一次函数专题培优(一)

合集下载

一次函数培优练习题(含答案)

一次函数培优练习题(含答案)

稳固练习一、选择题:1.y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为〔〕〔A〕y=8x 〔B〕y=2x+6 〔C〕y=8x+6 〔D〕y=5x+32.假设直线y=kx+b经过一、二、四象限,那么直线y=bx+k不经过〔〕〔A〕一象限〔B〕二象限〔C〕三象限〔D〕四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是〔〕〔A〕4 〔B〕6 〔C〕8 〔D〕164.假设甲、乙两弹簧的长度y〔cm〕与所挂物体质量x〔kg〕之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,那么y1与y2的大小关系为〔〕〔A〕y1>y2〔B〕y1=y2〔C〕y1<y2〔D〕不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•那么有一组a,b的取值,使得以下4个图中的一个为正确的选项是〔〕6.假设直线y=kx+b经过一、二、四象限,那么直线y=bx+k不经过第〔〕象限.〔A〕一〔B〕二〔C〕三〔D〕四7.一次函数y=kx+2经过点〔1,1〕,那么这个一次函数〔〕〔A〕y随x的增大而增大〔B〕y随x的增大而减小〔C〕图像经过原点〔D〕图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在〔〕〔A〕第一象限〔B〕第二象限〔C〕第三象限〔D〕第四象限9.要得到y=-32x-4的图像,可把直线y=-32x〔〕.〔A〕向左平移4个单位〔B〕向右平移4个单位〔C〕向上平移4个单位〔D〕向下平移4个单位10.假设函数y=〔m-5〕x+〔4m+1〕x2〔m为常数〕中的y与x成正比例,那么m的值为〔〕〔A〕m>-14〔B〕m>5 〔C〕m=-14〔D〕m=511.假设直线y=3x-1与y=x-k的交点在第四象限,那么k的取值范围是〔〕.〔A〕k<13〔B〕13<k<1 〔C〕k>1 〔D〕k>1或k<1312.过点P〔-1,3〕直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作〔〕〔A〕4条〔B〕3条〔C〕2条〔D〕1条13.abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过〔〕〔A〕第一、二象限〔B〕第二、三象限〔C〕第三、四象限〔D〕第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,那么常数a的取值范围是〔〕〔A〕-4<a<0 〔B〕0<a<2〔C〕-4<a<2且a≠0 〔D〕-4<a<215.在直角坐标系中,A〔1,1〕,在x轴上确定点P,使△AOP为等腰三角形,那么符合条件的点P共有〔〕〔A〕1个〔B〕2个〔C〕3个〔D〕4个16.一次函数y=ax+b〔a为整数〕的图象过点〔98,19〕,交x轴于〔p,0〕,交y轴于〔•0,q〕,假设p为质数,q为正整数,那么满足条件的一次函数的个数为〔〕〔A〕0 〔B〕1 〔C〕2 〔D〕无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k 的交点为整点时,k的值可以取〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个18.〔2005年全国初中数学联赛初赛试题〕在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取〔〕〔A〕2个〔B〕4个〔C〕6个〔D〕8个19.甲、乙二人在如下图的斜坡AB上作往返跑训练.:甲上山的速度是a米/分,下山的速度是b米/分,〔a<b〕;乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t〔分〕,离开点A的路程为S〔米〕,•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t〔分〕与离开点A的路程S〔米〕•之间的函数关系的是〔〕20.假设k、b是一元二次方程x2+px-│q│=0的两个实根〔kb≠0〕,在一次函数y=kx+b 中,y随x的增大而减小,那么一次函数的图像一定经过〔〕〔A〕第1、2、4象限〔B〕第1、2、3象限〔C〕第2、3、4象限〔D〕第1、3、4象限二、填空题1.一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.一次函数y=〔m-2〕x+m-3的图像经过第一,第三,第四象限,那么m的取值范围是________.3.某一次函数的图像经过点〔-1,2〕,且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.直线y=-2x+m不经过第三象限,那么m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•那么点P•的坐标为__________.6.过点P〔8,2〕且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年〔b≠a〕,他的退休金比原来的多q元,那么他每年的退休金是〔以a、b、p、•q•〕表示______元.9.假设一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•那么一次函数的解析式为________.10.〔湖州市南浔区2005年初三数学竞赛试〕设直线kx+〔k+1〕y-1=0〔为正整数〕与两坐标所围成的图形的面积为S k 〔k=1,2,3,……,2021〕,那么S 1+S 2+…+S 2021=_______. 11.据有关资料统计,两个城市之间每天的 通话次数T•与这两个城市的人口数m 、n 〔单位:万人〕以及两个城市间的距离d 〔单位:km 〕有T=2kmnd 的关系〔k 为常数〕.•现测得A 、B 、C 三个城市的人口及它们之间的距离如下图,且A 、B 两个城市间每天的 通话次数为t ,那么B 、C 两个城市间每天的 次数为_______次〔用t 表示〕.三、解答题1.一次函数y=ax+b 的图象经过点A 〔2,0〕与B 〔0,4〕.〔1〕求一次函数的解析式,并在直角坐标系内画出这个函数的图象;〔2〕如果〔1〕中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.〔1〕写出y与x之间的函数关系式;〔2〕如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:〔1〕小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;〔不要求写出x的取值范围〕;〔2〕小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,以下图表示他离家的距离y〔千米〕与所用的时间x 〔小时〕之间关系的函数图象.〔1〕根据图象答复:小明到达离家最远的地方需几小时?此时离家多远?〔2〕求小明出发两个半小时离家多远?〔3〕•求小明出发多长时间距家12千米?5.一次函数的图象,交x轴于A〔-6,0〕,交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A〔0,1〕出发,经过x轴上点C反射后经过点B〔3,3〕,求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=232的图象与x轴,y轴,分别交于A、B两点,•点C坐标为〔1,0〕,点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C〔4,0〕作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P〔•0,-1〕,Q〔0,k〕,其中0<k<4,再以Q点为圆心,PQ长为半径作圆,那么当k取何值时,⊙Q•与直线AB相切?11.〔2005年宁波市蛟川杯初二数学竞赛〕某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A 地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:〔1〕设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y〔元〕,请用x表示y,并注明x的范围.〔2〕假设使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.写文章、出幅员书所获得稿费的纳税计算方法是f〔x〕=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f〔x〕表示稿费为x元应缴纳的税额.假设张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购置甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购置甲商品的个数比预定减少10个,总金额多用29元.•又假设甲商品每个只涨价1元,并且购置甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.〔1〕求x、y的关系式;〔2〕假设预计购置甲商品的个数的2倍与预计购置乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付根本费8元和定额损消耗c元(c≤5);假设用水量超过am3时,除了付同上的根本费和损消耗外,超过局部每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E市10.:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.〔1〕设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W〔元〕关于x〔台〕的函数关系式,并求W的最大值和最小值.〔2〕设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W〔元〕,并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为〔1,a+b〕,•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;应选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过〔1,1〕,∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=〔m-5〕x+〔4m+1〕x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①假设a+b+c≠0,那么p=()()()a b b c c aa b c+++++++=2;②假设a+b+c=0,那么p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限. 14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.〔13,3〕或〔53,-3〕.提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为〔13,3〕或〔53,-3〕.提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P 〔8,2〕代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得 ∴两函数的交点坐标为〔98,34〕,在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的 通话次数为T BC =k ×2801003253205642t t⨯=⨯=.三、1.〔1〕由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4〔•函数图象略〕.〔2〕∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.〔1〕∵z与x成正比例,∴设z=kx〔k≠0〕为常数,那么y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;〔2〕∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.〔1〕设一次函数为y=kx+b,将表中的数据任取两取,不防取〔37.0,70.0〕和〔42.0,78.0〕代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.〔1〕由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.〔2〕设直线CD的解析式为y=k1x+b1,由C〔2,15〕、D〔3,30〕,代入得:y=15x-15,〔2≤x≤3〕.当x=2.5时,y=22.5〔千米〕答:出发两个半小时,小明离家.〔3〕设过E、F两点的直线解析式为y=k2x+b2,由E〔4,30〕,F〔6,0〕,代入得y=-15x+90,〔4≤x≤6〕过A、B两点的直线解析式为y=k3x,∵B〔1,15〕,∴y=15x.〔0≤x≤1〕,•分别令y=12,得x=265〔小时〕,x=45〔小时〕.答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B〔-2,y B〕,其中y B<0,∵S△AOB=6,∴12AO·│y B│=6,∴y B=-2,把点B〔-2,-2〕代入正比例函数y=kx,•得k=1.把点A〔-6,0〕、B〔-2,-2〕代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴=.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.2.8.∵点A、B分别是直线y=3x轴和y轴交点,∴A〔-3,0〕,B〔0,∵点C坐标〔1,0〕由勾股定理得,设点D的坐标为〔x,0〕.〔1〕当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD==①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为〔52,0〕.设图象过B、D两点的一次函数解析式为y=kx+b,2225 522b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-225x+2.〔2〕假设点D在点C左侧那么x<1,可证△ABC∽△ADB,∴AD BDAB CB=22113x+=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D 点坐标为〔-14,0〕,∴图象过B、D〔-14,0〕两点的一次函数解析式为22,综上所述,满足题意的一次函数为222或22.9.直线y=12x-3与x轴交于点A〔6,0〕,与y轴交于点B〔0,-3〕,∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即OD OA OC OB=,∴OD=463OC OAOB⨯==8.∴点D的坐标为〔0,8〕,设过CD的直线解析式为y=kx+8,将C〔4,0〕代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为〔225,-45〕. 10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为〔-3,0〕,〔0,4〕•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′〔如图〕, 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt△BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78. ∴当k=78时,⊙Q 与直线AB 相切.11.〔1〕y=200x+74000,10≤x ≤30〔2〕三种方案,依次为x=28,29,30的情况. 12.设稿费为x 元,∵x>7104>400,∴x-f 〔x 〕=x-x 〔1-20%〕20%〔1-30%〕=x-x ·45·15·710x=111125x=7104. ∴x=7104×111125=8000〔元〕.答:这笔稿费是8000元. 13.〔1〕设预计购置甲、乙商品的单价分别为a 元和b 元,那么原方案是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:〔a+1.5〕〔x-10〕+〔b+1〕y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:〔a+1〕〔x-5〕+〔b+1〕y=1563.5, ③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.〔2〕依题意有:205<2x+y<210及x+2y=186,得54<y<5523.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.那么y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2〔9-a〕+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,那么一月份的付款方式应选①式,那么8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.〔1〕由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400〔18-2x〕+800〔10-x〕+700〔10-x〕+500〔2x-10〕=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200〔5≤x≤9,x是整数〕.由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.〔2〕由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800〔10-x〕+300y+700〔10-y〕+•400〔19-x-y〕+500〔x+y-10〕=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩〔x,y为整数〕.W=-200x-300〔x+y〕+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300〔x+y〕+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.本文档局部内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。

