一次函数分类专题复习

合集下载

(完整版)一次函数复习专题

(完整版)一次函数复习专题

一次函数复习专题【基础知识回顾】 一、 一次函数的定义:一般的:如果y= ( ),那么y 叫x 的一次函数特别的:当b= 时,一次函数就变为y=kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】二、一次函数的同象及性质:1、一次函数y=kx+b 的同象是经过点(0,b )(-bk,0)的一条 ,正比例函数y= kx 的同象是经过点 和 的一条直线。

【名师提醒:因为一次函数的同象是一条直线,所以画一次函数的图象只需选取 个特殊的点,过这两个点画一条直线即可】2、正比例函数y= kx(k ≠0),当k >0时,其同象过 、 象限,此时时y 随x 的增大而 ;当k<0时,其同象过 、 象限,时y 随x 的增大而 。

3、 一次函数y= kx+b ,图象及函数性质①、k >0 b >0过 象限②、k >0 b<0过 象限y 随x 的增大而y随x的增大而③、k<0 b>0过象限④、k<0 b>0过象限4、若直线l1:y= k1x+ b1与l2:y= k2x+ b2平行,则k1 k2,若k1≠k2,则l1与l2【名师提醒:y随x的变化情况,只取决于的符号与无关,而直线的平移,只改变的值的值不变】三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b中的字母与的值步骤:1、设一次函数表达式2、将x,y的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的待定系数代入所设函数表达式中四、一次函数与一元一次方程、一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 代入y= kx+ b 中解一元一次方程可求求直线与坐标轴的交点坐标。

2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x的取值范围,反之也成立3、一次函数与二元一次方程组:两条直线的交点坐标即为两个一次函数所列二元一次方程组的解,反之根据方程组的解可求两条直线的交点坐标【名师提醒:1、一次函数与三者之间的关系问题一定要结合图象去解决2、在一次函数中讨论交点问题即是讨论一元一次不等式的解集或二元一次方程组解的问题】五、一次函数的应用一般步骤:1、设定问题中的变量2、建立一次函数关系式3、确定自变量的取值范围4、利用函数性质解决问题5、作答【名师提醒:一次函数的应用多与二元一次方程组或一元一次不等式(组)相联系,经常涉及交点问题,方案设计问题等】【重点考点例析】考点一:一次函数的图象和性质例1 (2015•大庆)对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(-1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大对应训练1.(2015•徐州)下列函数中,y随x的增大而减少的函数是()A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x考点二:一次函数的图象和系数的关系例2 (2015•莆田)如图,一次函数y=(m-2)x-1的图象经过二、三、四象限,则m的取值范围是()A.m>0 B.m<0 C.m>2 D.m<2点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2对应训练2.(2015•眉山)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a 的图象可能是()A.B.C.D.3.(2015•福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是()A.a>0 B.a<0 C.b=0 D.ab<0考点三:一次函数解析式的确定例4 (2015•常州)已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过对应训练4.(2013•重庆)已知正比例函数y=kx(k≠0)的图象经过点(1,-2),则这个正比例函数的解析式为()A.y=2x B.y=-2x C.y= 12x D.y=-12x考点四:一次函数与方程(组)、不等式(组)的关系例5 (2015•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>3例6 (2015•荆州)体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解A.y=x+9与y=23x+223B.y=-x+9与y=23x+223C.y=-x+9与y=- 23x+223D.y=x+9与y=-23x+223对应训练5.(2015•武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.6.(2015•青岛)如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P,则这个正比例函数的表达式是.考点五:一次函数综合题例7 (2015•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2-14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角(1)C(0,6);(2)∴直线MN的解析式为y=-34x+6;(3)∵A(8,0),C(0,6),对应训练7.(2015•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.例8 (2015•株洲)某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行x轴).(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC的解析式,并求该植物最高长多少厘米?对应训练8.(2015•湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.【聚焦山东中考】1.(2015•菏泽)一条直线y=kx+b,其中k+b=-5、kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限个点,当x1<x2<0时,y1<y2,则一次函数y=-2x+k的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(2015•潍坊)一次函数y=-2x+b中,当x=1时,y<1,当x=-1时,y>0.则b的取值范围是.4.(2015•泰安)把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<45.(2015•威海)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.经过0.25小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地503km6.(2015•临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机1(3)通过观察(1)(2)中的两个函数表达式可知,当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数关系,∴过原点且与直线y=-15x垂直的直线l5的函数表达式为y=5x.∴x=0时,y=4,y=0时,x=8,∴4182 BOAO==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴12 BO EPAO AP==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8-t-2t=8-3t,∴8-3t=t,解得:t=2,综上所述,当t=4时,S矩形PEFQ的最大值为:16.【备考真题过关】一、选择题1.(2015•湖州)若正比例函数y=kx的图象经过点(1,2),则k的值为()A.-12B.-2 C.12D.22.(2015•陕西)如果一个正比例函数的图象经过不同象限的两点A(2,m),B (n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限4.(2015•黔东南州)直线y=-2x+m与直线y=2x-1的交点在第四象限,则m 的取值范围是()A.m>-1 B.m<1 C.-1<m<1 D.-1≤m≤1 5.(2015•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是()A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=-8t+25B.途中加油21升C.汽车加油后还可行驶4小时D.汽车到达乙地时油箱中还余油6升6.(2015•天门)小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题7.(2015•资阳)在一次函数y=(2-k)x+1中,y随x的增大而增大,则k的取15.(2015•温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴,将△ABC以y轴为对称轴作轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点),直线y=x+b 经过点A,C′,则点C′的坐标是.16.(2015•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.17.(2015•随州)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.三、解答题18.(2015•厦门)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.18.解:①0≤x<3时,设y=mx,则3m=15,解得m=5,所以,y=5x,②3≤x≤12时,设y=kx+b,∵函数图象经过点(3,15),(12,0),20.(2015•盐城)水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)20.解:(1)设现在实际购进这种水果每千克x元,则原来购进这种水果每千克(x+2)元,由题意,得80(x+2)=88x,解得x=20.故现在实际购进这种水果每千克20元;(2)①设y与x之间的函数关系式为y=kx+b,将(25,165),(35,55)代入,得251653555k bk b+=⎧⎨+=⎩,解得11440kb=-⎧⎨=⎩,故y与x之间的函数关系式为y=-11x+440;②设这种水果的销售单价为x元时,所获利润为w元,则w=(x-20)y=(x-20)(-11x+440)=-11x2+660x-8800=-11(x-30)2+1100,所以当x=30时,w有最大值1100.即将这种水果的销售单价定为30元时,能获得最大利润,最大利润是1100元.21.(2015•河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.21.解:(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=-x+4.(2)当直线y=-x+b过点M(3,2)时,2=-3+b,解得:b=5,5=1+t,解得t=4.当直线y=-x+b过点N(4,4)时,4=-4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,-1).∵M(3,2),F(0,-1),∴线段MF中点坐标为(32,12).。

(完整版)一次函数知识点复习总结

(完整版)一次函数知识点复习总结
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
一次函数
(1)函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
⑶当 , 时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx (k不为零) k不为零 x指数为1 b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时, 直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
6、直线 ( )与 ( )的位置关系
(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限

一次函数专题复习

一次函数专题复习

一次函数专题复习专题一、函数定义1、判断下列变化过程存在函数关系的是( )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数12+=x x y ,当a x =时,y = 1,则a 的值为( ) A.1 B.-1 C.3 D.21 3、下列各曲线中不能表示y 是x 的函数是( )。

专题二、正比例函数1、下列各函数中,y 与x 成正比例函数关系的是(其中k 为常数)( )A 、y=3x -2B 、y=(k+1)xC 、y=(|k|+1)xD 、y= x 22、如果y=kx+b ,当 时,y 叫做x 的正比例函数3、一次函数y=kx+k+1,当k= 时,y 叫做x 正比例函数专题三、一次函数的定义1、下列函数关系中,是一次函数的个数是( )①y=1x ②y=x 3 ③y=210-x ④y=x 2-2 ⑤ y=13x +1 A 、1 B 、2 C 、3 D 、42、若函数y=(3-m)x m -9是正比例函数,则m= 。

3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数 (2)是正比例函数专题四、函数的增加性1.已知点A(x 1,y 1)和点B(x 2,y 2)在同一条直线y=kx+b 上,且k <0.若x 1>x 2,则y 1与y 2的关系是( )A.y 1>y 2B.y 1=y 2C.y 1<y 2D.y 1与y 2的大小不确定2、下列函数中,y 随x 的增大而减小的有( )①12+-=x y ②x y -=6③31x y +-=④x y )21(-= A.1个 B.2个 C.3个 D.4个O x y O x y O x y O x y专题五、一次函数与坐标系1.对于一次函数y=-2x+4,y 的值随x 的值增大而 (增大或减少)图象与x 轴交点坐标是 ,与y 轴的交点坐标是 .2. 已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= .3、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( )A. 1-B. 1C. 41- D. 41 4.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )个 A .4 B .5 C .7 D .85、已知一次函数y=ax+4与y=bx -2的图象在x 轴上相交于同一点,求的值?6、已知一次函数y=(a -2)x +2a 2-8求:(1)a 为何值时,一次函数的图象经过原点.(2)a 为何值时,一次函数的图象与y 轴交于点(0,10).专题六、待定系数法求一次函数解析式1. 若一次函数的图象经过点A(-3,0),B(0,1),则这个函数的解析式为 .2.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴相交于C 点.求: (1)直线AC 的函数解析式; (2)设点(a ,-2)在这个函数图象上,求a 的值;3、(2007甘肃陇南) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4、(2007福建晋江)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系。

一次函数总复习

一次函数总复习

第二十一章 一次函数总复习【基础知识汇总】1、正比例函数:一般表达式y=kx (k 为常数且k ≠0);图像为过(0,0)与(1,k )的一条直线2、一次函数:一般表达式y=kx+b (k 、b 为常数,且k ≠0);图像是一条经过(0,k b -)与(0,b )的直线。

其中(0,kb -)为直线与x 轴交点,(0,b )为直线与y 轴交点。

对一次函数(包括正比例函数)的基本要求:必须为整式函数,自变量项的系数k 不为0,自变量的最高指数为1。

3、一次函数图像与坐标轴围成的三角形的面积:如右图所示: S △AOB=2OBOA ⋅=2b kb ⋅- 4、k 、b 与图像所在象限及增减性:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><0b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限 经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限 经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.若两直线k 值相同,则两直线平行。

6、图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位 7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。

考点10一次函数(解析版)

考点10一次函数(解析版)

