理论力学课后答案第八章

合集下载

理论力学课后习题答案-第8章--动量定理及其应用

理论力学课后习题答案-第8章--动量定理及其应用

论力学课后习题答案-第8章--动量定理及其应用第8章 动量定理及其应用8-1 计算下列图示情况下系统的动量。

(1) 已知OA =AB =l ,θ=45°,ω为常量,均质连杆AB 的质量为m ,而曲柄OA 和滑块B 的质量不计(图a )。

(2) 质量均为m 的均质细杆AB 、BC 和均质圆盘CD 用铰链联结在一起并支承如图。

已知AB = BC = CD = 2R ,图示瞬时A 、B 、C 处于同一水平直线位置,而CD 铅直,AB 杆以角速度ω转动(图b )。

(3) 图示小球M 质量为m 1,固结在长为l 、质量为m 2的均质细杆OM 上,杆的一端O 铰接在不计质量且以速度v 运动的小车上,杆OM 以角速度ω绕O 轴转动(图c )。

解:(1)p = mv C =ωm l 25,方向同Cv (解图(a ));(2)p = mv C 1 + mv C 2 = mv B = 2Rm ω,方向同Bv ,垂直AC (解图(b )); (3)j i p )60sin 260sin ()]60cos 2()60cos ([2121︒+︒+︒-+︒-=ωωωωlm l m l v m l v m j i 423]42)[(212121m m l l m m v m m +++-+=ωω(解图(c ))。

习题8-1图ABOθω ABCDωOMvω 60˚(a)(b)(c)8-2 图示机构中,已知均质杆AB 质量为m ,长为l ;均质杆BC 质量为4m ,长为2l 。

图示瞬时AB 杆的角速度为ω,求此时系统的动量。

解:杆BC 瞬时平移,其速度为v Bωωωm l m l l m p p p BCAB 2942=+=+= 方向同v B 。

8-3 两均质杆AC 和BC 的质量分别为m 1和m 2,在C 点用铰链连接,两杆立于铅垂平面内,如图所示。

设地面光滑,两杆在图示位置无初速倒向地面。

问:当m 1= m 2和m 1= 2m 2时,点C 的运动轨迹是否相同。

1-8章的习题答案理论力学.doc

1-8章的习题答案理论力学.doc

第一章静力学公理和物体的受力分析一、选择题与填空题1.C2.ACD3.A, B两处约束力的方向如图所示60°第二章平面力系一、选择题与填空题■1. B; D。

2. B。

3. F;向上。

4. B。

5. 4^M;方向与水平线成60角,指向 23L右下。

6. 10kN; 10kN ; 5kN; 5kN。

7. 100kN;水平向右。

二•计算题1. F B - -70 KN F AX =70 KN ,F Ay =120 KN , M A二-30KN m2. F AX - -qa F BX二 F qa F Ay =qa F F By 二 qa - F3. F= -5kN F Dy = 4.33kN F E-4.33kN F C =24.41kND xF B^ -17.08kN F AX=F BX = -5kN l^y = -14.08kN M A=T4.66kN mF AX =10N FAy =20N M A =15N mF CD =14.1N6F Ax=2.5kN F Ay=—2.16kN M A=」kN ,m F c =20.33kN7 F B=40kNF AX = —10kNFA ^-20kN M -50kN m F cx = 40kNF ey = 0F HX =300N F Hy =100N第三章空间力系少2(-8. F A ^ = -100N F Ay 二-300N F Ex 二-300N F Ey =100N F °y 二 200N整=一一A > X Y m 一:J E £c X一、选择题与填空题f—- - Fa 6 Fa 1.B。

2.B。

3. M x(F)=O ; M y(F) —H2 44.F x=-40.2N; F y=30-2N; M z=240.2 N m。

5.F z= F sin :;F y= F cos :cos :;M x(F)二 F(ccos'cos : bsin )。

理论力学习题解答(8-13章)

理论力学习题解答(8-13章)
力的平衡条件
对于一个物体,如果受到的合力为零,则该物体处于力的平衡状态。
力的平衡与运动状态
力的平衡状态下,物体的运动状态保持不变,即速度和方向都不发生变化。
力矩是力和力臂的乘积,表示力对物体转动作用的物理量。
力矩概念
力矩的方向
力矩的几何意义
力矩的方向按照右手定则确定,即右手四指从转动轴指向力的方向,大拇指指向转动方向。
动量定理,描述了物体加速度与其所受合外力之间的线性关系。
详细描述
牛顿第二定律,也被称为动量定理,表述为F=ma,其中F代表合外力,m代表质量,a代表加速度。该定律揭示了物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
牛顿第二定律
作用与反作用定律,描述了作用力和反作用力大小相等、方向相反的特性。
伯努利方程
层流与湍流,定常流动与非定常流动,一维、二维、三维流动。
流体流动的分类
流体质量守恒,流量连续,无质量亏损或增加。
连续性方程
流体动力学基础
03
拉格朗日法
追踪流体质点运动的方法,描述流场中质点位置随时间变化。
01
微元体分析法
对流场中微小体积元进行分析,列出流体运动和力的平衡方程。
02
欧拉法
描述流体运动随时间变化的方法,基于流体质点运动观点。
天体运动的计算方法
天体运动的计算方法通常涉及到对万有引力定律的应用,以及运用运动学和动力学原理。
总结词
在计算天体运动时,首先需要确定天体的质量、位置和速度等参数,然后根据万有引力定律计算出天体之间的相互作用力。接着,运用牛顿第二定律和运动学原理,可以求解出天体的加速度、速度和位移等参数。最后,通过比较理论计算结果和观测数据,可以对天体运动的规律进行验证和预测。