第19章《一次函数》 实际应用解答题培优(一)2020-2021学年人教版数学八年级下册

第19章《一次函数》 实际应用解答题培优(一)2020-2021学年人教版数学八年级下册

人教版数学八年级下册第19章《一次函数》实际应用解答题培优(一)1.甲、乙两台机器共同加工一批零件,一共用了6小时,在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工,甲机器在加工过程中工作效率保持不变,甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC.如图所示.(1)这批零件一共有个,甲机器每小时加工个零件;(2)在整个加工过程中,求y与x之间的函数解析式;(3)乙机器排除故障后,求甲加工多长时间时,甲与乙加工的零件个数相差10个.2.在防疫工作稳步推进的过程中,复工复产工作也在如火如荼进行.某企业计划通过扩大生产能力来消化第一季度积累的订单,决定增加一条新的生产线并招收工人.根据以往经验,一名熟练工人每小时完成的工件数量比一名普通工人每小时完成的工件数量多10个,且一名熟练工人完成160个工件与一名普通工人完成80个工件所用的时间相同.(1)求一名熟练工人和一名普通工人每小时分别能完成多少个工件?(2)新生产线的目标产能是每小时生产200个工件,计划招聘n名普通工人与m名熟练工人共同完成这项任务,请写出m与n的函数关系式(不需要写自变量n的取值范围);(3)该企业在做市场调研时发现,一名普通工人每天工资为120元,一名熟练工人每天工资为150元,而且本地区现有熟练工人不超过8人.在(2)的条件下,该企业如何招聘工人,使得工人工资的总费用最少?3.某电信公司推出如下A,B两种通话收费方式,记通话时间为x分钟,总费用为y元.根据表格内信息完成以下问题:(1)分别求出A,B两种通话收费方式对应的函数表达式;(2)在给出的坐标系中作出收费方式A对应的函数图象,并求出;①通话时间为多少分钟时,两种收费方式费用相同;②结合图象,直接写出选择哪种通话方式能节省费用?收费方式月使用费(元)包时通话(分钟)超时通话(元/分钟)A12 0 0.2B18 40 0.34.如图(1)是某手机专卖店每周收支差额y(元)(手机总利润减去运营成本)与手机台数x(台)的函数图象,由于疫情影响目前这个专卖店亏损,店家决定采取措施扭亏.方式一:改善管理,降低运营成本,以此举实现扭亏.方式二:运营成本不变,提高每台手机利润实现扭亏(假设每台手机的利润都相同).解决以下问题:(1)说明图(1)中点A和点B的实际意义;(2)若店家决定采用方式一如图(2),要使每周卖出70台时就能实现扭亏(收支平衡),求节约了多少运营成本?(3)若店家决定两种方式都采用,降低运营成本为m元,提高每台手机利润n元,当5000≤m≤7000,50≤n≤100时,求店家每周销售100台手机时可获得的收支差额范围,并在图(3)中画出取得最大收支差额时y与x的关系的大致图象,要求描出反映关键数据的点.5.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B走了一段路后,自行车发生故障,B进行修理,所用的时间是小时.(3)B第二次出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,则出发多长时间与A相遇?(写出过程)6.甲、乙两人相约周末登崂山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,且当乙提速后,乙的登山上升速度是甲登山上升速度的3倍,且根据图象所提供的信息解答下列问题:(1)乙在A地时距地面的高度b为米;t的值为;(2)请求出甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式;(3)已知AB段对应的函数关系式为y=30x﹣30,则登山多长时间时,甲、乙两人距地面的高度差为70米?(直接写出答案)7.某水果店11月份购进甲、乙两种水果共花费1800元,其中甲种水果10元/千克,乙种水果16元/千克.12月份,这两种水果的进价上调为:甲种水果13元/千克,乙种水果18元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?8.甲骑电动车,乙骑自行车从深圳湾公园门口出发沿同一路线匀速游玩,设乙行驶的时间为x(h),甲、乙两人距出发点的路程S甲、S乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度是km/h,乙的速度是km/h;(2)对比图①、图②可知:a=,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?9.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,月用电量不超过200度时,按0.55元/度计费,月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费,设每户家庭月用电量为x度时,应交电费y 元.(1)分别求出0≤x≤200和x>200时,y与x的函数解析式.(2)小明家4月份用电250度,应交电费多少元?(3)小明家6月份交纳电费117元,小明家这个月用电多少度?10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了小时,甲队在开挖后6小时内,每小时挖m;(2)分别求出y甲、y乙与x的函数解析式,并写出自变量x的取值范围;(3)开挖2小时,甲、乙两队挖的河渠的长度相差m,开挖6小时,甲、乙两队挖的河渠的长度相差m;(4)求开挖后几小时,甲、乙两队挖的河渠的长度相差5m.11.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A 生产线开始生产口罩,8天后,采用最新技术的B生产线建成投产同时,为加大口罩产能,公司耗时2天对A生产线进行技术升级,升级期间A生产线暂停生产,升级后,产能提高20%.如图反映了每条A,B生产线的口罩总产量y(万个)与时间x(天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条A生产线每天生产口罩万个;(2)每条B生产线每天生产口罩万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A生产线,则B生产线有条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m小时(m为正整数),同时新增k条B生产线,此时公司口罩日总产量达到260万个,求正整数k的值.12.某校开展“文明在行动”的志愿者活动,准备购买某一品牌书包送到希望学校.在A 商店,无论一次购买多少,价格均为每个50元,在B商店,一次购买数量不超过10个时,价格为每个60元;一次购买数量超过10个时,超出10个部分打八折.设一次购买该品牌书包的数量为x个(x>0).(Ⅰ)根据题意填表:5 10 15 …一次购买数量/个A商店花费/元500 …B商店花费/元600 …(Ⅱ)设在A商店花费y1元,在B商店花费y2元,分别求出y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小丽在A商店和在B商店一次购买书包的数量相同,且花费相同,则她在同一商店一次购买书包的数量为个.②若小丽在同一商店一次购买书包的数量为50个,则她在A,B两个商店中的商店购买花费少;③若小丽在同一商店一次购买书包花费了1800元,则她在A,B两个商店中商店购买数量多.13.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是km,小明爸爸驾车返回时平均速度是km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.14.新冠疫情期间,口罩的需求量增大,某口罩加工厂承揽生产1600万个口罩的任务,每天生产的口罩数量相同,计划用x天(x>4)完成.(1)求每天生产口罩y(万个)与生产时间x(天)之间的函数表达式;(2)由于疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做20万个口罩才能完成任务,求实际生产时间.15.某公司销售玉米种子,价格为5元/千克,如果一次性购买10千克以上的种子,超过10千克部分的种子的价格打8折,部分表格如下:2 5 10 12 20 30 …购买种子的数量/千克10 a50 58 b130 …付款金额/元(1)直接写出表格中a,b的值;(2)设购买种子数量为x(x>10)千克,付款金额为y元,求y与x的函数关系式;(3)小李第一次购买种子35千克,第二次又购买了8千克,若两次购买种子的数量合在一起购买可省多少钱?参考答案1.解:(1)由函数图象可知,共用6小时加工完这批零件,一共有270个.AB段为甲机器单独加工,每小时加工个数为(90﹣50)÷(3﹣1)=20(个),故答案为:270,20;(2)设y OA=k1x,当x=1时,y=50,则50=k1,∴y OA=50x;设y AB=k2x+b2,,解得,∴y AB=20x+30;设y BC=k3x+b3,,解得,∴y BC=60x﹣90;综上所述,在整个加工过程中,y与x之间的函数解析式是y=;(3)乙开始的加工速度为:50÷1﹣20=30(个/小时),乙后来的加工速度为:(270﹣90)÷(6﹣3)﹣20=40(个/小时),设乙机器排除故障后,甲加工a小时时,甲与乙加工的零件个数相差10个,20a﹣[30×1+40(a﹣3)]=±10,解得a=4或a=5,答:排除故障后,甲加工4小时或5小时时,甲与乙加工个数相差10.2.解:(1)设一名普通工人每小时完成x个工件,则一名熟练工人每小时完成(x+10)个工件,,解得x=10,经检验,x=10是原分式方程的解,∴x+10=20,即一名熟练工人和一名普通工人每小时分别能完成20个工件、10个工件;(2)由题意可得,10n+20m=200,则m=﹣0.5n+10,即m与n的函数关系式是m=﹣0.5n+10;(3)设工人工资的总费用为w元,w=120n+150m=120n+150(﹣0.5m+10)=45n+1500,∴w随n的增大而增大,∵本地区现有熟练工人不超过8人,∴m≤8,即﹣0.5n+10≤8,解得n≥4,∴当n=4时,w取得最小值,此时w=1680,m=﹣0.5n+10=8,答:招聘普通工人4人,熟练工人8人时,工人工资的总费用最少.3.解:(1)由表格可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是:当0≤x≤40时,y=18,当x>40时,y=0.3(x ﹣40)+18=0.3x+6,由上可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是y=;(2)∵收费方式A对应的函数表达式是y=0.2x+12,∴当x=0时,y=12,当x=40时,y=20,收费方式A对应的函数图象如右图所示;①设通话时间为a分钟时,两种收费方式费用相同,0.2a+12=18或0.2a+12=0.3a+6,解得a=30或a=60,即通话时间为30分钟或60分钟时,两种收费方式费用相同;②由图象可得,当0≤x<30或x>60时,选择A种通话方式能节省费用;当x=30或x=60时,两种通话方式一样;当30<x<60时,选择B种通话方式能节省费用.4.解:(1)由图像可知A点是函数图象与x轴的交点,所以点A的实际意义表示当卖出100台手机时,该专卖店每周收支差额为0;B点是函数图象与y轴的交点,所以点B的实际意义表示当手机店一台手机都没有卖出时,该专卖店亏损20000元;(2)由图(1)可求出以前的函数为y=200x﹣20000,若店家决定采用方式一,降低运营成本,即将函数图象上下平移,所以可以设新函数为y =200x+b,∵函数图象经过点(70,0),代入可得200×70+b=0,解得:b=﹣14000,∴要使每周卖出70台时就能实现扭亏(收支平衡),运营成本为14000元,节约了6000元运营成本;(3)设新函数为y=(200+n)x﹣(20000﹣n),∵50≤n≤100,∴250≤200+n≤300,当店家每周售出100台手机,收支差额最小时y=250×100﹣7000=18000,收支差额最大时y=300×100﹣5000=25000,∴收支差额范围为18000≤y≤25000,图象为:.5.解:(1)∵当t=0时,S=10,∴B出发时与A相距10千米.故答案为:10.(2)1.5﹣0.5=1(小时).故答案为:1.(3)观察函数图象,可知:B第二次出发后1.5小时与A相遇.(4)设A行走的路程S与时间t的函数关系式为S=kt+b(k≠0),将(0,10),(3,22.5)代入S=kt+b,得:,解得:,∴A行走的路程S与时间t的函数关系式为S=x+10.设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=mt.∵点(0.5,7.5)在该函数图象上,∴7.5=0.5m,解得:m=15,∴设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=15t.联立两函数解析式成方程组,得:,解得:,∴若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇.6.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),乙提速后的速度为:10×3=30(米/分钟),b=15÷1×2=30;t=2+(300﹣30)÷30=11,故答案为:30;11;(2)设甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式为y=kx+100,根据题意,得20k+100=300,解得k=10,故y=10x+100(0≤x≤20);(3)根据题意,得:当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.7.解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得,答:该店11月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(130﹣a)千克,根据题意得:w=10a+20(130﹣a)=﹣10a+2600;(3)根据题意得,a≤80,由(2)得,w=﹣10a+2600,∵﹣10<0,w随a的增大而减小,∴a=80时,w有最小值w最小=﹣10×80+2600=1600(元).答:12月份该店需要支付这两种水果的货款最少应是1600元.8.解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25(km/h),乙的速度为:25÷2.5=10(km/h),故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,b=1.5,故答案为:10;1.5;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=;即乙出发或时,甲、乙两人路程差为7.5km.9.解:(1)当0≤x≤200时,y与x的函数解析式是y=0.55x;当x>200时,y与x的函数解析式是y=0.55×200+0.7(x﹣200),即y=0.7x﹣30;(2)小明家4月份用电250度,月用电量超过200度,所以应交电费为:0.7×250﹣30=145(元),(3)因为小明家6月份的电费超过110元,所以把y=117代入y=0.7x﹣30中,得x=210.答:小明家6月份用电210度.10.解:(1)依题意得,乙队开挖到30m时,用了2h,开挖6h时甲队比乙队多挖了60﹣50=10(m);故答案为:2;10;(2)设甲队在0≤x≤6的时段内y与x之间的函数关系式y甲=k1x,由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y甲=10x,设乙队在2≤x≤6的时段内y与x之间的函数关系式为y乙=k2x+b,由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y乙=5x+20;当0≤x≤2时,设y乙与x的函数解析式为y乙=kx,可得2k=30,解得k=15,即y=15x;乙∴y乙=,(3)依题意得,开挖2小时,甲、乙两队挖的河渠的长度相差10m,开挖6小时,甲、乙两队挖的河渠的长度相差10m;故答案为:10;10;(4)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.11.解:(1)由图可知,升级前A生产线的日产量为:32÷8=4(万个),∵升级后,日产能提高20%,∴技术升级后,每条A生产线每天生产口罩4×(1+20%)=4.8(万个),故答案为:4.8;(2)A生产线技术升级后,A生产线的产量由32万到56万,所用的时间为(56﹣32)÷4.8=5(天),故B生产线从第8天开始生产到第15天的产能为56万个,所以每条B生产线每天生产口罩:56÷(15﹣8)=8(万个),故答案为:8;(3)设B生产线有x条,根据题意得:15×4.8+8x=136,解得:x=8,故答案为:8;(4)A生产线升级后每小时产能为:4.8÷8=0.6(万个),B生产线的每小时产能为:8÷8=1(万个),根据题意得:0.6×(8+m)×15+(8+m)(8+k)=260,整理得:(8+m)(17+k)=260,∵m、k为正整数,∴8+m为大于8的正整数,17+k为大于17的正整数,∴(8+m)(17+k)=260=10×26=13×20,∴8+m=10,17+k=26或8+m=13,17+k=20,∴m=2,k=9或m=5,k=3,∴每日工作时长增加2小时,B生产线增加9条或每日工作时长增加5小时,B生产线增加3条即可使公司口罩日总产量达到260万个,∴正整数k的值为9或3.答:正整数k的值为9或3.12.解:(Ⅰ)在A商店,购买5个费用=5×50=250(元),购买15个费用为15×50=750(元),在B商店,购买5个费用=5×60=300(元),购买15个费用为10×60+60×0.8(15﹣10)=840(元),故答案为:250,750,300,840;(Ⅱ)由题意可得:y1=50x(x≥0),当0≤x≤10时,y2=60x,当x>10时,y2=60×10+60×0.8×(x﹣10)=48x+120(x>10),∴y2=;(Ⅲ)①由题意可得:50x=48x+120,解得x=60,故答案为:60;②∵50×50<48×50+120,∴在A商店购买花费少,故答案为:A;③若在A商店,=36(个),若在B商店,=35(个),∵36>35,∴在A商店购买的数量多,故答案为:A.13.解:(1)由图象可得小明家与外婆家的距离为300km,小明经过2小时到达点A,点A到小明外婆家的距离=(300﹣2×90)=120(km),∴小明爸爸驾车返回时平均速度==60(km/h),故答案为:300,60;(2)点P表示小明出发2小时到达A地与小明爸爸相遇;(3)设s与t之间的函数关系式为s=kt+b,且过点(2.5,180),(4.5,300),∴,解得,∴s与t之间的函数关系式为s=60t+30(2.5≤t≤4.5).14.解:(1)每天生产口罩y(万个)与生产时间x(天)之间的函数表达式为:y=(x>4);(2)由题意可得:+20=,解得:x1=20,x2=﹣16,经检验,x1=20,x2=﹣16是原分式方程的解,但x=﹣16不合题意舍去,∴20﹣4=16(天),答:实际生产时间为16天.15.解:(1)a=5×5=25,b=5×10+(20﹣10)×0.8×5=90;(2)y=5×10+5×0.8(x﹣10)=4x+10;(3)购买35千克付款金额=4×35+10=150(元),购买8千克付款金额=5×8=40(元),一起购买付款金额=4×(35+8)+10=182(元),∴150+40﹣182=8(元),答:一起购买可省8元.。