第四章一次函数考点类型大总结【知识点及考点类型梳理】一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数. 3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-bk,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0,b >0一、二、三y 随x 的增大而增大k >0,b <0一、三、四y =kx +b (k ≠0)k <0,b >0一、二、四y 随x 的增大而减小k <0,b <0二、三、四3.k ,b 的符号与直线y =kx +b (k ≠0)的关系在直线y =kx +b (k ≠0)中,令y =0,则x =-b k ,即直线y =kx +b 与x 轴交于(–bk,0).①当–bk>0时,即k ,b 异号时,直线与x 轴交于正半轴.②当–bk=0,即b =0时,直线经过原点.③当–bk<0,即k ,b 同号时,直线与x 轴交于负半轴.4.两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2,b 1≠b 2,两直线平行;②当k 1=k 2,b 1=b 2,两直线重合;③当k 1≠k 2,b 1=b 2,两直线交于y 轴上一点;④当k 1·k 2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y =kx (k ≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k 的一元一次方程.(3)解方程,求出待定系数k .(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx +ny =p (m ,n ,p 是常数,且m ≠0,n ≠0)都能写成y =ax +b (a ,b 为常数,且a ≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.考点类型一、一次函数与正比例函数的定义1.在下列函数中:①8y x =-;②312y x =+;③1y =;④285y x =-+;⑤0.51y x =--,一次函数有()A .1个B .2个C .3个D .4个【答案】C 【分析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数,据此进行判断即可.【详解】解:①8y x =-属于一次函数;②312y x =+属于一次函数;③1y =不属于一次函数;④285y x =-+属于二次函数;⑤0.51y x =--属于一次函数;∴一次函数有3个,故选:C .2.下列问题中,两个变量之间是正比例函数关系的是()A .汽车以80km/h 的速度匀速行驶,行驶路程(km)y 与行驶时间(h)x 之间的关系B .圆的面积()2cm y 与它的半径(cm)x 之间的关系C .某水池有水315m ,现打开进水管进水,进水速度35m /h ,h x 后水池有水3m yD .有一个边长为x 的正方体,则它的表面积S 与边长x 之间的函数关系【答案】A 【分析】根据正比例函数的定义逐个判断即可求解【详解】选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:2y x π=属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x ,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x 2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A 【点睛】本题考查正比例函数的定义,正确理解正比例函数的定义是关键3.在①8y x =-;②8y x=-;③1y =;④286y x =-+;⑤0.51y x =--,一次函数有()A .1个B .2个C .3个D .4个【答案】B 【分析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数,据此进行判断即可.【详解】解:①y =-8x 属于一次函数;②y =8x-属于反比例函数;③y不属于一次函数;④y =-8x 2+6属于二次函数;⑤y =-0.5x -1属于一次函数,∴一次函数有2个,故选:B .举一反三4.下列函数中是一次函数的是()A .y =2x B .2y x=C .y =x 2D .y =kx +b (k ,b 为常数)【答案】A 【分析】利用一次函数定义进行解答即可.【详解】解:A 、y =2x是一次函数,故此选项符合题意;B 、y =2x是反比例函数,不是一次函数,故此选项不合题意;C 、y =x 2是二次函数,故此选项不符合题意;D 、当k =0时,y =kx +b (k ,b 为常数)不是一次函数,故此选项不合题意;故选:A .5.下列函数是正比例函数的是()A .2x y =B .2y x=C .2y x =D .2(1)y x =+【答案】A 【分析】根据用x 表示成y 的函数后,若符合()0y kx k =≠的形式,是正比例函数解答即可.【详解】A 、2xy =是正比例函数;B 、2y x=是反比例函数;C 、2y x =是二次函数;D 、()21y x =+是一次函数.故选:A .考点类型二、一次函数的图像6.函数2y x =-的图象经过的象限是()A .第一,二,三象限B .第一,二,四象限C .第一,三,四象限D .第二,三,四象限【答案】C【分析】根据一次函数k=1>0,b=-2<0,即可得到答案.【详解】y x=-中,k=1>0,b=-2<0,解:∵函数2y x=-的图象经过的象限是:第一,三,四象限,∴2故选C.【点睛】本题主要考查一次函数图像所经过的象限,掌握一次函数图像与一次函数中的系数k,b的关系,是解题的关键.7.若一次函数y=(k﹣2)x+1的函数值y随x的增大而减小,则()A.k<2B.k>2C.k<0D.k>0【答案】A【分析】根据一次函数的性质,可得答案.【详解】解:由题意,得k-2<0,解得k<2,故选:A.【点睛】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大,当k<0时,函数值y随x 的增大而减小.8.若一次函数的y=kx+b(k<0)图象上有两点A(﹣2,y1)、B(1,y2),则下列y大小关系正确的是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【答案】B【分析】首先观察一次函数的x项的系数,当x项的系数大于0,则一次函数随着x的增大而增大,当x小于0,则一次函数随着x的减小而增大.因此只需要比较A、B点的横坐标即可.【详解】解:根据一次函数的解析式y =kx +b (k <0)可得此一次函数随着x 的增大而减小因为A (﹣2,y 1)、B (1,y 2),根据-2<1,可得12y y >故选B .9.已知直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,则1m ______2m 【答案】>【分析】根据一次函数增减性可得,k <0,y 随x 的增大而减小,k >0,y 随x 的增大而增大即可判断得出答案.【详解】解:∵直线的解析式为32y x b=-+∴k <0∴y 随x 的增大而减小∵直线32y x b =-+经过点A (1m ,-2),B (2m ,-1)两点,21-<-∴12m m >故答案为:>.10.在一次函数23y x =-+中,当05x ≤≤时,y 的最小值为________.【答案】-7【分析】根据一次函数的性质得y 随x 的增大而减小,则当x =5时,y 有最小值,然后计算x =-5时的函数值即可.【详解】解:∵k =-2<0,∴y 随x 的增大而减小,∴当x =5时,y 有最小值,把x =5代入y =-2x +3得y =-10+3=-7.故答案为:-7.11.关于一次函数y =﹣2x +4,下列结论正确的是()A .图象过点(0,-2)B .图象经过一、三、四象限C.y随x的增大而增大D.图象与x轴交于点(2,0)【答案】D【分析】根据一次函数的性质对各项进行逐一判断即可.【详解】A、当x=0时,y=4,过点(0,4),故A选项错误;B、因为k=-2<0,图象经过第一、二、四象限,故B错误;C、因为k=-2<0,y随x的增大而减小,故C错误;D、当y=0时,x=2,即图象与x轴交于点(2,0),故D正确.故选:D12.下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn<0)图象的是()A.B.C.D.【答案】B解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y =mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n 的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n 的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n 的图象经过第一、二、四象限;故本选项错误;故选:B .【点睛】本题综合考查了正比例函数、一次函数图象与系数的关系.解题的关键是掌握一次函数(0)y kx b k =+≠的图象有四种情况:①当0k >,0b >,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象限.13.一次函数52y x =-的图象过点()11,x y ,()()12131,,2,x y x y ++,则()A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】A 【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1<x 1+1<x 1+2即可得出结论.【详解】解:∵一次函数52y x =-中,k =5>0,∴y 随着x 的增大而增大.∵一次函数52y x =-的图象过点()11,x y ,()()12131,,2,x y x y ++,且x 1<x 1+1<x 1+2,∴123y y y <<,故选:A .14.若直线y =kx +b 不经过第一象限,则()A .k >0,b <0B .k <0,b ≤0C .k <0,b ≥0D .k <0,b >0【答案】B 【分析】由题意,结合一次函数图象特点,直线必过第二、三、四象限或经过原点和第二、四象限,由此讨论求解即可.【详解】解:由直线y kx b =+不经过第一象限,可分两种情况:当直线经过第二、三、四象限时,∵直线必过第二、四象限,∴k <0,∵直线还经过第三象限,即直线与y 轴的交点在y 轴的负半轴,∴b <0;当直线经过原点和第二、四象限时,k <0,b =0,综上,k <0,b ≤0,故选:B .【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数的图象在直角坐标系中的位置与系数k 、b 的关系是解答的关键.15.将直线23y x =-向上平移2个单位长度,所得的直线解析式为________.【答案】y =2x -1【分析】根据k 值不变,b 值加2可得出答案.【详解】解:平移后的解析式为:y =2x -3+2=2x -1.故答案为:y =2x -1.【点睛】本题考查的是关于一次函数的图象与它平移后图象的变换的题目,在解题过程中只要抓住平移后直线方程的斜率不变这一性质,就能很容易解答了.16.在平面直角坐标系中,要得到函数y =2x ﹣1的图象,只需要将函数y =2x 的图象()A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位【答案】B【分析】根据“上加下减”的原则写出新直线解析式.【详解】解:由“上加下减”的原则可知,将函数2y x =的图象向下平移1个单位长度所得函数的解析式为21y x =-.故选:B .【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.17.点P (a ,b )在函数3y x =的图象上,则代数式622021a b -+的值等于_________.【答案】2021.【分析】把点P 的坐标代入一次函数解析式,得出3b a =,将3b a =代入622021a b -+中计算即可.【详解】解:∵点P (a ,b )在函数3y x =的图象上,∴3b a =,∴62202162320212021a b a a -+=-+= 故答案为:2021.【点睛】本题主要考查了一次函数的图像性质,结合代数式求值是解题的关键.18.已知函数y 1=(m +1)x ﹣m 2+1(m 是常数).(1)m 为何值时,y 1随x 的增大而减小;(2)m 满足什么条件时,该函数是正比例函数?(3)若该函数的图象与另一个函数y 2=x +n (n 是常数)的图象相交于点(m ,3),求这两个函数的图象与y 轴围成的三角形的面积.【答案】(1)m <﹣1;(2)m =1;(3)4【分析】(1)根据题意10+<m ,解得即可;(2)根据正比例函数的定义得到10m +≠,210m -+=,解得1m =;(3)由函数()2111y m x m =+-+经过点(),3m 求得2m =,得到交点为()2,3,根据交点坐标求得函数1y 的解析式,即可求得与y 轴的交点坐标,把交点坐标代入2y x n =+,求得解析式,即可求得与y 轴的交点坐标,然后根据三角形面积公式即可求得两个函数的图象与y 轴围成的三角形的面积.【详解】解:(1)由题意:10+<m ,1m ∴<-,即1m <-时,1y 随x 的增大而减小;(2)若该函数是正比例数,则10m +≠,210m -+=,1m ∴=,即1m =时,该函数是正比例数;(3) 两个的图象相交于点(),3m ,()2113m m m ∴+-+=,2m ∴=,∴交点坐标为()2,3,∴该点到y 轴的距离为2,将2m =代入()2111y m x m =+-+,得:133y x =-,将交点坐标()2,3代入2y x n =+,得:1n =,21y x ∴=+,∴两个函数图象与y 轴的交点坐标分别为()0,3-和()0,1,∴所围成的三角形的面积为:()13224--⨯÷=⎡⎤⎣⎦.【点睛】本题考查了一次函数的性质,一次函数图象上点的坐标特征,正比例函数的定义,一次函数图象与系数的关系,三角形的面积等,熟练掌握一次函数的性质以及求得交点坐标是解题的关键.考点类型三、求一次函数表达式19.已知3y +与x 成正比例,且2x =时,1y =.求y 关于x 的函数表达式;【答案】y 关于x 的函数表达式为23y x =-.【分析】设3y kx +=(0k ≠),再把2x =,1y =代入求出y 关于x 的关系式即可.【详解】设3y kx +=(k 是常数且0k ≠),把2x =,1y =代入,得132k +=,解得2k =,所以32y x +=,所以y 关于x 的函数表达式为23y x =-.【点睛】本题考查正比例函数的定义,根据题意求出k 的值是解题的关键.20.已知y ﹣2与x +1成正比例,且x =2时,y =8(1)写出y 与x 之间的函数关系式;(2)当x =﹣4时,求y 的值.【答案】(1)y =2x +4,(2)-4【分析】(1)设y ﹣2=k (x +1)(k 为常数,k≠0),把x =2,y =8代入求出k 即可;(2)把x =﹣4代入y =2x +4计算即可求出答案.