, ∴AO =AP ,AB =AC .在△AOB 和△APC 中,,,AO AP BAO CAP AB AC =∠=∠=, ∴△AOB ≌△APC (S A S ). (3)解:连接BC ′,如图所示.∵平移后直线C ′D ′的解析式为333442y x m =-++, ∴点C ′的坐标为(m +2,0),点D ′的坐标为33(0,)42m +.∵以点A 、B 、C '、D '为顶点的图形是轴对称图形,∴△ABC′≌△D′BC′,∴AB=D′B,AC′=D′C′.∵A(﹣3,0),B(0,4),∴D′B=3542m-,AC′=m+5,D′C′=5(2)4m+,∴3554255(2)4mm m⎧-=⎪⎪⎨⎪+=+⎪⎩解得:m=10.∴当以点A、B、C'、D'为顶点的图形是轴对称图形时,m的值为10.二、与等腰三角形结合问题1. 解:(1)∵点A的坐标为(0,6),∴设直线AB的解析式为y=kx+6,∵点C(2,4)在直线AB上,∴2k+6=4,∴k=﹣1,∴直线AB的解析式为y=﹣x+6;(2)由(1)知,直线AB的解析式为y=﹣x+6,令y=0,∴﹣x+6=0,∴x=6,∴B(6,0),∴S△OBC=12,∵△OPB的面积是△OBC的面积的14,∴S△OPB=3,设P的纵坐标为m,∴S△OPB=3m=3,∴m=1,∵C(2,4),∴直线OC的解析式为y=2x,当点P在OC上时,12x=,∴1(,1)2P,当点P在BC上时,x=6﹣1=5,∴P(5,1),即:点1(,1)2P或(5,1);(3)∵△OBP是直角三角形,∴∠OPB=90°,当点P在OC上时,由(2)知,直线OC的解析式为y=2x①,∴直线BP的解析式的比例系数为12 -,∵B(6,0),∴直线BP的解析式为132y x=-+②,联立①②,可求得612 (,) 55 P,当点P在BC上时,由(1)知,直线AB的解析式为y=﹣x+6③,∴直线OP的解析式为y=x④,联立③④解得,可求得P(3,3),即:点P的坐标为612(,)55P或(3,3).2. 解:(1)由条件得a+2=0,b﹣3=0,∴a=﹣2,b=3,∴点A的坐标为(﹣2,2),点B的坐标为(0,3).设直线l2的解析式为y=kx+c(k≠0),将A(﹣2,2)、B(0,3)代入y=kx+c,得:1,32k c==∴直线l2的解析式为132y x=+.(2)∵S△AOP=S△AOB,∴点P到AO的距离与点B到AO的距离相等,且点P位于l1两侧.①当点P在l1的右侧时,设点P为P1,则P1B∥l1,∴直线P1B的解析式为:y=﹣x+3,当y=5时,有﹣x+3=5,解得:x=﹣2,∴点P1的坐标为(﹣2,5);②当点P在l1的左侧时,设点P为P2,点P2的坐标为(﹣8,5).综上所述:点P的坐标为(﹣2,5)或(﹣8,5).(3)设动直线为x=t,由题可得﹣2<t<0,则点M的坐标为(t,﹣t),点N的坐标为1(,3)2t t+,∴332MN t=+.①当∠NMQ=90°时,有MN=MQ,65t=-,∴点M的坐标为66(,)55-.∵MQ∥x轴,∴点Q的坐标为6 (0,)5;②当∠MNQ=90°时,有MN=NQ,即t+3=﹣t,t=﹣,∴点Q的坐标为12 (0,)5;③当∠MQN=90°时,点Q的坐标为12 (0,)7.综上所述:点Q的坐标为6(0,)5或12(0,)5或12(0,)7.3. 解:(1)∵点P(﹣1,﹣5)在直线l1上,∴﹣2+b=﹣5,∴b=﹣3∴直线l1的解析式为y=2x﹣3,设直线l2的解析式为y=kx,则有﹣k=﹣5,∴k=5,∴直线l2的解析式为y=5x,∴(﹣1,﹣5)可以看成二元一次方程组235y xy x=-⎧⎨=⎩的解.(2)A(3,3),∵点P(﹣1,5)在直线y=2x﹣3上,直线P A交y轴于C(0,﹣3),∴S△AOP=S△POC+S△AOC=6.(3)∵A(3,3),∴OA=①当OA=OQ时,可得Q1(﹣0),Q2(,0);②当QA =QO 时,Q 3(3,0);② 当AO =AQ 时,Q 4(6,0),综上所述,满足条件的点Q 坐标为(﹣0)或(3,0)或(,0)或(6,0).4. 