一次函数压轴题经典培优

一次函数压轴题经典培优

一次函数压轴题训练(一)典型例题题型一、A 卷压轴题一、A 卷中涉及到的面积问题例1、如图,在平面直角坐标系xOy 中,一次函数1223y x =-+与x 轴、y 轴分别相交于点A 和点B ,直线2 (0)y kx b k =+≠经过点C (1,0)且与线段AB 交于点P ,并把△ABO分成两部分.(1)求△ABO 的面积;(2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式。

121+=x y 与x 轴练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :交于点C ,两直线1l ,2l 相交于点B 。

(1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。

2、如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运动(0<x<3),过点P 作直线m 与x 轴垂直.(1)求点C 的坐标,并回答当x 取何值时y 1>y 2?(2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积?(10分)二、A 卷中涉及到的平移问题例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的ABCO y 2y 1xyP ABC ODxy 1l 2l正半轴上,且A 点的坐标是(1,0)。

①直线y=43x-83经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式,③若直线1l 经过点F ⎪⎭⎫ ⎝⎛-0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位交x 轴于点M ,交直线1l 于点N ,求NMF ∆的面积.练习1、如图,在平面直角坐标系中,直线1l:xy 34=与直线2l :b kx y += 相交于点A ,点A 的横坐标为3,直线2l 交y 轴于点B ,且OB OA 21=。

北师大版版八年级上册数学 一次函数培优训练(详细,经典)

北师大版版八年级上册数学   一次函数培优训练(详细,经典)