【详解】解:(1)∵y ﹣2与x +1成正比例,∴设y ﹣2=k (x +1)(k 为常数,k≠0),把x =2,y =8代入得:8﹣2=k (2+1),解得:k =2,即y ﹣2=2(x +1),即y =2x +4,∴y 与x 之间的函数关系式是y =2x +4;(2)当x =﹣4时,y =2×(﹣4)+4=﹣4.21.某物流公司引进A 、B 两种机器人用来搬运某种货物.这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象,根据图象提供的信息,解答下列问题:(1)P 点的含义是;(2)求y B 关于x 的函数解析式;(3)如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了多少千克?【答案】(1)A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克;(2)y =90x ﹣90(1≤x ≤6);(3)如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了150千克【分析】(1)观察函数图象,根据点P 为线段OG 、EF 的交点结合题意即可找出点P 的含义;(2)根据点E 、P 的坐标利用待定系数法即可求出y B 关于x 的函数解析式;(3)根据工作总量=工作效率×工作时间,分别求出A 、B 两种机器人连续运5小时的云货量,二者做差即可得出结论.【详解】解:(1)P 点的含义是:A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克.故答案为:A 种机器人搬运3小时时,A 、B 两种机器人的搬运量相等,且都为180千克.(2)设y B 关于x 的函数解析式为y B =kx +b ,将(1,0)、(3,180)代入y B =kx +b ,03180k b k b +=⎧⎨+=⎩,解得:9090k b =⎧⎨=-⎩,∴y B 关于x 的函数解析式为y =90x ﹣90(1≤x ≤6).(3)连续工作5小时,A 种机器人的搬运量为(180÷3)×5=300(千克),连续工作5小时,B 种机器人的搬运量为[180÷(3﹣1)]×5=450(千克),B 种机器人比A 种机器人多搬运了450﹣300=150(千克).答:如果A 、B 两种机器人连续运5小时,那么B 种机器人比A 种机器人多搬运了150千克.22.如图,在平面直角坐标系中,一次函数y kx b =+的图象与x 轴、y 轴分别交于A ,B 两点,且经过点()2,6D -,与正比例函数3y x =的图象相交于点C ,点C 的横坐标为1.(1)求一次函数y kx b =+的解析式(2)求BOC 的面积【答案】(1)4y x =-+;(2)2【分析】(1)求出点C 的坐标,将,C D 坐标代入到y kx b =+中,求出即可;(2)求出点B 的坐标,根据三角形的面积公式即可求出;【详解】解:(1)当1x =时,3y =设直线y kx b =+过()()1,32,6-,∴623k b k b=-+⎧⎨=+⎩解得:14k b =-⎧⎨=⎩∴函数解析式为4y x =-+(2)当0x =时,4y =∴14122BOC S =⨯⨯= 考点类型四、一次函数与一元一次方程23.画出函数33y x =-+的图象,根据图象回答下列问题:求方程330x -+=的解【答案】图像见详解;1x =.【分析】利用两点法画出函数的图象,然后令0y =,即直线与x 轴的交点的横坐标就是方程330x -+=的解.【详解】解:∵函数33y x =-+,令0y =,则1x =;令0x =,则3y =,33y x =-+的图像如图所示:由图可知,方程330x -+=的解是1x =;【点睛】本题考查了画一次函数的图像,由图像求一元一次方程的解,解题的关键是掌握一次函数的性质进行解题.考点类型五、一次函数的综合24.如图,在平面直角坐标系中,一次函数6y x =-+的图象与x 轴、y 轴分别交于B 、C 两点,与正比例函数12y x =的图象交于点A .(1)求A 、B 、C 三点的坐标;(2)求OAC 的面积;(3)若动点M 在射线AC 上运动,当OMC 的面积是OAC 的面积的12时,求出此时点M 的坐标.【答案】(1)()4,2A ,()6,0B ,()0,6C ;(2)12;(3)()2,4或()2,8-.【分析】(1)在一次函数6y x =-+中,分别令0y =,0x =,即可求出B 、C 的坐标,再联立一次函数和正比例函数即可求出交点A 的坐标;(2)利用(1)中,找到OC ,A x 的长即可求出OAC 的面积;(3)根据OMC 的面积是OAC 的面积的12时,求出M 的横坐标,再分情况讨论即可找到M 的坐标.【详解】解:(1)∵一次函数6y x =-+的图象与x 轴、y 轴分别交于B 、C 两点,∴令0x =,则6y =,故()0,6C ,令0y =,则6x =,故()6,0B ,而A 为一次函数6y x =-+和正比例函数12y x =图象的交点,联立方程得:612y x y x =-+⎧⎪⎨=⎪⎩,解得:42x y =⎧⎨=⎩,∴A 的坐标为()4,2.故答案为:()4,2A ,()6,0B ,()0,6C .(2)由(1)可知:6OC =,4A x =,∴12OAC A S OC x =⨯⨯△164122=⨯⨯=.故答案为:12.(3)由题意得:12OMC OAC S S =△△11262=⨯=,而116622OMC M M S OC x x =⨯⨯=⨯⨯=△∴2M x =|,∴2M x =±,分情况讨论:①当2M x =时,6264y x =-+=-+=,故此时M 点的坐标为()2,4,②若2M x =-时,6268y x =-+=+=,故此时M 点的坐标为()2,8-,综上,M 点的坐标为()2,4或()2,8-;故答案为:()2,4或()2,8-.25.如图,直线l 分别与x 轴,y 轴相交于点A (5,0),B (0,4),点E (2.5,m )在l 上,直线y =kx +b经过点E ,并与x 轴相交于点F .若EF 将△AOB 分割为左右两部分,且四边形OFEB 与△FEA 的面积之比为3:2,则线段OF 的长为()A .0.5B .1C .1.5D .2【答案】B【分析】利用待定系数法求直线AB 的解析式,然后根据一次函数图象上点的坐标特点求得E 点坐标,从而确定点E 为AB 的中点,从而结合三角形面积比计算求解.【详解】解:设直线AB 的解析式为y kx b =+,将(5,0)A ,(0,4)B 代入,504k b b +=⎧⎨=⎩,解得:454k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为:4y x 45=-+,又 点(2.5,)E m 在AB 上,4 2.5425m ∴=-⨯+=,E ∴点坐标为(2.5,2),又 50 2.52+=,0422+=,∴点E 是线段AB 的中点,FEA FEB S S ∆∆∴=,又 四边形OFEB 与FEA ∆的面积之比为3:2,FBA S ∆∴与AOB S ∆的面积之比为4:5,∴45 AF OA=4 AF∴=,1OF OA AF∴=-=,故选:B.【点睛】本题考查一次函数的应用,掌握待定系数法求函数解析式的步骤,理解一次函数的性质,利用数形结合思想解题是关键.26.如图,已知一次函数y=12x+3的图象与x轴,y轴分别交于A,B两点.点C(4,n)在该函数的图象上,连接OC.(1)直接写出点A,B的坐标;(2)求△OAC的面积.【答案】(1)A(﹣6,0),B(0,3);(2)15【分析】(1)根据一次函数y=12x+3,分别令x=0,y=0即可求出A,B的坐标;(2)根据点C(4,n)在该函数的图象上,将之代入一次函数解析式求出C点的坐标,根据三角形的面积公式即可求得三角形面积.【详解】解:(1)∵一次函数y=12x+3的图象与x轴,y轴分别交于A,B两点,令x=0,则y=3,令y=0,则x=-6,∴A(﹣6,0),B(0,3);(2)把点C (4,n )代入y =12x +3得14352n =⨯+=,∴点C 的坐标为(4,5),∴11651522AOC C S OA y ∆=⨯⨯=⨯=.【点睛】本题考查了一次函数图象上点的坐标特征,三角形的面积的计算,正确的识别图形是解题的关键.27.如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由.【答案】(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OPA 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y S OA P =,列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+∴34k =∴一次函数解析式为364y x =+(2)如图:∵OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形∵()6,0A -∴6OA =∴1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x +=解得132x =-把132x =-代入一次函数364y x =+中,得98y =∴当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为27828.如图,直线AB 的解析式为2y x =+,直线AC 的解析式为4y x =-+,两条直线交于点A ,且分别与x 轴交于点B 、点C .(1)求ABC 的面积;(2)点D 为线段AC 上一点,连接BD ,若BD =D 的坐标.【答案】(1)9ABC S = ;(2)()3,1D .【分析】(1)过点A 作AE x ⊥轴于点E ,联立两直线解析式求交点坐标()1,3A ,可得3AE =,再求直线与x 轴两交点坐标()2,0B -,()4,0C ,可求()426BC =--=,利用三角形面积公式求即可;(2)过点D 作DF x ⊥轴于点F ,设点D 的横坐标为m ,(),4D m m -+,根据勾股定理222BD DF BF =+,即()()22242m m =-+++解方程即可.【详解】解:(1)过点A 作AE x ⊥轴于点E ,由题意联立方程组24y x y x =+⎧⎨=-+⎩,解得:13x y =⎧⎨=⎩,∴()1,3A ,∴3AE =.当0y =时,20x +=,∴2x =-,∴()2,0B -,当0y =时,40x -+=,∴4x =,∴()4,0C ,∴()426BC =--=,∴1163922ABC S BC AE =⋅=⨯⨯=△;(2)过点D 作DF x ⊥轴于点F ,设点D 的横坐标为m ,∵点D 在直线AC 上,∴4y m =-+,∴(),4D m m -+,∴4DF m =-+,∴()22BF m m =--=+,在Rt DBF △中,90DFB ∠=︒,根据勾股定理222BD DF BF =+,∴()()22242m m =-+++,整理得2230m m --=,解得:13m =,21m =-(不合题意,舍去),∴()3,1D .29.如图,在平面直角坐标系中,▱ABCD 各顶点的坐标分别为A (1,﹣1),B (2,﹣3),C (4,﹣3),D(3,﹣1),若直线y =﹣3x +b 与▱ABCD 有交点,则b 的取值范围是()A .3≤b ≤8B .2≤b ≤8C .2≤b ≤9D .﹣3≤b ≤9【答案】C【分析】根据A 、B 的坐标求出直线AB 的解析式,然后与直线3y x b =-+进行比较k 的值,最后进行分析计算即可得到答案.【详解】解:设直线AB 解析式为y mx n=+∵A 点坐标为(1,-1),B 点的坐标为(2,-3)∴132m n m n-=+⎧⎨-=+⎩∴解得21m n =-⎧⎨=⎩∴直线AB 解析式为21y x =-+∵23->-∴直线3y x b =-+的倾斜程度比直线21y x =-+的倾斜程度更厉害即为下图所示的情况时,直线3y x b =-+与平行四边ABCD 有交点当直线3y x b =-+经过A (1,-1)时∴1131b -=-⨯+,解得12b =当直线3y x b =-+经过C (4,-3)时∴2334b -=-⨯+,解得29b =综上所述29b ≤≤故选C.【点睛】本题主要考查了一次函数图像与图形的交点问题,解题的关键在于能够找到临界直线进行求解计算.30.如图,在平面直角坐标系xOy 中,直线AB 与x 轴,y 轴分别交于点30A (,),点04B (,),点D 在y 轴的负半轴上,若将DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)直接写出结果:线段AB 的长__________,点C 的坐标__________;(2)求直线CD 的函数表达式;(3)点P 在直线CD 上,使得2PAC OAB S S = ,求点P 的坐标.【答案】(1)5AB =,()80,C ;(2)直线CD 的函数表达式为364y x =-;(3)P 点坐标为7224,55⎛⎫ ⎪⎝⎭或824,55⎛⎫- ⎪⎝⎭.【分析】(1)运用勾股定理即可求出线段AB 的长;根据折叠得AC AB =,可得点C 的坐标;(2)设点D 的坐标为:()0,m ,而CD BD =,根据222OC OD CD +=,即可求出点D 的坐标,运用待定系数法设直线CD 的表达式为y kx b =+,将点C 、点D 代入即可求出答案;(3))设ACP △边AC 上的高为h ,根据2PAC OAB S S = ,求出h ,即可知道点P 的纵坐标,最后代入直线CD 的函数表示式中,即可求出答案.【详解】解:(1)()3,0A ,()0,4B ,3OA ∴=,4OB =,90AOB ∠=︒Q ,5AB ∴==;由折叠得:5AC AB ==,358OC OA AC ∴=+=+=,∴点C 的坐标为()8,0;故答案为:5AB =,80C (,);(2)设点()0,D m ,则OD m =-,由折叠可知,4CD BD m ==-,在Rt OCD △中,222=+CD OD OC ,()222(4)8m m ∴-=-+,解得:6m =-,0,6D ∴-(),设直线CD 的函数表达式为y kx b =+,将()8,0C 、0,6D -()代入,得806k b b +=⎧⎨=-⎩,解得,34k =,6b =-,∴直线CD 的函数表达式为364y x =-.(3)设ACP △边AC 上的高为h ,则1134622OAB S OA OB =⋅⋅=⨯⨯= ,1522PAC S AC h h =⋅⋅= ,且2PAC OAB S S = ,245h ∴=,因此点P的纵坐标为245或245-,当245y=时,即324645x-=,解得725x=;当245y=-时,即324645x-=-,解得85x=,因此,点P坐标为7224,55⎛⎫⎪⎝⎭或824,55⎛⎫-⎪⎝⎭.【点睛】本题考查了待定系数法求一次函数解析式,折叠的性质,勾股定理,三角形面积公式等.课后巩固1.一次函数y=﹣3x﹣2的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【分析】k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限,所以函数图象不过第一象限.【详解】解:∵k=﹣3<0,b=﹣2<0,∴函数的图象不经过第一象限,故选:A.2.一次函数y=﹣2x+b的图象经过点A(2,y1),B(﹣1,y2),则y1与y2的大小关系正确的是()A.y1<y2B.y1>y2C.y1=y2D.无法确定【答案】A【分析】在y=kx+b中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大;利用一次函数的增减性进行判断即可.【详解】解:在一次函数y=-2x+b中,。