解:(1)对于直线AB :122y x =-+,当x =0时,y =2;当y =0时,x =4,则A 、B 两点的坐标分别为A (4,0)、B (0,2);(2)A 、∵C (0,4),A (4,0)∴OC =OA =4,当0≤t≤4时,OM =OA ﹣AM =4﹣t ,S △OCM =×4×(4﹣t )=8﹣2t ;当t >4时,OM =AM ﹣OA =t ﹣4,S △OCM =×4×(t ﹣4)=2t ﹣8;B 、△ABM 是等腰三角形,有三种情形:①当BM =AM 时,设BM =AM =x ,则OM =4﹣x ,在Rt △OBM 中,∵OB 2+OM 2=BM 2,∴2222(4)x x +-=,∴ 2.5x =,∴AM =2.5,∴t=2.5时,△ABM 是等腰三角形.③ 当AM ′=AB =t =△ABM 是等腰三角形.③当BM ″=BA 时,∵OB ⊥AM ″,∴OM ″=OA =4,∴AM ″=8,∴t=8时,△ABM 是等腰三角形.综上所述,满足条件的t 的值为52或8s .5. 解:(1)令y =x +6中x =0,则y =6,∴A (0,6);令y =x +6中y =0,则x =﹣6,∴B (﹣6,0).∵点C 在x 轴的正半轴,且OB =OC ,∴C (6,0).设直线AC 的解析式为y =kx +b ,将A (0,6)、C (6,0)代入y =kx +b 中,得1,6k b =-=∴直线AC 的解析式为6y x =-+;(2)∵点D 为AC 的中点,∴点D 的坐标为(3,3),设BD 的直线解析式为:y =mx +n ,把B (﹣6,0),D (3,3)代入解析式可得:1,23m n ==, 所以直线BD 的解析式为:123y x =+①, ∴G (0,2),∵A (0,6),∴AG =4.∵直线AC 的解析式为6y x =-+②,联立①②解得,x =3,y =3,∴D (3,3),设BP 时,P 点坐标为(﹣6+3t ,t ),当点P 在线段BD 上时,△APD 的面积S=12AG ×(x D ﹣x P )=18﹣6t (0<t <3); 当点P 在BD 的延长线上时, △APD 的面积S=12×4×(﹣6+3t ﹣3)=6t ﹣18(t >3) (3)要使△APC 是等腰三角形,且以PC 为腰,如备用图1,有两种情况:①AP =PC ,∴点P 是线段AC 的垂直平分线上,∵点D 是AC 的中点,∴点P 和点D 重合,不符合题意,②AC =PC =,可得:222(63t 6)t +-++=, 可得:126,65t t ==, 所以点P 的坐标为126(,)55-,(12,6).三、面积问题1. 解:(1)由直线l 1:y =﹣x ﹣1可知:A (﹣1,0),B (0,﹣1),将直线l 1向上平移3个单位长度,得直线l 2:y =﹣x +2,设C (m ,n ),∵AD =2CD ,∴1+m =2n ,∵点C 在直线l 2:y =﹣x +2上,∴n =﹣m +2,∴C (1,1),设直线l 3的解析式为y =kx +b ,把A (﹣1,0)和C (1,1)代入得12k b ==, ∴直线l 3的解析式为1122y x =+. (2)令x =0,则y =12,S △ABC =12. 2. 解:(1)在y =x +3中,令32y =,则32x =-,∴33(,)22A -, ∵OD =1,∴D (0,﹣1),把点A ,D 的坐标代入l 2:y =kx +b ,可得5,13k b =-=-∴25:13l y x =--, 在y =x +3中,令x =1,则y =4,∴B (1,4),∵l 2∥l 3,∴153k =-,∴直线l 3的解析式为51733y x =-+; (2)在y =x +3中,令x =0,则y =3,∴E (0,3),∴DE =3+1=4,∴S △ABD =DE (|x A |+|x B |)=5.3.