《一次函数》培优资料(1)专题一:一次函数的定义、图像及性质1.对于一次函数y = kx + k -1(k ? 0),下列叙述正确的是()A.当0 < k <1 时,函数图象经过第一、二、三象限B.当k > 0 时,y 随x 的增大而减小C.当k <1 时,函数图象一定交于y 轴的负半轴D.函数图象一定经过点(-1, -2)2.对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是.3.直线y=kx+b 经过点(2,﹣4),且当3≤x≤6 时,y 的最大值为8 则k+b 的值为.4.两个一次函数y=ax+b与y=bx+a在同一坐标系中的图象大致是()5.如图,函数y=mx﹣4m(m 是常数,且m≠0)的图象分别交x 轴y 轴于点M、N,线段MN 上两点A、B(点B 在点A 的右侧),作AA1 ⊥x 轴,BB1⊥x 轴,且垂足分别为A1,B1,若OA1+OB1>4,则△OA1A 的面积S1 与△OB1B 的面积S2 的大小关系是()A.S1>S2 B.S1=S2 C.S1<S2 D.不确定的6.已知直线y =- n x +n +11n +1(n 为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2018= .7.如图,在平面直角坐标系中,函数y=﹣2x+12 的图象分别交x 轴y 轴于A、B 两点,过点A 的直线交y 正半轴于点M,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.(2)试在直线AM 上找一点P,使得S=S△AOM,请直接写出点P△ABP的坐标.8.点C 在直线AM 上,在坐标平面内是否存在点D,使以A、O、C、D 为顶点的四边形是正方形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.专题二:重要公式和结论1.直线y=kx+b过点(x1,y1),(x2,y2),若x1﹣x2=1,y1﹣y2=﹣2,则k 的值为.2.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(﹣2 0),B(0,1),则直线BC 的解析式为.3.如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M 的直线将平行四边形OABC 的面积分成相等的两部分,请写出该直线的函数表达式.4.如图,点A的坐标为(﹣2,0),点B在直线上运动,当点B 的坐标是时,线段AB 最短,最短距离为.5.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B 关于直线AP 的对称点B′恰好落在x 轴上,则点P 的坐标为.6.对于坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2 两点间的“转角距离”,记作d(P1,P1).(1)令P0(3,﹣4),O为坐标原点,则d(O,P0)=;(2)已知O 为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中,画出所有符合条件的点P 所组成的图形;7.设P0(x0,y0)是一个定点,Q(x,y)是直线y=ax+b 上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的“转角距离”.若P(a,﹣2)到直线y=x+4 的“转角距离”为10,求a 的值.专题三:直线与x轴正方向夹角和k的关系1.已知:一次函数的图象如图所示,则k= .2.如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b 的表达式为.3.如图,点A 的坐标为(﹣2,0),点B 在直线y=x 上运动,当线段AB 长最短时点B 的坐标为.4.如图,在平面直角坐标系中,直线l:y = 3 x ,直线l2:y =3x ,在3直线l1 上取一点B,使OB=1,以点B 为对称中心,作点O 的对称点B1,过点B1 作B1A1∥l2,交x 轴于点A1,作B1C1∥x 轴,交直线l2 于点C1,得到四边形OA1B1C1;再以点B1 为对称中心,作O 点的对称点B2,过点B2 作B2A2∥l2,交x 轴于点A2,作B2C2∥x 轴,交直线l2 于点C2,得到四边形OA2B2C2;…;按此规律作下去,则四边形OA n B n C n的面积是.5.已知,直线x +与x 轴,y 轴分别交于点A,B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a 为坐标系中的一个动点.= ;(1)则三角形ABC 的面积S△ABC点C 的坐标为;(2)证明不论 a 取任何实数,△BOP 的面积是一个常数;(3)要使得△ABC 和△ABP 的面积相等,求实数a 的值.6.如图,平面直角坐标系中,直线l 分别交x 轴、y 轴于A、B 两点,点A 的坐标为(1,0)∠ABO=30°,过点B 的直线y= x+m 与x 轴交于点C.(1)求直线l 的解析式及点C 的坐标.7.点D 在x 轴上从点C 向点A 以每秒1 个单位长的速度运动(0<t<4),过点D 分别作DE∥AB,DF∥BC,交BC、AB 于点E、F,连接EF,点G 为EF 的中点.①判断四边形DEBF 的形状并证明;②求出t 为何值时线段DG 的长最短.8.点P 是y 轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,说明理由.《一次函数》培优资料(2)专题四:一次函数与几何变换1. ( 1 )直线y = 2x +1 向下平移 3 个单位后的解析式是.( 2 )直线y = 2x +1 向右平移 3 个单位后的解析式是.2.如图,已知点 C 为直线y =x 上在第一象限内一点,直线y = 2x +1 交y轴于点A,交x 轴于B,将直线AB 沿射线OC 方向平移3 2 个单位,则平移后的直线的解析式为.yACBO x3.如图,平面直角坐标系中,△ABC 的顶点坐标分别是A(1,1),B (3,1),C(2,2),当直线与△ABC 有交点时,b 的取值范围是.4.在平面直角坐标中,已知点A(-2,3)、B(4,5),直线y=kx+1(k≠0 与线段AB 有交点,则k 的取值范围为.5.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=﹣|2x+b|(b 为常数)的图象.若该图象在直线y=2 下方的点的横坐标x 满足0<x<3,则b 的取值范围为.6.如图,函数y=﹣2x+2 的图象分别与x 轴、y 轴交于A,B 两点,线段AB绕点A顺时针旋转90°得到线段AC,则直线AC的函数解析式是.7.如图,在平面直角坐标系中,矩形OABC 的顶点A,C 分别在x 轴y 轴上,点B 在第一象限,直线y=x+1 交y 轴于点D,且点D 为CO 中点,将直线绕点D 顺时针旋转15°经过点B ,则点B 的坐标为.8.如图1,已知平行四边形ABCD,AB∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是平行四边形ABCD 边上的一个动点.(1)若点P 在边BC 上,PD=CD,求点P 的坐标.(2)若点P 在边AB,AD 上,点P 关于坐标轴对称的点Q 落在直线y=x﹣1 上,求点P 的坐标.解:(1)∵CD=6,∴点P 与点C 重合,∴点P 坐标为(3,4).(2)①当点P 在边AD 上时,∵直线AD 的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P 关于x 轴的对称点Q1(a,2a+2)在直线y=x﹣1 上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P 关于y 轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1 上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P 在边AB 上时,设P(a,﹣4)且1≤a≤7,若等P 关于x 轴的对称点Q2(a,4)在直线y=x﹣1 上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P 关于y 轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1 上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P 的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).9.若点P 在边AB,AD,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM,过点G 作x 轴的平行线GM,它们相交于点M,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)(3)①如图1 中,当点P 在线段CD 上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2+m)2=m2,解得,∴P (﹣,4)根据对称性可知,P(,4)也满足条件.②如图2 中,当点P 在AB 上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P在线段AD上时,设AD交x轴于R.易证∠M′RG=∠M′GR,推出M′R=M′G=GM,设M′R=M′G=GM=x.∵直线AD的解析式为y=﹣2x﹣2,∴R(﹣1,0),在Rt△OGM′中,有x2=22+(x﹣1)2,解得x=,∴P(﹣,3).点P 坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4)10.如图,直线l1 与x 轴、y 轴分别交于A、B 两点,直线l2 与直线l1 关于x 轴对称,已知直线l1 的解析式为y=x+3,(1)求直线l2 的解析式;y=﹣x﹣3(2)过A 点在△ABC 的外部作一条直线l3,过点B 作BE⊥l3 于E,过点C 作CF⊥l3 于F,请画出图形并求证:BE+CF=EF;(2)如图.BE+CF=EF.∵直线l2 与直线l1 关于x 轴对称,∴AB=AC,∵l1 与l2 为象限平分线的平行线,∴△OAC 与△OAB 为等腰直角三角形,∴∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P,过P 点的直线与AC 边的延长线相交于点Q,与y 轴相交于点M,且BP=CQ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.(3)①对,OM=3过Q 点作QH⊥y 轴于H,直线l2 与直线l1 关于x 轴对称∵∠POB=∠QHC=90°,BP=CQ,又∵AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBO(AAS),∴QH=PO=OB=CH∴△QHM≌△POM ∴HM=OM∴OM=BC﹣(OB+CM)=BC﹣(CH+CM)=BC﹣OM∴OM= BC=3.例1对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1 次斜平移后的点的坐标为(3,5),已知点A 的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.①若A. B. C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C 的坐标为(7,6),求出点B的坐标及n的值.例2 已知,在平面直角坐标系中,正方形ABOC的顶点在原点.(1)如图,若点C 的坐标为(-1,3),求A点坐标;(2)如图,点F 在AC 上,AB 交x 轴于点E。

第五章 一次函数单元培优训练(一)及答案

第五章 一次函数单元培优训练(一)及答案

第五章 一次函数单元培优训练(一)一.选择题1.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )2.已知直线y =kx +b ,若k +b =﹣5,kb =6,那么该直线不经过( ) A .第一象限B . 第二象限C . 第三象限D . 第四象限3.如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x ≥ax +4的解集为( )23.≥x A 3.≤x B 23.≤x C 3.≥x D4.已知点M (1,a )和点N (2,b )是一次函数y =﹣2x +1图象上的两点,则a 与b 的大小关系是( ) A .a >bB .a =bC .a <bD.以上都不对5.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( )A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时 6.对于函数y =-3x +1,下列结论正确的是( )A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大7.如图,一次函数y =(m -2)x -1的图象经过二、三、四象限,则m 的取值范围是( ) A .m >0B .m <0C .m >2D .m <28.若实数a ,b ,c 满足a +b +c =0,且a <b <c ,则函数y =cx +a 的图象可能是( )9.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1, 0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( ) A .4B .8C .16D .8210.小高骑自行车从家上学,先走上坡路达到A ,再走下坡路到达B ,最后平路到达学校,所 用时间与路程关系如图所示.放学后,他沿原路返回,且上坡、下坡、平路的速度分别与上学时保持一致,那么他从学校到家用的时间是( ) A .14分钟 B .17分钟 C .18分钟 D .20分钟第9题A B CO yx二.填空题11.过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是12.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图,则这次越野跑的全程为 米. 13.如图,直线y =﹣x +m 与y =nx +4n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x +m >nx +4n >0的整数解为________14.一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,则的值是15.直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b 1﹣b 2等于16.若直线l 与直线21y x =-关于y 轴对称,则直线l 的解析式为____________17.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过______分钟,容器中的水恰好放完.18.如图所示,函数x y =1和21433y x =+的图象相交于(-1,1),(2,2)两点.当21y y > 时,x 的取值范围是________________19.如图所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图8所示,那么△ABC 的面积是 20.已知直线(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3++S 2014= 三.解答题21.某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?2n 2y x n 1n 1=-+++22.已知A 、B 两地的路程为240千米,某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地,受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现在有货运收费项目及收费标准表,行驶路程S (千米)与行驶时间t (时)的函数图象(如图①),上周货运量折线统计图(如图②)等信息如下: 货运收费项目及收费标准表(1)汽车的速度为_______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围)及x 为何值时y 汽>y 火; (总费用=运输费+冷藏费+固定费用)(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?图①120 200 O图 ②参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案C A A A C C D C C D三.解答题21.解:(1)根据题意知,调配给甲连锁店电冰箱(70-x)台,调配给乙连锁店空调机(40-x)台, 电冰箱(x-10)台,则y=200x+170(70-x)+160(40-x)+150(x-10),即y=20x+16800∵0, 700, 400,100, xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩∴10≤x≤40.∴y=20x+168009 (10≤x≤40);(2)按题意知:y=(200-a)x+170(70-x)+160(40-x)+150(x-10),即y=(20-a)x+16800.∵200-a>170,∴a<30.当0<a<20时,x=40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x的取值在10≤x≤40内的所有方案利润相同;当20<a<30时,x=10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台;22.解:(1)60,100.(2)依题意,得y 汽=240⨯2x +24060⨯5x +200.y 汽=500x +200.y 火=240⨯1.6x +240100⨯5x +2280.y 火=396x +2280.若y 汽>y 火,得500x +200>396x +2280,∴x >20.。