中考考点复习之一次函数专题

中考考点复习之一次函数专题

中考考点复习之一次函数专题考点精讲1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。

2.会利用待定系数法确定一次函数的表达式。

3.能画出一次函数的图象,根据一次函数的图象和表达式()0≠+=k b kx y 探索并理解0>k 和0<k 时,图象的变化情况。

4.理解正比例函数。

5.体会一次函数和二元一次方程的关系。

考点解读考点1:一次函数图像与性质(1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b /k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.(3)一次函数与坐标轴交点坐标1.求一次函数与x 轴的交点,只需令y =0,解出x 即可;2.求与y 轴的交点,只需令x =0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是)0,(kb -,与y 轴的交点是(0,b ); 3.正比例函数y =kx (k ≠0)的图象恒过点(0,0).考点2:一次函数解析式的确定(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y =kx +b (k ≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k 与b 的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y =2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y =2x +b ,再把点(0,1)的坐标代入即可.考点3:一次函数图像的平移规律:“左加右减,上加下减”①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同. ②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h .考点4:一次函数与方程不等式的关系(1)一次函数与方程:一元一次方程kx +b =0的根就是一次函数y =kx +b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.(2)一次函数与方程组:二元一次方程组⎩⎨⎧+=+=bx k y b x k y 21的解⇔两个一次函数b x k y +=1和b x k y +=2图象的交点坐标.(3)一次函数与不等式(1)函数y =kx +b 的函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集(2)函数y =kx +b 的函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集 考点5:一次函数的应用.1.一般步骤:(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答.2.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.考点突破1.(2021秋•驻马店期末)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.22.(2021秋•中原区校级期末)下列问题中,两个变量之间成正比例关系的是()A.圆的面积S(cm2)与它的半径r(cm)之间的关系B.某水池有水15m3,现打开进水管进水,进水速度为5m3/h,xh后这个水池有水ym3C.三角形面积一定时,它的底边a(cm)和底边上的高h(cm)之间的关系D.汽车以60km/h的速度匀速行驶,行驶路程y与行驶时间x之间的关系3.(2021秋•驿城区校级期末)在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.4.(2021春•新蔡县期末)正比例函数y=kx(k≠0)和一次函数y=k(1﹣x)在同一个直角坐标系内的图象大致是下图中的()A.B.C.D.5.(2021秋•白银期末)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<06.(2021春•巨野县期末)已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.7.(2021秋•任城区校级期末)两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()A.B.C.D.8.(2021秋•驿城区期末)一次函数y=﹣2x+6的图象与两坐标轴围成的三角形的面积是()A.6B.9C.12D.189.(2021秋•新郑市期末)若函数y=(m﹣3)x|m﹣2|+m﹣1是一次函数,则m的值为.10.(2021秋•驿城区校级期末)当k=时,函数y=(k﹣1)x+k2﹣1是一个正比例函数.11.(2021春•舞阳县期末)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是.(填字母代号)A.B.C.D.12.(2019春•安阳期末)函数y=2x与y=6﹣kx的图象如图所示,则k=.13.(2021秋•东城区校级期末)请写出一个图象经过第一、第三象限的一次函数关系式.(写出一个即可).14.(2021•河南)请写出一个图象经过原点的函数的解析式.15.(2018春•确山县期末)点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OP A的面积为S.(1)用含x的解析式表示S为,其中x的范围是.(2)画出函数S的图象.(3)当点P的横坐标为5时,△OP A的面积为.(4)△OP A的面积能大于24吗?为什么?16.(2021春•会昌县期末)先完成下列填空,再在同一平面直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数y=2x的图象过(0,)和(1,);(2)一次函数y=﹣x+3的图象过(0,)和(,0).17.(2021秋•金水区校级期末)请根据学习“一次函数”时积累的经验和方法研究函数y =﹣|x|+2的图象和性质,并解决问题.(1)填空:①当x=0时,y=﹣|x|+2=;②当x>0时,y=﹣|x|+2=;③当x<0时,y=﹣|x|+2=;(2)在平面直角坐标系中作出函数y=﹣|x|+2的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x轴有个交点,方程﹣|x|+2=0有个解;②方程﹣|x|+2=2有个解;③若关于x的方程﹣|x|+2=a无解,则a的取值范围是.18.(2021•禹州市模拟)如图1,在菱形ABCD中,AB=5,某数学兴趣小组从函数的角度对菱形ABCD的对角线长度进行如下探究:利用几何画板,测量出以下几组值:AC 1.00 2.00 3.00 4.00 5.00 6.007.008.009.009.549.809.95 BD9.959.809.549.168.668.007.14a 4.36 3.00 2.00 1.00(1)表格中a的值为.(2)设AC的长为自变量x,BD的长是关于自变量x的函数,记为y BD,现已在图2所示的平面直角坐标系中描出了表格中各组数据的对应点(x,y BD).①画出函数y BD的图象;②请在同一平面直角坐标系中画出直线y=x,结合所绘制的函数图象,写出函数y BD的一条性质.(3)在平面直角坐标系中,将三角板(含30°角的直角三角板)按如图3所示方式放置,顶点和坐标原点重合,斜边在x轴上,画出射线OA.若OA与绘制的函数图象交于点M,则此时菱形ABCD的面积为.。