解:(1)把m =2代入m +n =mn 得:2+n =2n ,解得:n =2,即1m n =, 所以E 的纵坐标为1;把m =3代入m +n =mn 得:3+n =3n ,解得32n =,即2m n=,所以F 的纵坐标为2; (2)设直线AB 的解析式为y =kx +b , 从图象可知:与x 轴的交点坐标为(1,0)A (0,5),得:k =﹣1,b =5,即直线AB 的解析式是y =﹣x +5,设直线BC 的解析式为y =ax +c ,从图象可知:与y 轴的交点坐标为(0,﹣1),与x 轴的交点坐标为(1,0),得:a =1,c =﹣1, 即直线BC 的解析式是y =x ﹣1,∵P (,)m m n,m +n =mn 且m ,n 是正实数, ∴除以n 得:1m m n +=∴P (m ,m ﹣1)即“完美点”P 在直线y =x ﹣1上;故答案为:y =x ﹣1;(3)∵直线AB 的解析式为:y =﹣x +5,直线BC 的解析式为y =x ﹣1,∴B (3,2),∵一、三象限的角平分线y =x 垂直于二、四象限的角平分线y =﹣x ,而直线y =x ﹣1与直线y =x 平行,直线y =﹣x +5与直线y =﹣x 平行,∴直线AM 与直线y =x ﹣1垂直,∵点B 是直线y =x ﹣1与直线AM 的交点,∴垂足是点B ,∵点C 是“完美点”,∴点C 在直线y =x ﹣1上,∴△MBC 是直角三角形,∵B (3,2),A (0,5),∴AB =AM =MB =∴BC =1,∴S △MBC =12BC ×BM .4. 解:(1)将点A(2,0)代入直线y=kx+3,得0=2k+3,解得32k=-,∴332y x=-+.当x=0时,y=3.∴B(0,3),OB=3.∴A(2,0),OA=2,∴S△AOB=12OA•OB=3.(2)如图2,①当AB=BC时,点C与点A(2,0)关于y轴对称,故C(﹣2,0)符合题意;②当AB=AC时,由A(2,0),B(0,3)得到AB AC=AC C′,0)、C″2,0).综上所述,符合条件的点C的坐标是(﹣2,0,02,0);(3)∵M(3,0),∴OM=3,∴AM=3﹣2=1.由(1)知,S△AOB=3,∴S△PBM=S△AOB=3;①当点P在x轴下方时,S△PBM=S△PBM+S△APM=3,∴|y P|=3,∵点P在x轴下方,∴y P=﹣3.当y=﹣3时,代入332y x=-+得x=4.∴P(4,﹣3);②当点P在x轴上方时,S△PBM=S△PBM﹣S△APM=3,∴|y P|=9,∵点P在x轴上方,∴y P=3.当y=9时,代入y=﹣x+3得,9=﹣x+3,解得x=﹣4.∴P(﹣4,9).5. 解:(1)把x=0代入443y x=-+,解得:y=4,∴OB=4,把y=0代入443y x=-+,解得:x=3,∴OA=3,∵C(﹣4,0),∴OC=4,∴OB=OC,∵CD⊥AB,∴∠ACD+∠CAD=90°,∵∠ACD+∠OEC=90°,∴∠CAD=∠OEC,∴△COE≌△BOA(AA S);(2)①∵ON⊥OM,∴∠MON=90°,∴∠COM+∠AON=90°,∵∠AON+∠BON=90°,∴∠COM=∠BON,∵△COE≌△BOA,∴∠OCM=∠OBN,∴△COM≌△BON(A S A),∴OM=ON,∠COM=∠BON,∵∠COM+∠MOE=90°,∴∠BON+∠MOE=90°,即∠MON=90°,∴△MON是等腰直角三角形;②∵△COM≌△BON,△OCM与△OAN面积相等,∴△BON与△OAN面积相等,即△OAN面积是△AOB面积的一半,得y N=2,解得:x=1.5,∴点N的坐标为(1.5,2)6. 解:(1)A(5,6)的变换点坐标是(6,﹣5),B(3,2)的变换点坐标是(3,﹣2),C(4,4)的变换点坐标是(4,﹣4);(2)当a=b时,a=b=2,∵(2,2)的变换点为(2,﹣2),∵当a<b时,点P(a,b)的变换点坐标为(b,﹣a),∴x<2,∵(0,6)的变换点为(6,0),∴点P(a,b)的变换点经过(2,﹣2)和(6,0),设点M的函数解析式为y=kx+m,1,32k b==-∴13(2)2y x x=-<.(3)由题意,新的图形L的函数解析式为13(2)226(2)x xyx x⎧-<⎪=⎨⎪-≥⎩新图形L的拐点坐标为(2,﹣2),画出图形如图所示.当y=kx+1过点(2,﹣2)时,有﹣2=2k+1,解得:32k=-;当y=kx+1与y=2x﹣6平行时,k=2;当y=kx+1与132y x=-平行时,12k=.结合图形可知:直线y=kx+1与图形L有且只有两个公共点时,322k-<<且12k≠.。

相关文档
最新文档