八年级数学 一次函数 专题培优练习

八年级数学 一次函数 专题培优练习

八年级数学一次函数专题培优练习专题一:一次函数的定义、图像及性质1.对于一次函数y = kx + k -1(k ? 0),下列叙述正确的是()A.当0 < k <1 时,函数图象经过第一、二、三象限B.当k > 0 时,y 随x 的增大而减小C.当k <1 时,函数图象一定交于y 轴的负半轴D.函数图象一定经过点(-1, -2)2.对任意实数k,直线y=kx+(2k+1)恒过一定点,该定点的坐标是.3.直线y=kx+b 经过点(2,﹣4),且当3≤x≤6 时,y 的最大值为8 则k+b 的值为.4.两个一次函数y=ax+b与y=bx+a在同一坐标系中的图象大致是()5.如图,函数y=mx﹣4m(m 是常数,且m≠0)的图象分别交x 轴y 轴于点M、N,线段MN 上两点A、B(点B 在点A 的右侧),作AA1 ⊥x 轴,BB1⊥x 轴,且垂足分别为A1,B1,若OA1+OB1>4,则△OA1A 的面积S1 与△OB1B 的面积S2 的大小关系是()A.S1>S2 B.S1=S2 C.S1<S2 D.不确定的6.已知直线y =- n x +n +11n +1(n 为正整数)与坐标轴围成的三角形的面积为S n,则S1+S2+S3+…+S2018= .7.如图,在平面直角坐标系中,函数y=﹣2x+12 的图象分别交x 轴y 轴于A、B 两点,过点A 的直线交y 正半轴于点M,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式.=S△AOM,请直接写出点P (2)试在直线AM 上找一点P,使得S△ABP的坐标.8.点C 在直线AM 上,在坐标平面内是否存在点D,使以A、O、C、D 为顶点的四边形是正方形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.专题二:重要公式和结论1.直线y=kx+b过点(x1,y1),(x2,y2),若x1﹣x2=1,y1﹣y2=﹣2,则k 的值为.2.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(﹣2 0),B(0,1),则直线BC 的解析式为.3.如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,且A(4,0)、B(6,2)、M(4,3).在平面内有一条过点M 的直线将平行四边形OABC 的面积分成相等的两部分,请写出该直线的函数表达式.4.如图,点A的坐标为(﹣2,0),点B在直线上运动,当点B 的坐标是时,线段AB 最短,最短距离为.5.如图,点A、B的坐标分别为(0,2),(3,4),点P为x轴上的一点,若点B 关于直线AP 的对称点B′恰好落在x 轴上,则点P 的坐标为.6.对于坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2 两点间的“转角距离”,记作d(P1,P1).(1)令P0(3,﹣4),O为坐标原点,则d(O,P0)=;(2)已知O 为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x 与y 之间满足的关系式,并在所给的直角坐标系中,画出所有符合条件的点P 所组成的图形;7.设P0(x0,y0)是一个定点,Q(x,y)是直线y=ax+b 上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的“转角距离”.若P(a,﹣2)到直线y=x+4 的“转角距离”为10,求a 的值.专题三:直线与x轴正方向夹角和k的关系1.已知:一次函数的图象如图所示,则k= .2.如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b 的表达式为.3.如图,点A 的坐标为(﹣2,0),点B 在直线y=x 上运动,当线段AB 长最短时点B 的坐标为.4.如图,在平面直角坐标系中,直线l:y = 3 x ,直线l2:y =3x ,在3直线l1 上取一点B,使OB=1,以点B 为对称中心,作点O 的对称点B1,过点B1 作B1A1∥l2,交x 轴于点A1,作B1C1∥x 轴,交直线l2 于点C1,得到四边形OA1B1C1;再以点B1 为对称中心,作O 点的对称点B2,过点B2 作B2A2∥l2,交x 轴于点A2,作B2C2∥x 轴,交直线l2 于点C2,得到四边形OA2B2C2;…;按此规律作下去,则四边形OA n B n C n的面积是.5.已知,直线x+与x 轴,y 轴分别交于点A,B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a 为坐标系中的一个动点.= ;(1)则三角形ABC 的面积S△ABC点C 的坐标为;(2)证明不论 a 取任何实数,△BOP 的面积是一个常数;(3)要使得△ABC 和△ABP 的面积相等,求实数a 的值.6.如图,平面直角坐标系中,直线l 分别交x 轴、y 轴于A、B 两点,点A 的坐标为(1,0)∠ABO=30°,过点B 的直线y= x+m 与x 轴交于点C.(1)求直线l 的解析式及点C 的坐标.7.点D 在x 轴上从点C 向点A 以每秒1 个单位长的速度运动(0<t<4),过点D 分别作DE∥AB,DF∥BC,交BC、AB 于点E、F,连接EF,点G 为EF 的中点.①判断四边形DEBF 的形状并证明;②求出t 为何值时线段DG 的长最短.8.点P 是y 轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,说明理由.第五讲《一次函数》培优资料(2)2018.6.1专题四:一次函数与几何变换1. ( 1 )直线y = 2x +1 向下平移 3 个单位后的解析式是.( 2 )直线y = 2x +1 向右平移 3 个单位后的解析式是.2.如图,已知点 C 为直线y =x 上在第一象限内一点,直线y = 2x +1 交y轴于点A,交x 轴于B,将直线AB 沿射线OC 方向平移个单位,则平移后的直线的解析式为.C3.如图,平面直角坐标系中,△ABC 的顶点坐标分别是A(1,1),B (3,1),C(2,2),当直线与△ABC 有交点时,b 的取值范围是.4.在平面直角坐标中,已知点A(-2,3)、B(4,5),直线y=kx+1(k≠0 与线段AB 有交点,则k 的取值范围为.5.将函数y=2x+b(b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=﹣|2x+b|(b 为常数)的图象.若该图象在直线y=2 下方的点的横坐标x 满足0<x<3,则b 的取值范围为.6.如图,函数y=﹣2x+2 的图象分别与x 轴、y 轴交于A,B 两点,线段AB绕点A顺时针旋转90°得到线段AC,则直线AC的函数解析式是.7.如图,在平面直角坐标系中,矩形OABC 的顶点A,C 分别在x 轴y 轴上,点B 在第一象限,直线y=x+1 交y 轴于点D,且点D 为CO 中点,将直线绕点D 顺时针旋转15°经过点B ,则点B 的坐标为.8.如图1,已知平行四边形ABCD,AB∥x 轴,AB=6,点A 的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是平行四边形ABCD 边上的一个动点.(1)若点P 在边BC 上,PD=CD,求点P 的坐标.(2)若点P 在边AB,AD 上,点P 关于坐标轴对称的点Q 落在直线解:(1)∵CD=6,∴点P 与点C 重合,∴点P 坐标为(3,4).(2)①当点P 在边AD 上时,∵直线AD 的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P 关于x 轴的对称点Q1(a,2a+2)在直线y=x﹣1 上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P 关于y 轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1 上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P 在边AB 上时,设P(a,﹣4)且1≤a≤7,若等P 关于x 轴的对称点Q2(a,4)在直线y=x﹣1 上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P 关于y 轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1 上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P 的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).9.若点P 在边AB,AD,CD 上,点G 是AD 与y 轴的交点,如图2,过点P 作y 轴的平行线PM,过点G 作x 轴的平行线GM,它们相交于点M,将△PGM 沿直线PG 翻折,当点M 的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)(3)①如图1 中,当点P 在线段CD 上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2+m)2=m2,解得,∴P (﹣,4)根据对称性可知,P(,4)也满足条件.②如图 2 中,当点 P 在AB 上时,易知四边形 PMGM ′是正方形,边 长为 2,此时 P (2,﹣4).③如图 3 中,当点 P 在线段 AD 上时,设 AD 交 x 轴于 R .易证∠M ′RG= ∠M ′GR ,推出 M ′R=M ′G=GM ,设 M ′R=M ′G=GM=x .∵直线 AD 的解析式为 y=﹣2x ﹣2,∴R (﹣1,0),在Rt △OGM ′中,有 x 2=22+(x ﹣1)2,解得 x= ,∴P (﹣,3). 点P 坐标为(2,﹣4)或(﹣ ,3)或(﹣,4)或( ,4)10.如图,直线l1 与x 轴、y 轴分别交于A、B 两点,直线l2 与直线l1 关于x 轴对称,已知直线l1 的解析式为y=x+3,(1)求直线l2 的解析式;y=﹣x﹣3(2)过A 点在△ABC 的外部作一条直线l3,过点B 作BE⊥l3 于E,过点C 作CF⊥l3 于F,请画出图形并求证:BE+CF=EF;(2)如图.BE+CF=EF.∵直线l2 与直线l1 关于x 轴对称,∴AB=AC,∵l1 与l2 为象限平分线的平行线,∴△OAC 与△OAB 为等腰直角三角形,∴∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P,过P 点的直线与AC 边的延长线相交于点Q,与y 轴相交于点M,且BP=CQ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.(3)①对,OM=3 Array过Q 点作QH⊥y 轴于H,直线l2 与直线l1 关于x 轴对称∵∠POB=∠QHC=90°,BP=CQ,又∵AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBO(AAS),∴QH=PO=OB=CH∴△QHM≌△POM ∴HM=OM∴OM=BC﹣(OB+CM)=BC﹣(CH+CM)=BC﹣OM∴OM= BC=3.例1对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1 次斜平移后的点的坐标为(3,5),已知点A 的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.①若A. B. C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C 的坐标为(7,6),求出点B的坐标及n的值.例2 已知,在平面直角坐标系中,正方形ABOC的顶点在原点.(1)如图,若点C 的坐标为(-1,3),求A点坐标;(2)如图,点F 在AC 上,AB 交x 轴于点E。