一次函数考点分类总复习(解析版)

一次函数考点分类总复习(解析版)

【期末复习】浙教版八年级上册提分专题:一次函数考点分类总复习考点一待定系数法求一次函数表达式❖一次函数的定义:形如y=kx+b(k≠0)的函数叫做一次函数;正比例函数的定义:形如y=kx(k≠0)的一次函数叫做正比例函数;☆从定义可知:1.一次函数y=kx m+b需满足的条件有两点:①m=1;②k≠0;2.正比例函数是特殊的一次函数❖待定系数法求一次函数表达式的方法:❖首先明确一次函数的图象是一条直线,具体图象的性质见下一个考点总结;直线解析式的平移口诀:左加右减(x),上加下减(整体)【类题训练】1.下列y关于x的函数关系式:①y=x;②y=;③y=﹣1;④y=﹣x+10;⑤y=+1;⑥;⑦y=2x﹣1其中是一次函数的是,是正比例函数的是【分析】根据一次函数和正比例函数的定义条件进行逐一分析即可.【解答】解:①y=x是一次函数,也是正比例函数;②y=属于二次函数;③y=﹣1不属于一次函数;④y=﹣x+10是一次函数,不是正比例函数;⑤y=+1不是一次函数;⑥是一次函数,也是正比例函数;⑦y=2x﹣1是一次函数,不是正比例函数;综上所述,是一次函数的有:①、④、⑥、⑦;是正比例函数的是:①、⑥故答案为:①、④、⑥、⑦;①、⑥2.若函数y=(m﹣2)x n﹣1+n是一次函数,则m,n应满足的条件是()A.m≠2且n=2B.m=2且n=2C.m≠2且n=0D.m=2且n=0【分析】根据一次函数的定义列出方程组解答即可.【解答】解:∵函数y=(m﹣2)x n﹣1+n是一次函数,∴,解得,.故选:A.3.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是()A.k≠2 B.k=2 C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.4.定义[p,q]为一次函数y=px+q的特征数,若特征数为[t,t+3]的一次函数为正比例函数,则这个正比例函数为.【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【解答】解:根据题意,特征数是特征数为[t,t+3]的一次函数表达式为:y=tx+(t+3).因为此一次函数为正比例函数,所以t+3=0,解得:t=﹣3.故正比例函数为y=﹣3x,故答案为:y=﹣3x.5.一次函数y=kx+b,当﹣1≤x≤1时,对应的y的值为2≤y≤8,则kb的值为()A.15B.﹣15C.﹣10或12D.15或﹣15【分析】一次函数可能是增函数也可能是减函数,应分两种情况进行讨论,根据待定系数法即可求得解析式.【解答】解:由一次函数的性质知,当k>0时,y随x的增大而增大,所以得,解得k=3,b=5.即kb=15;当k<0时,y随x的增大而减小,所以得,解得k=﹣3,b=5.即kb=﹣15.故选:D.6.若y+1与x﹣2成正比例,当x=0时,y=1;则当x=1时,y的值是()A.﹣2B.﹣1C.0D.1【分析】根据正比例的意义可设y+3=k(x﹣2),然后把已知的对应值代入求出k即可得到y与x之间的函数关系式,进而求得当x=1时,y的值.【解答】解:设y+1=k(x﹣2),把x=0,y=1代入得k•(0﹣2)=1+1,解得k=﹣1,所以y+1=﹣(x﹣2),所以y与x之间的函数关系式为y=﹣x+1,当x=1时,y=﹣1+1=0,故选:C.7.若y与z成正比例,z+1与x成正比例,且当x=1时y=1,当x=0时,y=﹣3,则y与x的函数关系式为.【分析】根据题意设y=kz,z+1=mx,将x与y的两对值代入求出k与m的值,即可确定出y与x的函数关系式.【解答】解:设y=kz,z+1=mx,即y=k(mx﹣1)=kmx﹣k,将x=1,y=l;x=0,y=﹣3代入得:,解得:,∴y=4x﹣3.故答案为:y=4x﹣3.8.将直线y=2x﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y=2x﹣4 B.y=2x+4 C.y=2x+2 D.y=2x﹣2【分析】根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【解答】解:y=2(x﹣2)﹣3+3=2x﹣4.故选:A.9.一次函数y=kx+b的图象经过点A(0,1),B(3,0),若将该图象沿着x轴向左平移2个单位,得到的直线表达式为.【分析】先将A(0,1),B(3,0)两点的坐标代入y=kx+b,运用待定系数法求出一次函数的解析式为y=﹣x+1,再根据“左加右减”的原则得出新的直线表达式.【解答】解:∵一次函数y=kx+b的图象经过点A(0,1),B(3,0),∴,解得,∴y=﹣x+1.将该图象沿着x轴向左平移2个单位,得到y=﹣(x+2)+1,即y=﹣x+.故答案是:y=﹣x+.10.将直线y=2x﹣1向上平移4个单位,平移后所得直线的解析式为.【分析】直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.【解答】解:由“上加下减”的原则可知,直线y=2x﹣1向上平移4个单位,所得直线解析式是:y=2x﹣1+4,即y=2x+3,故答案为:y=2x+3.11.函数y=﹣3x+1的图象,可以看作直线y=﹣3x向平移个单位长度而得到.【分析】根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.【解答】解:函数y=﹣3x+1的图象是由直线y=﹣3x向上平移1个单位长度得到的.故答案为:上,1.12.将直线y=﹣2x+3平移后经过原点,则平移后的解析式为.【分析】可设平移后的直线解析式为y=2x+b,把原点的坐标代入可求得b的值,则可求得平移后的解析式;【解答】解:设平移后的直线解析式为y=﹣2x+b,∵将直线y=﹣2x+3平移后经过原点,∴b=0,∴平移后的直线解析式为y=﹣2x,故答案为y=﹣2x.13.(2021•金华模拟)已知经过点(0,2)的直线y=ax+b与直线y=x+1平行,则a=,b=.【分析】相互平行的两条直线的一次项系数相等,故此a=,将a=,x=0,y=2代入y=ax+b可求得b的值.【解答】解:∵直线y=ax+b与直线y=x+1平行,∴a=.∴直线y=ax+b的解析式为y=x+b.将x=0,y=2代入得:b=2.故答案为:;2.14.在平面直角坐标系xOy中,点P绕点T(t,0)逆时针旋转60°得到点Q,我们称点Q是点P的“正影射点”.若t=,则点P1(0,3)的“正影射点”Q1的坐标是.若点P在一次函数y=x﹣上,对于任意的t值,P的“正影射点”Q都在一条直线上,则这条直线的函数表达式为.【分析】如图1,根据“正影射点“的定义,将点P1(0,3)绕点T(,0)逆时针旋转60°,根据旋转的性质即可求得“正影射点”Q1的坐标;如图2,求得直线y=x﹣与x、y轴的交点P1(1,0),P2(0,﹣),根据“正影射点“的定义将点P1、P2绕点T(0,0)逆时针旋转60°,得到Q1(,),Q2(,﹣),根据题意求得直线Q1Q2的解析式即可.【解答】解:如图1,∵点T(,0),点P1(0,3),∴OT=,OP1=3,∴tan∠P1TO==,∴∠P1TO=60°,∴P1T=2,∴点P1绕点T(,0)逆时针旋转60°得到点Q1在x轴上,且Q1T=2,∴点P1(0,3)的“正影射点”Q1的坐标是(﹣,0);如图2,∵点P在一次函数y=x﹣上,∴P1(1,0),P2(0,﹣),∴OP1=1,OP2=,根据题意设T(0,0),则Q1(,),Q2(,﹣),设直线Q1Q2的解析式为y=kx+b,∴,解得,∴直线Q1Q2的解析式为y=﹣x+,∴P的“正影射点”Q所在直线的函数表达式为y=﹣x+;故答案为:(﹣,0);y=﹣x+.考点二一次函数图象与性质❖图象的画法:(原理:两点确定一条直线)❖ 图象的性质对于任意一次函数y=kx+b (k ≠0),点A (x 1,y 1)B (x 2,y 2)在其图象上1.下列函数中:①y=-2x ; ②y=x-2; ③y=31x ; ④y=-2x+1; ⑤y=21-x-4; (1)求出各函数经过的象限① ;② ;③ ;④ ;⑤ ; (2)y 随x 的值的增大而增大的函数有: (3)y 随x 的值的增大而减小的函数有:【分析】(1)根据每个函数y=kx+b 中k 、b 的正负可以确定所过象限; (2)根据函数y=kx+b 中,k >0时,y 随x 的值的增大而增大,可以解决此题 (3)根据函数y=kx+b 中,k <0时,y 随x 的值的增大而减小,可以解决此题 【解答】解:(1)①y=-2x 中,∵-2<0,∴函数过第二、四象限 ②y=x-2中,∵1>0,-2<0,∴函数过第一、三、四象限 ③y=31x 中,∵31>0,∴函数过第一、三象限 ④y=-2x+1中,∵-2<0,1>0,∴函数过第一、二、四象限 ⑤y=21-x-4中,∵21-<0,-4<0,∴函数过第二、三、四象限 故答案为:①第二、四象限;②第一、三、四象限;③第一、三象限;④第一、二、四象限;⑤第二、三、四象限;(2)函数y=kx+b中,k>0时,y随x的值的增大而增大,所以,函数②③符合题意故答案为:②③(3)函数y=kx+b中,k<0时,y随x的值的增大而减小,所以,函数①④⑤符合题意故答案为:①④⑤2.下列各点中在函数的图象上的是()A.(3,﹣2)B.(,3)C.(﹣4,1)D.(5,)【分析】将选项中的坐标代入已知函数的解析式中,能使左右两边相等的即为正确选项.【解答】解:∵当x=3时,y=×3+3≠﹣2,∴点(3,﹣2)不在函数的图象上;∵当x=时,y=×+3≠3,∴点(,3)不在函数的图象上;∵当x=﹣4时,y=×(﹣4)+3=1,∴点(﹣4,1)在函数的图象上;∵当x=5时,y=×5+3≠,∴点(5,)不在函数的图象上.综上,在函数的图象上的点是(﹣4,1).故选:C.3.关于一次函数y=3x﹣1的描述,下列说法正确的是()A.图象经过第一、二、三象限B.函数的图象与x轴的交点坐标是(0,﹣1)C.向下平移 1个单位,可得到y=3xD.图象经过点(1,2)【分析】A:根据k>0,b<0,判断一次函数经过的象限;B:令y=0,x=,判断与x轴的交点;C:一次函数y=3x﹣1向下平移1个单位,可得到y=3x;D:把x=1代入y=3x﹣1得y=2.【解答】解:A:∵一次函数y=3x﹣1,k=3>0,∴一次函数经过一、三象限,∵b=﹣1,∴一次函数交y轴的负半轴,∴一次函数y=3x﹣1经过一、三、四象限,故A错误;B:令y=0,x=,∴函数的图象与x轴的交点坐标是(,0),故B错误;C:一次函数y=3x﹣1向下平移1个单位,可得到y=3x,故C错误;D:把x=1代入y=3x﹣1得y=2,∴图象经过(1,2),故D正确.故选:D.4.若一次函数y=(k﹣3)x+8的图象经过第一、二、四象限,则k的取值范围是()A.k>0B.k<0C.k>3D.k<3【分析】根据一次函数的性质得出k﹣3<0即可求解.【解答】解:y=(k﹣3)x+8的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;故选:D.5.如图,直线y=kx+b,与y轴交于点(0,3)与x轴交于点(a,0)当﹣2≤a<0时,k的取值范围是()A.﹣1≤k<0B.1≤k≤3C.k≥3D.k≥【分析】把点的坐标代入直线方程得到a=﹣,然后将其代入不等式组﹣3≤a<0,通过不等式的性质来求k 的取值范围.【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=﹣.∵﹣2≤a<0,∴﹣2≤﹣<0,解得:k≥.故选:D.6.已知一次函数y=kx+b(k,b是常数,k≠0)若|k|<|b|,则它的图象可能是()A.B.C.D.【分析】由|k|<|b|可知﹣>1或﹣<﹣1,即可判断直线y=kx+b(k,b是常数,k≠0)与x轴的交点在(1,0)的右边或在(﹣1,0)的左边,观察四个选项即可得出结论.【解答】解:∵|k|<|b|,∴||>1,∴﹣>1或﹣<﹣1,∴直线y=kx+b(k,b是常数,k≠0)与x轴的交点在(1,0)的右边或在(﹣1,0)的左边.故选:D.7.一次函数y1=ax+b与y2=bx+a在同一直角坐标系中的图象可能式()A.B.C.D.【分析】先由一次函数y1=ax+b图象得到字母系数的符号,再与一次函数y2=bx+a的图象相比较看是否一致.【解答】解:A、∵一次函数y1=ax+b的图象经过一、二、三象限,∴a>0,b>0;∴一次函数y2=bx+a图象应该经过一、二、三象限,故不符合题意;B、∵一次函数y1=ax+b的图象经过一、三、四象限,∴a>0,b<0;∴一次函数y2=bx+a图象应该经过一、二、四象限,故符合题意;C、∵一次函数y1=ax+b的图象经过一、二、四象限,∴a<0,b>0;∴一次函数y2=bx+a图象应该经过一、三、四象限,故不符合题意;D、∵一次函数y1=ax+b的图象经过一、二、四象限,∴a<0,b>0;∴一次函数y2=bx+a图象应该经过一、三、四象限,故不符合题意;故选:B.8.如果一次函数y=kx+b(k≠0)的图象经过第二象限,且与y轴的负半轴相交,那么()A.k>0,b<0 B.k>0,b>0 C.k<0,b>0 D.k<0,b<0【分析】由一次函数图象经过第二象限及一次函数图象与y轴的负半轴相交,可得出一次函数y=kx+b(k≠0)的图象经过第二、三、四象限,再利用一次函数图象与系数的关系,可得出k<0,b<0.【解答】解:依题意可知:一次函数y=kx+b(k≠0)的图象经过第二、三、四象限,∴k<0,b<0.故选:D.9.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1(k1≠0)与y2=k2x+b2(k2≠0)的图象分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图象位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图象过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图象过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.10.一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过第一,二,三象限,同负时过二,三,四象限,y=mnx 过原点,一、三象限;②当mn<0时,m,n异号,则y=mx+n过一,三,四象限或一,二,四象限,y=mnx过原点,二、四象限.解法二:本题还可用矛盾分析法来解决A、一次函数m>0,n>0;正比例mn<0,与一次矛盾.B、一次m>0,n<O;正比例mn>0,与一次矛盾.C、一次m>0,n<0,正比例mn<0,成立.D、一次m<0,n>0,正比例mn>0,矛盾.故选:C.11.一次函数y=(m﹣6)x+5中,y随x的增大而减小,则m的取值范围是.【分析】先根据一次函数的增减性判断出(m﹣6)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣6)x+5中,y的值随x值的增大而减小,∴m﹣6<0,∴m<6.故答案为:m<6.12.直线y=﹣2x+b上有三个点(,y1),(﹣1.5,y2),(1.3,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y2>y1>y3D.y2<y1<y3【分析】利用一次函数y=﹣2x+b的性质,当﹣2<0时,y随x的增大而减小,通过比较横坐标x的大小,即可得到对应y值的大小.【解答】解:∵﹣2<0,∴一次函数y=﹣2x+b中y随x的增大而减小,∵﹣1.5<﹣<1.3,∴y2>y1>y3.故选:C.13.在下列叙述中:①正比例函数y=2x的图象经过二、四象限;②一次函数y=2x﹣3中,y随x的增大而减小;③函数y=3x+1中,当x=﹣1时,函数值y=﹣2;④一次函数y=x+1的自变量x的取值范围是全体实数.正确的个数有()A.1个B.2个C.3个D.4个【分析】①利用正比例函数的性质判断即可;②利用一次函数的性质判断即可;③将x=﹣1代入y=3x+1中,计算即可;④利用一次函数的性质判断即可.【解答】解:①正比例函数y=2x的图象经过一、三象限,故①错误;②一次函数y=2x﹣3中,y随x的增大而增大,故②错误;③函数y=3x+1中,当x=﹣1时,函数值为y=﹣2,故③正确;④一次函数y=x+1的自变量x的取值范围是全体实数,故④正确.则正确的个数为2个.故选:B.14.无论m取任何实数,一次函数y=(m﹣1)x+m必过一定点,此定点坐标为【分析】解析式变形为m(x+1)﹣x﹣y=0,令,解得即可.【解答】解:由一次函数变形为m(x+1)﹣x﹣y=0,令,解得,故一次函数y=(m﹣1)x+m必过一定点(﹣1,1).故答案为:(﹣1,1).15.已知点A(1,y1)和点B(a,y2)在一次函数y=﹣2x+b的图象上,且y1>y2,则a的值可能是()A.2 B.0 C.﹣1 D.﹣2【分析】根据一次函数的性质说明函数的递增情况,确定a的取值范围,再从选项中确定正确的结果.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,∵y1>y2,∴1<a.∴a的值可能是2,故选:A.考点三一次函数与方程(组)、不等式(组)的关系1.一次函数y=﹣3x+6的图象与x轴的交点坐标是()A.(2,0)B.(6,0)C.(﹣3,0)D.(0,6)【分析】令y=0,可求得与x轴交点横坐标,进而求出与x轴交点坐标.【解答】解:把y=0代入y=﹣3x+6得,x=2,∴图象与x轴的交点坐标为(2,0).故选:A.2.若直线y=4x+4与x轴交于点A,与y轴交于点B,则△AOB的面积是()A.2 B.4 C.11 D.5【分析】利用函数的解析式求得点A,B的坐标,进而得出线段OA,OB的长度,利用三角形的面积公式即可得出结论.【解答】解:当y=0时,4x+4=0,解得:x=﹣1,∴点A的坐标为(﹣1,0).∴OA=1.当x=0时,y=4x+4=4,∴点B的坐标为(0,4),∴OB=4.∴S△AOB=OA•OB=×1×4=2.故选:A.3.若一次函数y=kx+b (k≠0)的图象经过(4,0)和(3,2)两点,则方程kx+b=4的解为()A.x=0 B.x=2 C.x=3 D.x=5【分析】先求出函数的解析式,再把y=4代入,即可求出x.【解答】解:把(4,0)和(3,2)代入y=kx+b得:,解得:,即y=﹣2x+8,当y=4时,﹣2x+8=4,解得:x=2,∴方程kx+b=4的解为x=2,故选:B.4.如图,直线y=x+5和直线y=ax+b相交于点P(20,25),根据图象可知,方程x+5=ax+b的解是()A.x=20 B.x=5 C.x=25 D.x=15【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25),∴方程x+5=ax+b的解为x=20.故选:A.5.已知直线y=mx+n(m,n为常数)经过点(0,﹣2)和(3,0),则关于x的方程mx+n=0的解为()A.x=0 B.x=1 C.x=﹣2 D.x=3【分析】直线y=mx+n与x轴的交点横坐标的值即为方程mx+n=0的解.【解答】解:∵直线y=mx+n(m,n为常数)经过点(3,0),∴当y=0时,x=3,∴关于x的方程mx+n=0的解为x=3.故选:D.6.若x=2是关于x的方程mx+n=0(m≠0,n>0)的解,则一次函数y=﹣m(x﹣1)﹣n的图象与x轴的交点坐标是()A.(2,0)B.(3,0)C.(0,2)D.(0,3)【分析】直线y=mx+n与x轴的交点的横坐标就是函数值为0时的方程的解,根据题意得到一次函数y=mx+n 的图象与x轴的交点为(2,0),进而得到一次函数y=﹣mx﹣n的图象与x轴的交点为(2,0),由于一次函数y=﹣mx﹣n的图象向右平移一个单位得到y=﹣m(x﹣1)﹣n,即可求得一次函数y=﹣m(x﹣1)﹣n的图象与x轴的交点坐标.【解答】解:∵方程的解为x=2,∴当x=2时mx+n=0;∴一次函数y=mx+n的图象与x轴的交点为(2,0),∴一次函数y=﹣mx﹣n的图象与x轴的交点为(2,0),∵一次函数y=﹣mx﹣n的图象向右平移一个单位得到y=﹣m(x﹣1)﹣n,∴一次函数y=﹣m(x﹣1)﹣n的图象与x轴的交点坐标是(3,0),故选:B.7.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b<0;③x=﹣2是方程3x+b=ax﹣2的解,其中正确的个数是()A.0 B.1 C.2 D.3【分析】根据一次函数的图象和性质可得a>0;b>0;直线y=3x+b与直线y=ax﹣2交点的横坐标为x=﹣2,即方程3x+b=ax﹣2的解为x=﹣2.【解答】解:由图象可知,a>0,b>0,故①正确,②错误;当x=﹣2时,直线y=3x+b与直线y=ax﹣2相交,即方程3x+b=ax﹣2的解为x=﹣2,故③正确;故选:C.8.下表是一次函数y=kx+b(k≠0)的部分自变量和相应的函数值,方程kx+b=0的解x0所在的范围是()x﹣2 ﹣1 0 1 2y﹣3 ﹣1 1 3 5 A.﹣2<x0<﹣1 B.﹣1<x0<0 C.0<x0<1 D.1<x0<2【分析】由表格知当x=﹣1时,y=﹣1;当x=0时,y=1,即可得出y=0时,对应的x的取值即可.【解答】解:由题知,当x=﹣1时,y=﹣1;当x=0时,y=1,∴方程kx+b=0的解x0所在的范围是﹣1<x<0,故选:B.9.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集为()A.x>2B.x<2C.x>﹣1D.x<﹣1【分析】观察函数图象得到当x<﹣1时,直线y1=x+m都在直线y2=kx﹣1下方,即x+m<kx﹣1.【解答】解:根据题意得当x<﹣1时,y1<y2,所以不等式x+m<kx﹣1的解集为x<﹣1.故选:D.10.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(2,c),则关于x的不等式组的解集为()A.x<5 B.1<x<5 C.﹣2<x<5 D.x<﹣2【分析】y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,即可求解.【解答】解:y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,关于x的不等式组的解集为:x<﹣2,故选:D.11.一次函数y1=ax+b与y2=cx+d的图象如图所示,下列说法:①对于函数y1=ax+b来说,y随x的增大而增大;②函数y=ax+d不经过第二象限;③不等式ax﹣d≥cx﹣b的解集是x≥4;④a﹣c=(d﹣b),其中正确的是()A.①②③B.①③④C.②③④D.①②④【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否成立,从而可以解答本题.【解答】解:由图象可得,对于函数y=ax+b来说,y随x的增大而增大,故①正确;a>0,d>0,则函数y=ax+d经过第一、二、三象限,不经过第四象限,故②不正确;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;4a+b=4c+d可以得到a﹣c=(d﹣b),故④正确;故选:B.12.一次函数y=3x﹣2与y=2x+b的图象的交点为P(2,4),则二元一次方程组的解和b的值分别是()A.,b=﹣6 B.,b=0C.,b=0 D.,b=﹣6【分析】直接根据一次函数和二元一次方程组的关系求解.【解答】解:∵一次函数y=3x﹣2与y=2x+b的图象的交点为P(2,4),∴二元一次方程组的解是,将点P(2,4)的坐标代y=2x+b,得b=0,故选:C.13.一次函数y=ax+b与y=mx+n的图象在同一平面直角坐标系中的位置如图所示,一位同学根据图象写出以下信息:①ab<mn;②不等式mx+n≥ax+b的解集是x≤1;③方程组的解是.其中信息正确的有()A.3个B.2个C.1个D.0个【分析】根据两直线经过的象限判断系数的符号即可判断①;直线y=ax+b在y=mx+n下方的部分对应的x的取值范围就是不等式mx+n≥ax+b的解集,由此判断②;直线y=ax+b在y=mx+n的交点坐标就是方程组的解,由此判断③.【解答】解:如图,∵直线y=ax+b经过一、二、三象限,∴a>0,b>0,∴ab>0∵直线y=mx+n经过一、二、四象限,∴m<0,n>0,∴mn<0,∴ab>mn,故①错误;∵当x≤1时,直线y=ax+b在y=mx+n下方,∴不等式mx+n≥ax+b的解集是x≤1,故②正确;∵直线y=ax+b与y=mx+n的交点坐标为(1,3),∴方程组的解是,故③正确.故选:B.14.一般地,在平面直角坐标系中,任何一个二元一次方程对应的图象都是一条直线.已知如图过第一象限上A点的直线是方程x﹣y=b(b<﹣1)的图象,若点A的坐标恰为关于x,y的二元一次方程组的解,则a 的值可能是()A.﹣1B.0C.1D.2【分析】根据点A的位置可知方程组中x的值x>0,解方程组求得x=﹣>0,由b<﹣1,得出﹣(b ﹣1)>0,即可得出a﹣1>0,解得a>1.【解答】解:∵点A在第一象限,∴x>0,,②﹣①得(a﹣1)x=﹣(b﹣1),∴x=﹣>0,∵b<﹣1,∴﹣(b﹣1)>0,∴a﹣1>0,∴a>1,故选:D.15.直线y=mx+b与y=kx在同一平面直角坐标系中的图象如图所示,则方程组的解为,关于x的不等式mx+b<kx<0的解集为.【分析】根据图象可得,直线y=mx+b与y=kx的交点坐标为:(﹣1,﹣3),所以当x>﹣1时,直线y=mx+b,落在直线y=kx的下方,可得关于x的不等式mx+b<kx.即可得结论.【解答】解:根据图象可知:直线y=mx+b与y=kx的交点坐标为:(﹣1,﹣3),则方程组的解为:;则关于x的不等式mx+b<kx<0的解集为﹣1<x<0,故答案为:;﹣1<x<0.16.如图,直线y1=kx+b与直线y2=﹣x+5交于点(1,m),则关于x的不等式组0<y2<y1的整数解有()A.2个B.3个C.4个D.无数个【分析】根据一次函数与一元一次不等式的关系解决此题.【解答】解:当y=0,﹣x+5=0.∴x=5.由图可知,当0<y2<y1,则5>x>1.∴关于x的不等式组0<y2<y1的整数解有2、3、4,共3个.故选:B.17.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则下列结论:①m<0,n>0;②直线y=nx+4n 一定经过点(﹣4,0);③m与n满足m=2n﹣2;④当x>﹣2时,(n+1)x<m﹣4n,其中正确的有(填所有正确的序号).【分析】①由直线y=﹣x+m与y轴交于负半轴,可得m<0;y=nx+4n(n≠0)的图象从左往右逐渐上升,可得n>0,即可判断结论①正确;②将x=﹣4代入y=nx+4n,求出y=0,即可判断结论②正确;③将x=﹣2代入两解析式由纵坐标相等,即可判断结论③正确;④观察函数图象,可知当x>﹣2时,直线y=nx+4n在直线y=﹣x+m的上方,即nx+4n>﹣x+m,即可判断结论④错误.【解答】解:①∵直线y=﹣x+m与y轴交于负半轴,∴m<0;∵y=nx+4n(n≠0)的图象从左往右逐渐上升,∴n>0,故结论①正确;②将x=﹣4代入y=nx+4n,得y=﹣4n+4n=0,∴直线y=nx+4n一定经过点(﹣4,0).故结论②正确;③∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,∴当x=﹣2时,y=2+m=﹣2n+4n,∴m=2n﹣2.故结论③正确;④∵当x>﹣2时,直线y=nx+4n在直线y=﹣x+m的上方,∴当x>﹣2时,nx+4n>﹣x+m,即(n+1)x>m﹣4n,故结论④错误,故答案为:①②③.18.如图,已知直线l1:y=kx+b与直线l2:y=−x+m都经过C(﹣,),直线l1交y轴于点B(0,4),交x 轴于点A,直线l2交y轴于点D,P为y轴上任意一点,连接P A、PC,以下说法错误的是()A.△ABD的面积为3B.当P A+PC的值最小时,点P的坐标为(0,2)C.△BCD为直角三角形D.方程组的解为【分析】求得BD和AO的长,根据三角形面积计算公式,即可得到△ABD的面积;根据轴对称的性质以及两点之间,线段最短,即可得到当P A+PC的值最小时,点P的坐标为(0,1);利用勾股定理的逆定理进行判断;根据一次函数图象与二元一次方程的关系,利用交点坐标可得方程组的解.【解答】解:A、把B(0,4),C(﹣,)代入直线l1:y=kx+b,可得,解得,∴直线l1:y=2x+4,令y=0,则x=﹣2,∴A(﹣2,0),∴AO=2.把C(﹣,)代入直线l2:y=﹣x+m,可得﹣×(﹣)+m=,解得m=1,∴直线l2:y=﹣x+1,令x=0,则y=1,∴D(0,1),∴BD=4﹣1=3,∴S△ABD=BD•AO=×3×2=3,故本选项正确,不符合题意;B、点A关于y轴对称的点为A'(2,0),由点C、A′的坐标得,直线CA′的表达式为:y=﹣x+1,令x=0,则y=1,∴当P A+PC的值最小时,点P的坐标为(0,1),故本选项错误,符合题意;C、∵B(0,4),C(﹣,),D(0,1),∴BC2=(0+)2+(4﹣)2=,CD2=(0+)2+(1﹣)2=,BD2=(1﹣4)2=9,∴BC2+CD2=BD2,∴△BCD为直角三角形,故本选项正确,不符合题意;D、∵直线l1:y=kx+b与直线l2:y=−x+m都经过C(﹣,),∴方程组的解为,故本选项正确,不符合题意.故选:B.19.已知一次函数y1=mx﹣2m+4(m≠0).(1)判断点(2,4)是否在该一次函数的图象上,并说明理由;(2)若一次函数y2=﹣x+6,当m>0,试比较函数值y1与y2的大小;(3)函数y1随x的增大而减小,且与y轴交于点A,若点A到坐标原点的距离小于6,点B,C的坐标分别为(0,﹣2),(2,1).求△ABC面积的取值范围.【分析】(1)把点(2,4)代入解析式即可判断;(2)求得两直线的交点为(2,4),根据一次函数的性质即可比较函数值y1与y2的大小;(3)根据题意求得A的坐标,然后根据三角形面积公式即可求得.【解答】解:(1)把x=2代入y1=mx﹣2m+4得,y1=2m﹣2m+4=4,∴点(2,4)在该一次函数的图象上;(2)∵一次函数y2=﹣x+6的图象经过点(2,4),点(2,4)在一次函数y1=mx﹣2m+4的图象上,∴一次函数y2=﹣x+6的图象与函数y1=mx﹣2m+4的图象的交点为(2,4),∵y2随x的增大而减小,y1随x的增大而增大,∴当x>2时,y1>y2;当x=2时,y1=y2;当x<2时,y1<y2;(3)由题意可知,﹣2m+4=±6且m<0,∴m=﹣1,∴A(0,6),∵点B,C的坐标分别为(0,﹣2),(2,1).∴AB=8,∵=8,∴6<S△ABC<8.20.如图,过点B(1,0)的直线l1:y1=kx+b与直线l2:y2=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式.(2)不等式y1≥y2的解集为;(直接写出答案)(3)求四边形PAOC的面积.【分析】(1)由点P(﹣1,a)在直线l2上,利用一次函数图象上点的坐标特征,即可求出a值,再利用点P 的坐标和点B的坐标可求直线l1的解析式;(2)不等式y1≥y2即y=kx+b的函数值不小于2x+4的函数值,观察函数图象得到当x≤﹣1时满足条件;(3)根据S四边形PAOC=S△PAB﹣S△BOC可得结论.【解答】解:(1)∵点P(﹣1,a)在直线l2:y2=2x+4上,∴a=2×(﹣1)+4=2,则P的坐标为(﹣1,2),∵直线l1:y1=kx+b过点B(1,0),P(﹣1,2),∴,解得.∴直线l1的解析式为:y=﹣x+1;(2)不等式y1≥y2的解集为x≤﹣1.故答案为:x≤﹣1;(3)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(﹣2,0),∴AB=3,∴S四边形PAOC=S△PAB﹣S△BOC=×3×2−×1×1=3﹣=.21.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过点A(﹣2,4),且与正比例函数的图象交于点B(a,2).(1)求a的值及△ABO的面积;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式的解集.【分析】(1)先确定B的坐标,然后根据待定系数法求一次函数解析式,可得C(﹣4,0),根据S△ABO=S△ACO ﹣S△BCO即可求解;(2)根据题意求得平移后的直线的解析式,把C的坐标代入平移后的直线的解析式,即可求得m的值;(3)找出直线y=﹣x落在直线y=kx+b上方的部分对应的自变量的取值范围即可.【解答】解:(1)∵正比例函数y=﹣x的图象经过点B(a,2),∴2=﹣a,解得,a=﹣3,∴B(﹣3,2),∵一次函数y=kx+b的图象经过点A(﹣2,4),B(﹣3,2),∴,解得,∴一次函数y=kx+b的解析式为y=2x+8,∵一次函数y=2x+8的图象与x轴交于点C,则2x+8=0,解得x=﹣4,∴C(﹣4,0),∴S△ABO=S△ACO﹣S△BCO=×4×4﹣×4×2=4;(2)∵正比例函数y=﹣x的图象向下平移m(m>0)个单位长度后经过点C,∴平移后的函数的解析式为y=﹣x﹣m,∴0=﹣×(﹣4)﹣m,解得m=;(3)∵一次函数y=kx+b与正比例函数y=﹣x的图象交于点B(﹣3,2),∴根据图象可知﹣x>kx+b的解集为:x<﹣3.考点四一次函数的实际应用❖一次函数与行程问题方法总结:1.图象问题首先确定x轴、y轴的具体意义,其次找拐点;2.图象中的拐点一般指行程形式的改变,如从行进到停止、从停止再出发等;3.行程问题中,函数图象的表示式中的|k|通常等于速度;4.甲乙相距a㎞的问题中,甲在乙的前方a㎞,等价函数关系式为:y甲-y乙=a㎞;乙在甲的前方a㎞,等价函数关系式为:y乙-y甲=a㎞;另外,注意题目中是否有谁晚出发几小时,因为早出发的人离出发地a㎞,使两人相距a㎞;或者谁先到目的地后,因为另一个人离目的地a㎞,使两人相距a㎞;❖一次函数与几何图形结合问题要点提示:1.首先明确x轴、y轴的具体意义2.其次注意拐点的意义3.一次函数与谁结合,多注意所结合图形的特殊性质的应用。