一次函数培优-绝对经典

一次函数培优-绝对经典

一次函数培优1、若y 是z 的正比例函数,而z 是x 的一次函数,则y 是x 的( ) A .正比例函数 B.一次函数 C.其他函数 D.构不成函数关系2、已知一次函数b kx y +=,当20≤≤x 时,对应的函数值y 的取值范围是42≤≤-y ,则kb 的值为( )A.12B.6- C .6-或12- D.6或12 3、当=m 时,函数54)3(12-++=+x xm y m (0≠x )是一个一次函数.4、直线x y -=,2+=x y 与x 轴围成的图形的周长是 (结果保留根号). 5、如图,直线834+-=x y 与x 轴、y 轴分别交于B A 、两点,M 是OB 上一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的点C 处,则直线AM 的解析式为 .6、在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做一次函数的坐标三角形.例如,图中的一次函数的图象与x 轴、y 轴分别交于点B A 、两点,则OAB ∆为此函数的坐标三角形.(1)求函数343+-=x y 的坐标三角形的三条边长;(2)若函数b x y +-=43(b 为常数)的坐标三角形的周长为16,求此三角形的面积.7、如图,直线l :33+-=x y 与x 轴、y 轴分别交于点B A 、两点,AOB ∆与ACB ∆关于直线l 对称,求过点C B 、的直线的解析式.8、如图,直线6+=kx y 与x 轴、y 轴分别交于点F E 、,已知点E 的坐标为(8-,0),点A 的坐标为(6-,0). (1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出OPA ∆的面积S 关于x 的函数关系式,并写出自变量的取值范围; (3)探究:当点P 运动到什么位置时,OPA ∆的面积为827,并说明理由.9、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km; (2)请解释图中点B 的实际意义; 图象理解A BC D Oy /km900 12 x /h4(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?10、如图,直线OB 是一次函数x y 2=的图象,点A 的坐标为(0,2),在直线OB 上找一点C ,使得ACO ∆为等腰三角形,求点C 的坐标及直线AC 的解析式.11、如图,一次函数33+-=x y 的图象x 轴、y 轴分别交于点B A 、,以线段AB 为直角边在第一象限内作ABC Rt ∆,且使o30=∠ABC . (1)求ABC ∆的面积;(2)若在第二象限内有一点P (m ,23),使得ABP ∆和ABC ∆的面积相等,求m 的值; (3)是否存在使QAB ∆是等腰三角形并且在坐标轴上的点Q ?若存在,请写出所有点Q 的坐标;若不存在,请说明理由.12、如图,已知直线1l :2+-=x y 与直线2l :82+=x y 相交于点F ,1l 、2l 分别交x 轴于点G E 、,长方形ABCD 的顶点D C 、分别在直线1l 、2l 上,顶点B A 、都在x 轴上,且点B 与点G 重合.(1)求点F 的坐标和GEF ∠的度数; (2)求长方形ABCD 的边DC 和BC 的长;(3)若长方形ABCD 从原地出发,沿x 轴正方向以每秒1个单位长度的速度平移,设移动时间t (60≤≤t )秒,矩形ABCD 与GEF ∆的重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.。

浙教版2022-2023学年八上数学第5章 一次函数 培优测试卷1(解析版)

浙教版2022-2023学年八上数学第5章 一次函数 培优测试卷1(解析版)