专题12 一次函数(归纳与讲解)(解析版)

专题12 一次函数(归纳与讲解)(解析版)

专题12 一次函数【专题目录】技巧1:一次函数常见的四类易错题技巧2:一次函数的两种常见应用技巧3:一次函数与二元一次方程(组)的四种常见应用【题型】一、正比例函数的定义【题型】二、正比例函数的图像与性质【题型】三、一次函数的定义求参数【题型】四、一次函数的图像【题型】五、一次函数的性质【题型】六、求一次函数解析式【题型】七、一次函数与一元一次方程【题型】八、一次函数与一元一次不等式【题型】九、一次函数与二元一次方程(组)【题型】十、一次函数的实际应用【考纲要求】1、理解一次函数的概念,会画一次函数的图象,掌握一次函数的基本性质.2、会求一次函数解析式,并能用一次函数解决实际问题.【考点总结】一、一次函数和正比例函数的定义【考点总结】二、一次函数的图象与性质【注意】1、确定一次函数表达式用待定系数法求一次函数表达式的一般步骤:(1)由题意设出函数的关系式;(2)根据图象所过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组;(3)解关于待定系数的方程或方程组,求出待定系数的值;(4)将求出的待定系数代回到原来设的函数关系式中即可求出.2、y=kx+b与kx+b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x 轴交点的横坐标.3、y=kx+b与不等式kx+b>0从函数值的角度看,不等式kx+b>0的解集为使函数值大于零(即kx+b>0)的x的取值范围;从图象的角度看,由于一次函数的图象在x轴上方时,y>0,因此kx+b>0的解集为一次函数在x 轴上方的图象所对应的x的取值范围.4、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【技巧归纳】技巧1:一次函数常见的四类易错题【类型】一、忽视函数定义中的隐含条件而致错1.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值. 2.已知关于x 的函数y =kx-2k +3-x +5是一次函数,求k 的值.【类型】二、忽视分类或分类不全而致错3.已知一次函数y =kx +4的图像与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式. 4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值. 5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值. 【类型】三、忽视自变量的取值范围而致错6.若等腰三角形的周长是80 cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图像是( )7.若函数y =⎩⎪⎨⎪⎧x 2+6(x≤3),5x (x>3),则当y =20时,自变量x 的值是( )A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书本数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围. 【类型】四、忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是( )A .m<0B .m>0C .m<2D .m>210.下列各图中,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 是常数,且mn≠0)的大致图像的是( )11.若一次函数y =kx +b 的图像不经过第三象限,则k ,b 的取值范围分别为k________0,b________0. 参考答案1.解:因为关于x 的函数y =(m +3)x |m +2|是正比例函数,所以m +3≠0且|m +2|=1, 解得m =-1.2.解:若关于x 的函数y =kx-2k +3-x +5是一次函数,则有以下三种情况:①-2k +3=1,解得k =1, 当k =1时,函数y =kx -2k +3-x +5可化简为y =5,不是一次函数.②x-2k +3的系数为0,即k =0,则原函数化简为y =-x +5,是一次函数,所以k =0.③-2k +3=0,解得k =32,原函数化简为y =-x +132,是一次函数,所以k =32.综上可知,k 的值为0或32.3.解:设函数y =kx +4的图像与x 轴、y 轴的交点分别为A ,B ,坐标原点为O.当x =0时,y =4,所以点B 的坐标为(0,4).所以OB =4.因为S △AOB =12OA·OB =16,所以OA =8.所以点A 的坐标为(8,0)或(-8,0).把(8,0)代入y =kx +4,得0=8k +4,解得k =-12.把(-8,0)代入y =kx +4,得0=-8k +4,解得k =12.所以这个一次函数的表达式为y =-12x +4或y =12x +4.4.解:①若k>0,则y 随x 的增大而增大,则当x =1时y =9,即k +b =9. ②若k<0,则y 随x 的增大而减小, 则当x =1时y =1,即k +b =1. 综上可知,k +b 的值为9或1. 5.解:因为点P 到x 轴的距离为4,所以|a|=4,所以a =±4,当a =4时,P(2,4), 此时4=-2+m ,解得m =6. 当a =-4时,同理可得m =-2. 综上可知,m 的值为-2或6.6.D 7.D8.解:余下的图书本数y(本)与学生人数x(人)之间的函数表达式为y =450-9x ,自变量x 的取值范围是0≤x≤50,且x 为整数. 9.D 10.A 11.<;≥技巧2:一次函数的两种常见应用 【类型】一、利用一次函数解决实际问题 题型1:行程问题1.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距离y(km )与甲车行驶的时间t(h )之间的函数关系如图所示,则下列结论:①A ,B 两城相距300 km ;②乙车比甲车晚出发1 h ,却早到1 h ; ③乙车出发后2.5 h 追上甲车;④当甲、乙两车相距50 km 时,t =54或154.其中正确的结论有( )A .1个B .2个C .3个D .4个2.甲、乙两地相距300 km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y(km )与时间x(h )之间的函数关系,折线BCDE 表示轿车离甲地的距离y(km )与时间x(h )之间的函数关系,根据图像,解答下列问题:(1)线段CD 表示轿车在途中停留了________h ; (2)求线段DE 对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.题型2:工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h )之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?题型3:实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.【类型】二、利用一次函数解决几何问题题型4:利用图像解几何问题6.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D 运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P 在CD 上运动时S 与t 之间的函数表达式; (3)当t 为何值时,△APD 的面积为10 cm 2?题型5:利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD 中,AB =3,BC =4,动点P 从点A 开始按A→B→C→D 的方向运动到点D.如图,设动点P 所经过的路程为x ,△APD 的面积为y.(当点P 与点A 或D 重合时,y =0)(1)写出y 与x 之间的函数表达式; (2)画出此函数的图像.参考答案 1.B 2.解:(1)0.5(2)设线段DE 对应的函数表达式为y =kx +b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y =kx +b 可得⎩⎪⎨⎪⎧80=2.5k +b ,300=4.5k +b.解得⎩⎪⎨⎪⎧k =110,b =-195.所以y =110x -195(2.5≤x≤4.5).(3)设线段OA 对应的函数表达式为y =k 1x(0≤x≤5). 将A(5,300)的坐标代入y =k 1x 可得300=5k 1, 解得k 1=60.所以y =60x(0≤x≤5). 令60x =110x -195,解得x =3.9.故轿车从甲地出发后经过3.9-1=2.9(h )追上货车.3.解:(1)设甲组加工零件的数量y 与时间x 之间的函数表达式为y =kx ,因为当x =6时,y =360,所以k =60,即甲组加工零件的数量y 与时间x 之间的函数表达式为y =60x(0≤x≤6). (2)a =100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8 h 时共加工零件100+60×2.8=268(件), 所以装满第1箱的时刻在2.8 h 后. 设经过x 1 h 恰好装满第1箱.则60x 1+100÷2×2(x 1-2.8)+100=300,解得x 1=3.从x =3到x =4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件), 所以x>4.8时,才能装满第2箱,此时只有甲组继续加工. 设装满第1箱后再经过x 2 h 装满第2箱. 则60x 2+(4.8-3)×100÷2×2=300,解得x 2=2.故经过3 h 恰好装满第1箱,再经过2 h 恰好装满第2箱. 4.解:(1)y 甲=477x ,y 乙=⎩⎪⎨⎪⎧530x (0≤x≤3),424x +318(x >3).(2)当477x =424x +318时, 解得x =6,即当x =6时,到甲、乙两个商场购买所需费用相同; 当477x<424x +318时,解得x<6,又x≥4,于是当4≤x <6时,到甲商场购买合算; 当477x>424x +318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x≤10时,y =1.5x.当x =8时,y =1.5×8=12. 故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数表达式为y =2x -5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题. 6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD =12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数表达式为S =90-6t(12≤t≤15).(3)当0≤t≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t≤15时,S =90-6t ,将S =10代入,得90-6t =10,解得t =403.所以当t 为103或403时,△APD 的面积为10 cm 2.7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P 在边AB 上运动,即0≤x <3时, y =12×4x =2x ; ②当点P 在边BC 上运动,即3≤x <7时, y =12×4×3=6; ③当点P 在边CD 上运动,即7≤x≤10时, y =12×4(10-x)=-2x +20. 所以y 与x 之间的函数表达式为 y =⎩⎪⎨⎪⎧2x (0≤x <3),6 (3≤x <7),-2x +20 (7≤x≤10). (2)函数图像如图所示.点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.技巧3:一次函数与二元一次方程(组)的四种常见应用 【类型】一、利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2如图所示,则方程组⎩⎪⎨⎪⎧y =-x +4,y =x +2的解为( )A .⎩⎪⎨⎪⎧x =3y =1B .⎩⎪⎨⎪⎧x =1y =3C .⎩⎪⎨⎪⎧x =0y =4D .⎩⎪⎨⎪⎧x =4y =02.已知直线y =2x 与y =-x +b 的交点坐标为(1,a),试确定方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图像如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图像;(2)用作图像的方法解方程组⎩⎪⎨⎪⎧x +y =4,2x -y =5;(3)求一次函数y =-x +4与y =2x -5的图像与x 轴所围成的三角形的面积.【类型】二、利用方程(组)的解求两直线的交点坐标4.已知方程组⎩⎪⎨⎪⎧-mx +y =n ,ex +y =f 的解为⎩⎪⎨⎪⎧x =4,y =6,则直线y =mx +n 与y =-ex +f 的交点坐标为( ) A .(4,6) B .(-4,6) C .(4,-6) D .(-4,-6)5.已知⎩⎪⎨⎪⎧x =3,y =-2和⎩⎪⎨⎪⎧x =2,y =1是二元一次方程ax +by =-3的两组解,则一次函数y =a x +b 的图像与y轴的交点坐标是( )A .(0,-7)B .(0,4)C .⎝⎛⎭⎫0,-37D .⎝⎛⎭⎫-37,0 【类型】三、方程组的解与两个一次函数图像位置的关系6.若方程组⎩⎪⎨⎪⎧x +y =2,2x +2y =3没有解,则一次函数y =2-x 与y =32-x 的图像必定( )A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 2有唯一交点,则二元一次方程组⎩⎪⎨⎪⎧a 1x +y =b 1,a 2x -y =-b 2的解的情况是( )A .无解B .有唯一解C .有两个解D .有无数解 【类型】四、利用二元一次方程组求一次函数的表达式8.已知一次函数y =kx +b 的图像经过点A(1,-1)和B(-1,3),求这个一次函数的表达式. 9.已知一次函数y =kx +b 的图像经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数表达式;(2)求直线AB 与坐标轴所围成的△BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.参考答案 1.B2.解:将(1,a)代入y =2x ,得a =2.所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解是⎩⎪⎨⎪⎧x =1,y =2.将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3. 3.解:(1)画函数y =2x -5的图像如图所示.(2)由图像看出两直线的交点坐标为(3,1),所以方程组的解为⎩⎪⎨⎪⎧x =3,y =1.(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 轴的交点坐标为⎝⎛⎭⎫52,0,又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×⎝⎛⎭⎫4-52×1=34. 4.A5.C6.B7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =-1,-k +b =3,解得⎩⎪⎨⎪⎧k =-2,b =1.所以这个一次函数的表达式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图像与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以B ⎝⎛⎭⎫34,0, 把A(3,-3),B ⎝⎛⎭⎫34,0的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧3k +b =-3,34k +b =0,解得⎩⎪⎨⎪⎧k =-43,b =1. 则直线AB 对应的函数表达式为y =-43x +1.(2)由(1)知直线AB 对应的函数表达式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1), 所以OC =1,又B ⎝⎛⎭⎫34,0,所以OB =34.所以S △BOC =12OB·OC =12×34×1=38.即直线AB 与坐标轴所围成的△BOC 的面积为38.【题型讲解】【题型】一、正比例函数的定义例1、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为_______. 【答案】m=﹣3 【解析】∵y=(m ﹣3)x+m 2﹣9是正比例函数, ∵29030m m -⎧⎨-≠⎩=解得m=-3. 故答案是:-3.【题型】二、正比例函数的图像与性质 例2、若正比例函数12y x =经过两点(1,1y )和(2,2y ),则1y 和2y 的大小关系为( ) A .12y y < B .12y y >C .12y y =D .无法确定【答案】A【分析】分别把点(1,1y ),点(2,2y )代入函数12y x =,求出点1y ,2y 的值,并比较出其大小即可.【详解】∵点(1,1y ),点(2,2y )是函数12y x =图象上的点, ∵112y =,21y =, ∵112<, ∵12y y <. 故选:A .【题型】三、一次函数的定义求参数例3、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可. 【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小, ∵k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【题型】四、一次函数的图像例4、若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可. 【详解】解:∵m <﹣2, ∵m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限, 故选:D .【题型】五、一次函数的性质例5、设k 0<,关于x 的一次函数2y kx =+,当12x ≤≤时的最大值是( ) A .2k + B .22k +C .22k -D .2k -【答案】A【分析】利用一次函数的性质可得当x=1时,y 最大,然后可得答案. 【详解】∵一次函数2y kx =+中0k <, ∵y 随x 的增大而减小, ∵12x ≤≤,∵当1x =时,122y k k =⨯+=+最大, 故选:A .【题型】六、求一次函数解析式例6、直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是( )A .2x -≤B .4x ≤-C .2x ≥-D .4x ≥-【答案】C【分析】先根据图像求出直线解析式,然后根据图像可得出解集. 【详解】解:根据图像得出直线y kx b =+经过(0,1),(2,0)两点,将这两点代入y kx b =+得120b k b =⎧⎨+=⎩,解得112b k =⎧⎪⎨=-⎪⎩,∵直线解析式为:112y x =-+, 将y=2代入得1212x =-+,解得x=-2,∵不等式2kx b +≤的解集是2x ≥-, 故选:C .【题型】七、一次函数与一元一次方程例7、一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为( ) A .5x =- B .3x =-C .3x =D .5x =【答案】C【分析】根据一次函数图象的平移即可得到答案.【详解】解:∵()53y k x =-+是由3y kx =+的图像向右平移5个单位得到的,∵将一次函数3y kx =+的图像上的点(-2,0)向右平移5个单位得到的点的坐标为(3,0) ∵当y=0时,方程()530k x -+=的解为x=3, 故选:C .【题型】八、一次函数与一元一次不等式例8、如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >【答案】A【分析】将(1,1)P 代入(0)y kx b k =+<,可得1k b -=-,再将kx b x +≥变形整理,得0bx b -+≥,求解即可.【详解】解:由题意将(1,1)P 代入(0)y kx b k =+<,可得1k b +=,即1k b -=-, 整理kx b x +≥得,()10k x b -+≥, ∵0bx b -+≥, 由图像可知0b >, ∵10x -≤, ∵1x ≤, 故选:A .【题型】九、一次函数与二元一次方程(组)例9、在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则∵AOB 的面积为( ) A .2 B .3C .4D .6【答案】B 【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.【详解】解:在y=x+3中,令y=0,得x=﹣3,解32y xy x=+⎧⎨=-⎩得,12xy=-⎧⎨=⎩,∵A(﹣3,0),B(﹣1,2),∵∵AOB的面积=12⨯3×2=3,故选:B.【题型】十、一次函数的实际应用例10、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)货车乙返回B地的车速至少为75千米/小时【分析】(1)先设出函数关系式y=kx+b(k≠0),观察图象,经过两点(1.6,0),(2.6,80),代入求解即可得到函数关系式;(2)先求出货车甲正常到达B地的时间,再求出货车乙出发回B地时距离货车甲比正常到达B地晚1个小时的时间以及故障地点距B地的距离,然后设货车乙返回B地的车速为v千米/小时,最后列出不等式并求解即可.【详解】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y =kx+b ,得 0 1.680 2.6k bk b =+⎧⎨=+⎩,解得: 80128k b =⎧⎨=-⎩,∵y 关于x 的函数表达式为y =80x ﹣128(1.6≤x≤3.1); (2)根据图象可知:货车甲的速度是80÷1.6=50(km/h ) ∵货车甲正常到达B 地的时间为200÷50=4(小时), 18÷60=0.3(小时),4+1=5(小时), 当y =200﹣80=120 时, 120=80x ﹣128, 解得x =3.1,5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时, ∵1.6v≥120, 解得v≥75.答:货车乙返回B 地的车速至少为75千米/小时.一次函数(达标训练)一、单选题1.已知一次函数4y kx =+经过()11,y ,()22,y ,且12y y <,它的图象可能是( )A .B .C .D .【答案】B【分析】根据一次函数的增减性,可知它的图象可能为B 、C 选项,结合一次函数y=kx +4的图象经过点(0,4),即可得到答案.【详解】∵一次函数y=kx +4经过(1,y 1),(2,y 2)且y 1<y 2, ∵y 随x 的增大而增大,又∵一次函数y =kx +4的图象经过点(0,4), ∵它的图象可能是B 选项, 故选B .【点睛】本题主要考查一次函数的系数与函数图象之间的关系,掌握一次函数系数的几何意义,是解题的关键.2.已知一次函数1y kx =-经过()11,A y -,()22,B y 两点,且12y y >,则k 的取值范围是( ) A .0k > B .0k = C .0k < D .不能确定【答案】C【分析】根据一次函数的增减性可得出结论. 【详解】∵1212,y y -<>, ∵函数y 随x 的增大而减小. ∵k <0, 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键. 3.一次函数2y x m =-+的图象经过第一、二、四象限,则m 可能的取值为( ) A.-1 B .34C .0D .1【答案】B【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵一次函数2y x m =-+的图象经过第一、二、四象限, ∵0m >,∵m 可能的取值为34.故选:B【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+≠,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.4.一次函数31y x =-+的图象经过( )A .一、二、四象限B .一、三、四象限C .一、二、三象限D .二、三、四象限【答案】A【分析】根据一次函数关系中系数符号k <0,b >0解答即可. 【详解】解:∵31y x =-+中0k <, ∵一次函数图象经过第二、四象, ∵ 0b >,∵ 一次函数图象经过一、二、四象限. 故选:A .【点睛】此题考查了一次函数的图象,根据k 和b 的符号进行判断是解题的关键. 5.若23y x b =+-,y 是x 的正比例函数,则b 的值是( ) A .0 B .23-C .23D .32【答案】C【分析】根据y 是x 的正比例函数,可知23=0b -,即可求得b 值. 【详解】解:∵y 是x 的正比例函数, ∵23=0b -, 解得:23b =, 故选:C .【点睛】本题主要考查的是正比例函数的定义,掌握其定义是解题的关键.二、填空题6.请写出一个图象经过点()2,0A 的函数的解析式:______. 【答案】24y x =-(答案不唯一)【分析】写出一个经过点(2,0)的一次函数即可.【详解】解:经过点()2,0A 的函数的解析式可以为24y x =-, 故答案为:24y x =-(答案不唯一).【点睛】本题主要考查了函数图象上点的坐标特征,熟知函数图象上的点一定满足其函数解析式是解题的关键.7.将直线y =2x -1向下平移3个单位后得到的直线表达式为________. 【答案】24y x =-【分析】根据一次函数平移的规律解答.【详解】解:直线y =2x -1向下平移3个单位后得到的直线表达式为y =2x -1-3=2x -4, 即y =2x -4, 故答案为y =2x -4.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记平移的规律是解题的关键.三、解答题8.某中学积极响应“双减”政策,为了丰富学生的课外活动,激发学生参加体育活动的兴趣,准备购买一批新的羽毛球拍.已知甲、乙两商店销售同一种羽毛球拍,但两个商店的原价和销售方式均不同.在甲商店,无论一次性购买多少支羽毛球拍,一律按原价出售;在乙商店,一次性购买羽毛球拍的数量不超过20支,按原价销售,若一次性购买球拍数量超过20支,超出的部分打八折.设该学校购买了x 支羽毛球拍,在甲商店购买所需的费用为1y 元,在乙商店购买所需的费用为2y 元,1y ,2y 关于x 的函数图像如图所示.(1)分别求出1y ,2y 关于x 的函数解析式. (2)请求出m 的值,并说明m 的实际意义.(3)若该学校一次性购买羽毛球拍的数量超过80支,但不超过120支,到哪家商店购买更优惠? 【答案】(1)142y x =;()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)m =100,m 的实际意义是当一次性购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元(3)当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算【分析】(1)根据函数图像设出表达式,利用待定系数法解得即可;(2)根据图像交点,当x >20时,令12y y =,解得x ,y 的值即可;(3)由m 的意义,结合图像,谁的图像靠下谁更合算.(1)由题意,甲商店设11y k x =, ∵184020k =, ∵142k =, ∵1142y x =;乙商店:当0<x≤20时,设22y k x =, ∵2100020k =, ∵250k =, ∵250y x =,当x >20时,()2100020500.84020y x x =+-⨯⨯=+, ∵()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)当x>20时,令12y y =,即4020042x x +=, ∵x =100,y =4200, ∵m =100,∵m 的实际意义是当一次购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元; (3)由m 的意义,结合图像可知,谁的图像在下谁更合算,当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算.【点睛】本题考查了一次函数的实际应用,解题的关键是掌握一次函数图像的性质.一次函数(提升测评)一、单选题1.一次函数()32y k x k =++-的图象如图所示,()01k -有意义的k 的值可能为( )A .-3B .-1C .-2D .2【答案】B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意. 故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底数的范围.熟练掌握以上知识点,是解决此题的关键.2.已知直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,若将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,若∵ABC 的面积为6,则m 的值为( ) A .1 B .2C .3D .4【答案】C【分析】先求出点B (0,4),可得OB =4,再根据平移的性质,可得AC =m ,再根据∵ABC 的面积为6,即可求解.【详解】解:∵直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点, 当x =0时,y =4, ∵点B (0,4), ∵OB =4,∵将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点, ∵AC =m ,∵∵ABC 的面积为6, ∵1462m , 解得:m =3. 故选:C .【点睛】本题主要考查了一次函数的性质,一次函数的平移问题,熟练掌握一次函数的图象和性质是解题的关键.3.已知一次函数y =-kx +k ,y 随x 的增大而减小,则在直角坐标系内大致图象是( )A .B .C .D .【答案】C【分析】由于一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,可得-k <0,然后,判断一次函数y =-kx +k 的图象经过的象限即可.【详解】解:∵一次函数y =-kx +k (k ≠0),y 随x 的增大而减小, ∵-k <0,即k >0,∵一次函数y =-kx +k 的图象经过一、二、四象限. 故选:C .【点睛】本题主要考查了一次函数的图象,掌握一次函数y =kx +b 的图象性质: ∵当k >0,b >0时,图象过一、二、三象限; ∵当k >0,b <0时,图象过一、三、四象限; ∵当k <0,b >0时,图象过一、二、四象限; ∵当k <0,b <0时,图象过二、三、四象限.4.在平而直角坐标系中,一次函数32y x m =-+的图像关于直线1y =对称后经过坐标原点,则m 的值为( ) A .1 B .2C .1-D .2-【答案】A【分析】由题意一次函数32y x m =-+与y 轴的交点为(0,2m ),根据点(0,2m )与原点关于直线1y =对称,即可求出答案.【详解】解:根据题意,在一次函数32y x m =-+中, 令0x =,则2y m =,∵一次函数32y x m =-+与y 轴的交点为(0,2m ), ∵点(0,2m )与原点关于直线1y =对称, ∵22m =, ∵1m =; 故选:A .【点睛】本题考查了一次函数的性质,轴对称的性质,解题的关键是掌握一次函数的性质进行解题. 5.甲、乙两自行车运动爱好者从A 地出发前往B 地,匀速骑行.甲、乙两人离A 地的距离y (单位:km )与乙骑行时间x (单位:h )之间的关系如图所示.下列说法正确的是( )A .乙骑行1h 时两人相遇B .甲的速度比乙的速度慢C .3h 时,甲、乙两人相距15kmD .2h 时,甲离A 地的距离为40km 【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 【详解】解:由图象可知,甲乙骑行1.5h 时两人相遇,故选项A 不合题意; 甲的速度比乙的速度快,故选项B 不合题意;甲的速度为:30÷(1.5-1)=30(km/h ),乙的速度为:30÷1.5=20(km/h ), 3h 时,甲、乙两人相距:30×(3-0.5)-20×3=15(km ),故选项C 符合题意;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数复习专题一待定系数法求解析式方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。