浙教版2022-2023学年八上数学第5章 一次函数 培优测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的. 1.小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量有( )A .金额B .数量C .单价D .金额和数量 【答案】D【解析】常量是固定不变的量,变量是变化的量, 单价是不变的量,而金额是随着数量的变化而变化, 故答案为:D .2.如图,三个正比例函数的图象分别对应表达式:将a ,b ,c 从小到大排列为( ) ①y=ax ;②y=bx ;③y=cxA .a <b <cB .a <c <bC .b <a <cD .c <b <a 【答案】B【解析】根据三个函数图象所在象限可得a <0,b >0,c >0, 再根据直线越陡,|k|越大,则b >c . 则a <c <b . 故答案为:B .3.对于函数y =﹣2x+1,下列结论正确的是( ) A .y 值随x 值的增大而增大B .它的图象与x 轴交点坐标为(0,1)C .它的图象必经过点(﹣1,3)D .它的图象经过第一、二、三象限 【答案】C【解析】∵k =﹣2<0,∴y 值随x 值的增大而减小,结论A 不符合题意; ∵当y =0时,﹣2x+1=0,解得:x = 12,∴函数y =﹣2x+1的图象与x 轴交点坐标为( 12,0),结论B 不符合题意;∵当x =﹣1时,y =﹣2x+1=3,∴函数y =﹣2x+1的图象必经过点(﹣1,3),结论C 符合题意; ∵k =﹣2<0,b =1>0,∴函数y =﹣2x+1的图象经过第一、二、四象限,结论D 不符合题意. 故答案为:C .4.如图,函数y =2x 和y =ax +4的图象相交于点A(32,3),则不等式2x <ax +4的解集为( )A .x <32B .x <3C .x >32D .x >3【答案】A【解析】根据函数图象得,当x <32时,2x <ax +4.故答案为:A.5.下列对一次函数y =ax+4x+3a ﹣2(a 为常数,a≠﹣4)的图象判断正确的是( ) A .图象一定经过第二象限B .若a >0,则其图形一定过第四象限C .若a >0,则y 的值随x 的值增大而增大D .若a <4,则其图象过一、二、四象限 【答案】C【解析】 y =(a +4)x +3a −2 ,当 a <−4 时, a +4<0,3a −2<0, 图象经过第二、三、四象限.y 的值随x 的增大而减小.当 −4<a <23 时, a +4>0,3a −2<0, 图象经过第一、三、四象限.y 的值随x 的增大而增大.当 a >23时, a +4>0,3a −2>0, 图象经过第一、二、三象限.y 的值随x 的增大而增大.综合分析,只有C 符合题意. 故答案为:C.6.如果点 A(m +1,n −1) 、 B(m −2,n +5) 均在一次函数 y =kx +b(k ≠0) 的图象上,那么 k 的值为( ) A .2 B .3 C .-3 D .-2 【答案】D【解析】∵点A (m+1,n -1)、B (m -2,n+5)均在一次函数y=kx+b (k≠0)的图象上,∴{k(m +1)+b =n −1,①k(m −2)+b =n +5,② ,①-②解得k=-2. 故选:D .【分析】直接把两点代入一次函数y=kx+b (k≠0),求出k 的值即可.7.一次函数 y =mx +n 与正比例函数 y =mnx (m ,n 为常数、且 mn ≠0 )在同一平面直角坐标系中的图可能是( )A .B .C .D .【答案】C【解析】A 、∵直线y=mx+n 经过第一,二,三象限 ∴m >0,n >0, ∴mn >0,∴直线y=mnx 经过第一,三象限,故A 不符合题意; B 、∵直线y=mx+n 经过第一,四,三象限 ∴m >0,n <0, ∴mn <0,∴直线y=mnx 经过第二,四象限,故B 不符合题意; C 、∵直线y=mx+n 经过第一,四,三象限 ∴m >0,n <0,∴mn <0,∴直线y=mnx 经过第二,四象限,故C 符合题意; D 、∵直线y=mx+n 经过第一,四,二象限 ∴m <0,n >0, ∴mn <0,∴直线y=mnx 经过第二,四象限,故D 不符合题意; 故答案为:C.8.已知一次函数 y =−2x −2 ,图象与 x 轴、 y 轴交点 A 、 B 点,得出下列说法: ①A (−1,0) , B(0,−2) ; ②A 、 B 两点的距离为5; ③ΔAOB 的面积是2;④当 y ≥0 时, x ≤−1 ; 其中正确的有( ) A .1个 B .2个 C .3个 D .4个 【答案】B【解析】∵在一次函数 y =−2x −2 中,当 y =0 时 x =−1 ∴A (−1,0)∵在一次函数 y =−2x −2 中,当 x =0 时 y =−2 ∴B(0,−2) ∴①符合题意;∴AB 两点的距离为 √(0+1)2+(−2−0)2=√5∴②是错的;∵S ΔAOB =12OA •OB , OA =1 , OB =2∴S ΔAOB =12×1×2=1∴③是错的;∵当 y ≥0 时, −2x −2≥0 ∴−2x ≥2 , x ≤−1 ∴④是正确的;∴说法①和④是符合题意 ∴正确的有2个 故答案为:B .9.一次函数y =54x −15的图象与x 轴、y 轴分别交于点A 、B ,O 为坐标原点,则在△OAB 内部(包括边界),纵坐标、横坐标都是整数的点共有( ) A .90个 B .92个 C .104个 D .106个 【答案】D【解析】当x =0时,y =﹣15, ∴B (0,﹣15),当y =0时,0=54x ﹣15,∴x =12, ∴A (12,0),x =0时,y =﹣15,共有16个纵坐标、横坐标都是整数的点,x =1时,y =54×1﹣15=﹣1334,共有14个纵坐标、横坐标都是整数的点,同理x =2时,y =﹣1212,共有13个纵坐标、横坐标都是整数的点,x =3时,y =﹣1114,共有12个纵坐标、横坐标都是整数的点,x =4时,y =﹣10,共有11个纵坐标、横坐标都是整数的点, x =5时,y =﹣834,有9个纵坐标、横坐标都是整数的点,x =6时,y =﹣712,有8个纵坐标、横坐标都是整数的点,x =7时,y =﹣614,有7个纵坐标、横坐标都是整数的点x =8时,y =﹣5,共有6个纵坐标、横坐标都是整数的点, x =9时,y =﹣334,共有4个纵坐标、横坐标都是整数的点,x =10时,y =﹣212,共有3个纵坐标、横坐标都是整数的点,x =11时,y =﹣114,共有2个纵坐标、横坐标都是整数的点, x =12时,y =0,共有1个即A 点,纵坐标、横坐标都是整数的点.在△OAB 内部(包括边界),纵坐标、横坐标都是整数的点有16+14+13+12+11+9+8+7+6+4+3+2+1=106个. 故答案为:D .10.如图,直线y =−43x +4与x 轴交于点B ,与y 轴交于点C ,点E(1,0),D 为线段BC 的中点,P为y 轴上的一个动点,连接PD 、PE ,当△PED 的周长最小时,点P 的坐标为( )A .(0,45)B .(0,1)C .(1,0)D .(0,32)【答案】A【解析】如图,作点E 关于y 轴的对称点F ,连接DF ,交y 轴于点Q ,则QE =QF ,连接PF ,∵△PED 的周长=PD +PE +DE =PF +PE +PD ≥DF +DE ,点D ,E 是定点,则DE 的长不变, ∴当PQ 重合时,△PED 的周长最小,由y =−43x +4,令x =0,y =4,令y =0,则x =3∴B(3,0),C(0,4)△D 是BC 的中点 △D(32,2)△E(1,0),点F 是E 关于y 轴对称的点 △F(−1,0)设直线DF 的解析式为:y=kx+b ,将D(32,2),F(−1,0)代入, 0=−k+b2=32k+b 解得k=45b=45△直线DF 的解析式为:y=45x+45 令x=0,则y=45 即P(0,45)故答案为:A二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.在圆的面积公式S=πR 2中,常量是 . 【答案】π【解析】∵保持不变的量是常量, ∴其中的π是常量.12.若直线y =2x +3下移后经过点(5,1),则平移后的直线解析式为 . 【答案】y =2x −9【解析】设平移后的解析式为:y=2x+b , ∵将直线y=2x+3下移后经过点(5,1), ∴1=10+b ,解得:b =−9,故平移后的直线解析式为:y =2x −9. 故答案为:y =2x −9.13.小明放学后步行回家,他离家的路程s (米)与步行时间t (分钟)的函数图象如图所示,则他步行回家的平均速度是 米/分钟.【答案】80【解析】由图知,他离家的路程为1600米,步行时间为20分钟, 则他步行回家的平均速度是:1600÷20=80(米/分钟), 故答案为:80.14.已知一次函数 y =kx +b (k 、b 是常数, k ≠0 )的图象与x 轴交于点 (2,0) ,与y 轴交于点 (0,m) .若 m >1 ,则k 的取值范围为 .【答案】k <−12【解析】∵一次函数 y=kx+b ( k 、b 是常数, k≠0 )的图象与x 轴交于点 (2,0) ,与y 轴交于点 (0,m) ,∴{m =b 0=2k +b , ∴m =−2k , ∵m >1 ,∴−2k >1 ,即 k <−12 .故答案为: k <−12.15.某音像社对外出租的光盘的收费方法是:每张光盘出租后的头两天,每天收0.8元,以后每天收0.5元,那么一张光盘在出租后n 天(n≥2)应收租金 元. 【答案】0.5n+0.6【解析】当租了n 天(n≥2),则应收钱数: 0.8×2+(n -2)×0.5, =1.6+0.5n -1, =0.5n+0.6(元).答:共收租金0.5n+0.6元. 故答案为:0.5n+0.6.16.当m ,n 是正实数,且满足m+n =mn 时,就称点P (m , mn)为“完美点”.已知点A (1,6)与点B 的坐标满足y =﹣x+b ,且点B 是“完美点”.则点B 的坐标是 . 【答案】(4,3)【解析】将点A (1,6)代入y=-x+b , 得b=7,则直线解析式为:y=-x+7, 设点B 坐标为(x ,y ), ∵点B 满足直线y=-x+7, ∴B (x ,-x+7), ∵点B 是“完美点”,∴{m =x m n=−x +7① ∵m+n=mn ,m ,n 是正实数, ∴mn +1=m ②将②代入①得: {m =xm −1=−x +7 解得x=4,∴点B 坐标为(4,3), 故答案为:(4,3)三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.已知一次函数y=﹣mx+3和y=3x ﹣n 的图象交于点P (2,﹣1) (1)(1)直接写出方程组 {mx +y =33x −y =n的解;(2)求m 和n 的值. 【答案】解:(1)∵一次函数y=﹣mx+3和y=3x ﹣n 的图象交于点P (2,﹣1),∴方程组{mx +y =33x −y =n的解是 {x =2y =−1;(2)将P (2,﹣1)代入y=﹣mx+3, 得﹣2m+3=﹣1, 解得m=2,将P (2,﹣1)代入y=3x ﹣n , 得6﹣n=﹣1, 解得n=7.(1)解:∵一次函数y=﹣mx+3和y=3x ﹣n 的图象交于点P (2,﹣1),∴方程组{mx +y =33x −y =n的解是 {x =2y =−1;(2)(2)解:将P (2,﹣1)代入y=﹣mx+3, 得﹣2m+3=﹣1, 解得m=2,将P (2,﹣1)代入y=3x ﹣n , 得6﹣n=﹣1, 解得n=7. 18.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称为“理想点”.例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M (2,a )是“理想点”,且在正比例函数y=kx (k 为常数,k≠0)图象上,求这个正比例函数的表达式.(2)函数y=3mx ﹣1(m 为常数,且m≠0)的图象上存在“理想点”吗?若存在,请用含m 的代数式表示出“理想点”的坐标;若不存在,请说明理由. 【答案】(1)解:∵点M (2,a )是正比例函数y=kx (k 为常数,k≠0)图象上的“理想点”,∴a=4,∵点M (2,4)在正比例函数y=kx (k 为常数,k≠0)图象上, ∴4=2k , 解得k=2∴正比例函数的解析式为y=2x(2)解:假设函数y=3mx ﹣1(m 为常数,m≠0)的图象上存在“理想点”(x ,2x ), 则有3mx ﹣1=2x , 整理得:(3m ﹣2)x=1,当3m ﹣2≠0,即m≠ 23 时,解得:x= 13m−2 ,当3m ﹣2=0,即m= 23 时,x 无解,综上所述,当m≠ 23 时,函数图象上存在“理想点”,为( 13m−2 , 23m−2);当m= 23时,函数图象上不存在“理想点”19.某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正(2)设三人间共住了x 人,则双人间住了 人,一天一共花去住宿费用y 元表示,写出y 与x 的函数关系式;(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么? 【答案】(1)解:设三人间普通客房住了x 间,双人间普通客房住了y 间.根据题意得:{3x +2y =5050×50%×3x +70×50%×2y =1510解得: {x =8y =13 ∴三人间普通客房住了8间,双人间普通客房住了13间 (2)(50−x);y =−10x +1750(3)解: 不是,由上述一次函数可知,y 随x 的增大而减小,当三人间住的人数大于24人时,所需费用将少于1510元 【解析】(2) (50−x) ;根据题意得: y =25x +35(50−x) 即 y =−10x +175020.小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min 后距出发点的距离为y m .图中折线表示小亮在整个训练中y 与x 的函数关系,其中A 点在x 轴上,M 点坐标为(2,0).(1)A 点所表示的实际意义是 ; OM MA= ;(2)求出AB 所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇? 【答案】(1)小亮出发 103 分钟回到了出发点;32(2)解:由(1)可得A 点坐标为( 103 ,0),设y=kx+b ,将B (2,480)与A ( 103,0)代入,得:{480=2k +b0=103k +b, 解得 {k =−360b =1200.所以y=﹣360x+1200(3)解:小刚上坡的平均速度为240×0.5=120(m/min ), 小亮的下坡平均速度为240×1.5=360(m/min ),由图象得小亮到坡顶时间为2分钟,此时小刚还有480﹣2×120=240m 没有跑完,两人第一次相遇时间为2+240÷(120+360)=2.5(min ).(或求出小刚的函数关系式y=120x ,再与y=﹣360x+1200联立方程组,求出x=2.5也可以.) 【解析】(1)根据M 点的坐标为(2,0),则小亮上坡速度为: 4802=240(m/min ),则下坡速度为:240×1.5=360(m/min ),故下坡所用时间为: 480360 = 43(分钟),故A 点横坐标为:2+ 43 = 103 ,纵坐标为0,得出实际意义:小亮出发 103分钟回到了出发点;OM MA = 243= 32 .故答案为:小亮出发 103 分钟回到了出发点; 32.21.如图,直线l 1的解析表达式为y=- 12x -1,且l 1与x 轴交于点D ,直线l 2经过定点A (2,0),B (-1,3),直线l 1与l 2交于点C .(1)求直线l 2的函数关系式; (2)求△ADC 的面积; (3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请写出点P 的坐标. 【答案】(1)解:设l 2的函数关系式为:y=kx+b , ∵直线过A (2,0),B (-1,3),∴{2k +b =0−k +b =3 ,解得: {k =−1b =2 , ∴l 2的函数关系式为:y=-x+2(2)解:∵l 1的解析表达式为y=- 12x -1,∴D 点坐标是(-2,0), ∵直线l 1与l 2交于点C .∴{y =−12x −1y =−x +2,解得 {x =6y =−4 , ∴C (6,-4),△ADC 的面积为: 12 ×AD×4= 12×4×4=8(3)解:∵△ADP 与△ADC 的面积相等,∴△ADP 的面积为8,∵AD 长是4,∴P 点纵坐标是4, 再根据P 在l 2上,则4=-x+2,解得:x=-2,故P点坐标为:(-2,4)22.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?【答案】(1)兔子;乌龟;1500(2)解:结合图象得出:兔子在起初每分钟跑700米.1500÷30=50(米),乌龟每分钟爬50米.(3)解:700÷50=14(分钟),乌龟用了14分钟追上了正在睡觉的兔子.(4)解:∵48千米=48000米,∴48000÷60=800(米/分),(1500−700)÷800=1(分钟),30+0.5−1×2=28.5(分钟),兔子中间停下睡觉用了28.5分钟.【解析】(1)∵乌龟是一直跑的而兔子中间有休息的时刻;∴折线OABC表示赛跑过程中兔子的路程与时间的关系;线段OD表示赛跑过程中乌龟的路程与时间的关系;由图象可知:赛跑的路程为1500米;故答案为:兔子、乌龟、1500;23.已知直线l1:y=﹣34x+3与直线l2:y=kx﹣163交于x轴上的同一个点A,直线l1与y轴交于点B,直线l2与y轴的交点为C.(1)求k的值,并作出直线l2图象;(2)若点P是线段AB上的点且△ACP的面积为15,求点P的坐标;(3)若点M 、N 分别是x 轴上、线段AC 上的动点(点M 不与点O 重合),是否存在点M 、N ,使得△ANM△△AOC ?若存在,请求出N 点的坐标;若不存在,请说明理由. 【答案】(1)解:∵直线l 1:y=﹣ 34x+3与x 轴交于点A ,∴令y=0时,x=4,即A (4,0),将A (4,0)代入直线l 2:y=kx ﹣ 163 ,得k= 43,直线l 2图象如图1所示;(2)解:设P (a ,b ),根据题意得:S △ACP =S △ABC ﹣S △PBC = 12 ×(3+ 163 )×4﹣ 12 ×(3+ 163)a=15,解得:a= 25 ,将P ( 25 ,b )代入直线l 1得:b= 25 ×(﹣ 34 )+3=﹣ 310 +3= 2710,∴点P 的坐标( 25 , 2710)(3)解:如图2,作ND△x 轴于D ,∵AC= √42+(163)2= 203 ,△ANM△△AOC ,∴AM=AC= 203 ,AN=AO=4,MN=OC= 163 ,△ANM=△AOC=90°,∵S △AMN = 12 AM•ND= 12AN•MN ,∴ND= AN⋅MN AM = 4×163203 = 165,将N 的纵坐标y=﹣ 165 代入直线l 2得:x= 85 ,∴当N 的纵坐标为( 85 ,﹣ 165)时,△ANM△△AOC24.如图,在平面直角坐标系中,点A (0,b )、B (a ,0)、D (d ,0),且a 、b 、d 满足 √a +1+|b −3|+(2−d)2=0,DE△x 轴且△BED=△ABD ,BE 交y 轴于点C ,AE 交x 轴于点F(1)求点A 、B 、D 的坐标;(2)求点E 、F 的坐标;(3)如图,点P (0,1)作x 轴的平行线,在该平行线上有一点Q (点Q 在点P 的右侧)使△QEM=45°,QE 交x 轴于点N ,ME 交y 轴的正半轴于点M ,求 AM−MQ PQ 的值.【答案】(1)解:∵√a +1+|b −3|+(2−d)2 =0, ∴a=﹣1,b=3,d=2, ∴A (0,3),B (﹣1,0),D (2,0)(2)解:∵A (0,3),B (﹣1,0),D (2,0), ∴OB=1,OD=2,OA=3, ∴AO=BD , 在△ABO和△BED 中, {∠ABO =∠BED ∠AOB =∠BDE =90°AO =BD , ∴△ABO△△BED (AAS ), ∴DE=BO=1, ∴E (2,1), 设直线AE 解析式为y=kx+b , 把A 、E 坐标代入,可得 {3=b 1=2k +b ,解得 {k =1b =3 , ∴直线AE 的解析式为y=﹣x+3, 令y=0,可解得x=3, ∴F (3,0)(3)解:如图,过E 作EG△OA ,EH△PQ ,垂足分别为G 、H ,在GA 上截取GI=QH ,∵E (2,1),P (﹣1,0), ∴GE=GP=GE=PH=2, ∴四边形GEHP为正方形, ∴△IGE=△EHQ=90°, 在Rt△IGE 和Rt△QHE 中, {GE =HE∠IGE =∠EHQ IG =QH, ∴△IGE△△QHE (SAS ), ∴IE=EQ ,△1=△2, ∵△QEM=45°, ∴△2+△3=45°, ∴△1+△3=45°, ∴△IEM=△QEM , 在△EIM 和△EQM 中, {IE =QE∠IEM =∠QEM ME =ME , ∴△EIM=EQM (SAS ),∴IM=MQ , ∴AM ﹣MQ=AM ﹣IM=AI , 由(2)可知OA=OF=3,△AOF=90°, ∴△A=△AEG=45°, ∴PH=GE=GA=IG+AI , ∴AI=GA ﹣IG=PH ﹣QH=PQ ,∴AM−MQ PQ = AI PQ =1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数专题培优(一)
【知识提要】
一.函数
1.定义:在某一变化过程中有两个变量x、y,如