☆已知是直线或一次函数可以设y=kx+b(k≠0);☆若点在直线上,则可以将点的坐标代入解析式构建方程。

1、若函数y=3x+b经过点(2,-6),求函数的解析式。

2、直线y=kx+b的图像经过A(3,4)和点B(2,7),3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y (升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。

4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。

5、若一次函数y=kx+b的自变量x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9,求此函数的解析式。

6、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。

7、已知直线y=kx+b与直线y= -3x+7关于x轴对称,求k、b的值。

8、已知直线y=kx+b与直线y= -3x+7关于原点对称,求k、b的值。

一次函数复习专题二一次函数的平移方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。

直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

1. 直线y=5x-3向左平移2个单位得到直线。

2. 直线y=-x-2向右平移2个单位得到直线3. 直线y=21x向右平移2个单位得到直线4. 直线y=223+-x向左平移2个单位得到直线5. 直线y=2x+1向上平移4个单位得到直线6. 直线y=-3x+5向下平移6个单位得到直线7. 直线xy31=向上平移1个单位,再向右平移1个单位得到直线。

8. 直线143+-=xy向下平移2个单位,再向左平移1个单位得到直线________。

9. 过点(2,-3)且平行于直线y=2x的直线是____ _____。

10. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.11.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________;12.直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n上,则a=____________;一次函数复习专题三一次函数与方程不等式一、一次函数与一元一次方程的关系直线y b k0kx=+≠()与x轴交点的横坐标,就是一元一次方程b0(0)kx k+=≠的解。

求直线y bkx=+与x轴交点时,可令0y=,得到方程b0kx+=,解方程得xbk=-,直线y bkx=+交x轴于(,0)bk-,bk-就是直线y bkx=+与x轴交点的横坐标。

二、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为a b0x+>或a b0x+<(ba、为常数,0a≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。

三、一次函数与二元一次方程(组)的关系一次函数的解析式y b k0kx=+≠()本身就是一个二元一次方程,直线y b k0kx=+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。

一、一次函数与一元一次方程综合1、 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( ) A .2- B .2 C .1- D .02、 已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. 3、 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.二、一次函数与一元一次不等式综合4、 已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值; (3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <5、 当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方; (2)y 轴左侧; (3)第一象限.6、 已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A .5x >B .12x < C .6x <- D .6x >-7、 已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化?(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少? 8、 直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______. 9、 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当2x =时,y 的值;(2)x 为何值时,0y <?(3)当21x -≤≤时,y 的值范围;(4)当21y -<<时,x 的值范围.三、一次函数与二元一次方程(组)综合10、已知直线3y x =-与22y x =+的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.11、已知方程组y ax c y kx b -=⎧⎨-=⎩(a b c k ,,,为常数,0ak ≠)的解为23x y =-⎧⎨=⎩,则直线y ax c =+和直线y kx b =+的交点坐标为________.12、已知24x y =⎧⎨=⎩,是方程组73228x y x y -=⎧⎨+=⎩的解,那么一次函数y =____和y =______的交点是_ .13、 一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .314、 若直线(2)6y m x =--与x 轴交于点()60,,则m 的值为( ) A.3 B.2 C.1 D.015、如图,直线y kx b =+与x 轴交于点()40-,,则0y >时,x 的取值范围是( )A.4x >-B .0x > C.4x <- D .0x <16、当自变量x 满足什么条件时,函数23y x =-+的图象在: (1)x 轴下方; (2)y 轴左侧; (3)第一象限.17、b 取什么整数值时,直线32y x b =++与直线2y x b =-+的交点在第二象限?一次函数复习专题四 图像与坐标轴围成的图形面积问题1、填空:一次函数y=0.5x+2的图像与x 轴的交点 ;与y 轴的交点 ;一次函数y=-x-1的图像与x 轴的交点为 ;与y 轴的交点 ;2、直线y=0.5x+2与直线y=-x-1的交点 ;3、过点(2,0)(0,4)的直线解析式 ;方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形); 往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形); 往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;题型一:例1.已知一次函数3y x =-的图象与x 轴和y 轴分别交与A 、B 两点,试求ABCS (O 为坐标原点)的面积.巩固一、直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。

题型二、两条直线与x 轴围成的面积例2.直线21y x =+和直线2y x =-+与x 轴分别交与A 、B 两点,并且两直线相交与点C,那么△ABC 的面积是 .题型三、两条直线与y 轴围成的面积例3.已知直线1y x =+和直线3y x =-+与y 轴分别交与A 、B 两点,两直线相 交与点C ,那么△ABC 的面积是 .1、求直线y=x-2与直线y=-2x+4与x 轴围成的三角形面积?2、直线y =4x -2与直线y =-x +13及x 轴所围成的三角形的面积?3、求直线y =2x -7,直线1122y x =-+与y 轴所围成三角形的面积.4、已知直线m 经过两点(1,6)、(-3,-2),它和x 轴、y 轴的交点式B 、A ,直线n 过点(2,-2),且与y 轴交点的纵坐标是-3,它和x 轴、y 轴的交点是D 、C ;(1) 分别写出两条直线解析式,并画草图;(2) 计算四边形ABCD 的面积;(3) 若直线AB 与DC 交于点E ,求△BCE 的面积。

5、如图,已知点A (2,4),B (-2,2),C (4,0),求△ABC 的面积。

1y =s/千米6t/分8060203001学习目标二:根据图像与坐标轴围成的三角形面积求函数的解析式例2已知一次函数的图像过点B (0,4)且与两坐标轴围成的三角形面积为4,求此一次函数的解析式?变形1:已知直线y=kx-4与两坐标轴所围成的三角形面积等于4,求直线解析式;一次函数复习专题五 一次函数的图像信息基础扫描:1.会观察函数图像(一横、二纵、三起始、四关键、五分段、六解析)2.已知两点用待定系数法求一次函数的解析式(一设二列三解四回)1、邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案. (2)小王从县城出发到返回县城所用的时间.(3)李明从A 村到县城共用多长时间?2.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离y (千米)与乙车行驶时间x (小时)之间的函数图象.(1)请将图中的( )内填上正确的值,并直接写出甲车从A 到B 的行驶速度; (2)求从甲车返回到与乙车相遇过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)求出甲车返回时行驶速度及A 、B 两地的距离.3.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系. (1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.4、小东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系.⑴试用文字说明:交点P 所表示的实际意义.⑵试求出A 、B 两地之间的距离.468S(k 2t(h)ABO y (千米)x 小时)y 1y12 32.5 4 7.5。

相关文档
最新文档