,那么我们称y是x的函数,x是自变量。

2.函数的表示法:函数有三种表示方法:
(1) ,(2), (3) .
3. 函数的图像:在一个函数中,如果将x、y的每一对对应值分别作为点的横坐标和纵坐标,都可以在坐标平面内描出一个点,所有这样的点便形成一个图形,那么这个图形就叫做这个函数的图像。

画函数图象三步骤:(1) ,
(2) ,
(3). 二.一次函数
1.定义:在某一变化过程中有两个变量x、y,如果y与x的关系可以表示为,则称y是x的一次函数。

注意:⑴

特别地,如果b=0,则一次函数y=kx+b
就成为y=kx,此时又称y是x 的。

可见是的特殊情况。

2.图像
(1)正比例函数y=kx的图像:正比例函数y=kx 的图像是一条经过(0, )、(1,)的直线。

我们称之为直线y=kx。

当k>0时,直线y=kx经过第象限,y随着x的增大而;
当k<0时,直线y=kx经过第象限,y随着x的增大而;
(2)一次函数y=kx+b的图像:函数y=kx+b的图像是一条经过(0,)且平行于直线的直线,我们称之为直线。

其中b叫做直线y=kx+b在y轴上的。

直线y=kx+b通常有两种画法:
①; ②。

3. 性质:对于一次函数y=kx+b(k≠0)
当k>0时,y随x的增大而,
当k< 0时,y随x的增大而。

注意:①对于一次函数y=kx+b(k≠0),x每增加1,y的值就增加。

②正比例函数中有正比例关系,但正比例关系不一定能够确定正比例函数。

如y=3(x-4), 其中有正比例关系,却不是正比例函数。

③经过点(0,k)且平行于x轴的直线叫做直线y=k,经过点(k ,0)且平行于y轴的直线叫做直线x=k.
④对于直线
111
:l y k x b
=+和
222
:
l y k x b
=+

1
l∥
2
l时,
12
k k
=;

12
l l
⊥时,
12
1
k k=-.
⑤一次函数y=kx+b的值,在a≤x≤b这一范围内既有最大值,也有最小值(要看k的正负)。

【基础训练】
1. 已知23
(2)2
k
y k x-
=--,当k 时,y是x的一次函数。

2.已知一次函数3
(3)2
k
y k x-
=--, y随x 的增大而减小,则k的值为
3.
已知2
(2
y k x k
=-+,y是x的正比例函数,则y随x的增大而
4.已知直线y=2x-3经过点(m,m+1), 则m的值为
5.已知y与x+3成正比例,且当x=2时y=4,则当x=-2是y的值为
6. 已知一次函数y=kx+5的图象经过点(-1,2),则k=。

7.一次函数y=kx+2图像与x轴交点到原点的距离为4,那么k的值为__ ___。

8.已知m 是整数,直线(4)2y m x m =+++的不过第二象限,则m 的值为 .
9. 已知直线y=(k+1)x+k 与y 轴的交点坐
标是
(0,-2),则该直线到原点的距离为是________。

10. 已知一次函数y= kx + b , k b<0,则所有这样的一次函数的图像必经过若干公共象限,这个公共象限即第________象限。

11. 若直线y=(k+2)x+b 上两点(1, y 1)和(5, y2)满足y 1<y 2,则k的取值范围为_________。

12.已知一条直线平行于直线y =-3x+m ,且与直线
y=-x -5的交点在y 轴上,该直线为___________。

13.已知一条直线垂直于直线y=-3x +m,且与直线
y=-x-5的交点在y轴上,该直线为___________。

14.对于直线y=k (x-3)+4,无论k 取任何实数总会经过一个固定的点,该点的坐标为 。

15.对于一次函数y=(k-2)x +3-k,x 每增加1,y 的值就减少4,该函数的解析式为 ,它的图像与x 轴的交点的坐标为 ,与y 轴的交点的坐标为 ,与两坐标轴所围成的三角形的面积为 。

【强化提升】
1.已知A(-2,3),B(3,1),P 点在x 轴上,(1)求P A+P B最小时点P的坐标。

(2)求PA-PB 最大时点P 的坐标。

2.已知(如图)一次函数y=
1
2
x -3的图象与x 轴、y轴分别交于A、B两点,过点C (4,0)作AB 的垂线交AB 于点E,交y 轴于点D ,求BDE
S

3. 如图, 等腰梯形ABC D中,AD ∥BC , BC 在x轴上,点D在y 轴上,直线l: 1y kx =-平分梯形A BC D的面积,已知A(8,8). 求k的值。

4. 如图,A 、B分别是x 轴上位于原点左右两侧的点,点P (2,p )在第一象限,直线PA 交y 轴于点C(0, 2),直线PB 交y轴于点D ,△AOP 的面积为6。

(1)求p的值;
(2)若△BOP 与△DOP 的面积相等,求直线BD 的函数解析式。

5.如图,直线y=-2x +6和直线y=x 相交于点D,与x轴、y 轴分别交于点Q 、C ,动点P(x ,0)在OQ 上移动(0<x<3),过点P 作直线L 与x 轴垂直,并与两直线交于点A 、B . (1)求点D 的坐
标;
(2)设梯形OBAC的面积为S,求S与x之间的函数关系式;
(3)当x为何值时,直线L平分△ODQ的面积?。

相关文档
最新文档