理论力学第8章习题解答

理论力学第8章习题解答

第八章 质点系动力学:矢量方法 习题解答8-1 一个质量为5 kg 弹头M 以水平速度v = 60 m/s 飞行,在D 处爆炸成位于同一水平面内如图示速度方向的两块碎片A 和B 。

已知碎片A 的速度大小v A = 90 m/s 。

试求:(1) 碎片A 的质量m A ;(2) 碎片B 的速度大小v B 。

解:取弹头M 为研究对象,弹头爆炸前后动量守恒 () 30cos B A v m M Mv -= () 30sin 0B A A A v m M v m --=解得M v vm A A 33=,AA B v v vv v 32--=, 代入数据得:kg 92.1=A m ,m/s 64.112=B v .8-2 一个质量为m 1的人手里拿着质量为m 2的物体,以仰角θ,速度v 0向前跳起。

当他到达最高点时将物体以相对速度u 水平地向后抛出。

如果不计空气阻力,问由于物体的抛出,跳远距离增加了多少?解:取m 1和m 2物体系统为研究对象,人跳至最高点时只有水平速度 ϑc o s 01v v =,所费时间 gv t ϑsin 0=。

抛物前后系统水平动量守恒,即 ()()u v m v m v m m -+=+1211021c o s ϑ,式中1v 为抛物后人的速度。

解得21201c o s m m um v v ++=ϑ,可见,人的速度增量为2121Δm m um v +=,从而跳远距离增加()gm m uv m v t s 21021sin ΔΔ+==ϑ.8-3质量为m 1的平台AB 放在水平面上,平台与水平面间的滑动摩擦因数为f 。

质量为m 2的小车D 由绞车拖动,相对平台的运动规律为221bt s =,其中b 为已知常数。

不计绞车质量,求平台的加速度。

解:1)设平台与水平面间的滑动摩擦因数比较小,当小车D 相对平台运动时,平台AB 的有速度1v (向左),小车D 的相对速度bt s v == r ,(向右),小车D 的绝对速度bt v v v v +-=+-=1r e a ,(向右), 滑动摩擦力为 N fF F =题8-3图题8-3受力图题8-1图由动量定理,()[]F v bt m v m t=-+-1211d d()021=++-N F g m m解得()212121m m g m m f b m a ++-=, ()g m m bm f 212+≤.当()gm m bm f 212+>时,01=a .8-4 质量为m 1的矩形板可在如图所示的光滑水平面上运动。

《理论力学Ⅰ》第八版课后习题解析

《理论力学Ⅰ》第八版课后习题解析

理论力学Ⅰ第 8 版课后习题答案目录:
第一章静力学公理和物体的受力分析
第二章平面力系
第三章空间力系
第四章摩擦
第五章点的运动学
第六章刚体的简单运动
第七章点的合成运动第
八章刚体的平面运动
第九章质点动力学的基本方程
第十章动量定理
第十一章动量矩定理
第十二章动能定理
第十三章达朗贝尔定理
第十四章虚位移定理
第一章
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
第二章
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕。

理论力学第三版课后答案第8章

理论力学第三版课后答案第8章
后者代入(1)可解出地面对杆的摩擦力 Fm = f s FN = 10.5 N
(9)
代入式(3)得 aCx = 1.03m/s 2 ,将其与式(9)第 1 式代入式(7)可解出端 B 加速度
aB = 2.65m/s 2
aB 为正,表明原假定正确,端 B 的确向左滑动。

后 答


ww w
.k hd
aw .
8-5C 质量为 m 半径为 R 的半圆柱体在图示位置静止释放。 图中,点 C 为质心, OC =
洪嘉振等《理论力学》第 3 版习题详解
2
1 R 5 R R J C = mR 2 + m( ) 2 + m( ) 2 + m( ) 2 = mR 2 4 2 2 4 4
系统惯性力系的主矩方向如图 8-1Cb 所示,其大小为为
M * = J Cα =
5 mR 2α 4

后 答


ww w
.k hd
aw .
可解得此瞬时质心速度为
vC = gl
由于杆作瞬时平移,故有点 B 的速度
vB = v A = vC = gl
r (2)对于连体基 A − e 1 ,定义该基的角加速度的正向如图 8-4Cb 不所示。基点 A 作圆 周运动,令其加速度为

T − T0 = mg xC0 − xC
后 答
(
1 2 mvC 。由动能定理 2
r r r r r r 其中 a1C = aC = aCx + aCy , a1etC = a A , a1eωC = lω12 = 0 , a1eαC = lα1 。上式变为

后 答
r x : aCx = − aωA + a1eαC cos θ

08第八章习题解答

08第八章习题解答

第八章习题解答8-1匀质杆AB 长l ,重G ,沿光滑的圆弧轨道运动如图示。

设当OA 在水平位置时,3arcisn =θ,125gl v A =,求此时轨道对于杆AB 的约束力。

题8-1图解:以杆AB 为研究对象,受力分析A F N 、B F N、G 如图示,杆AB 作定轴转动。

∵53arcsin =θ 53sin =∴θ 54cos =θ 25242sin =θ 2572cos =θ ∵ l R 85=、125gl v A = l g R v A 1516==∴ω l OC 83=AB 杆的质心加速度为OC a ⋅=21ω,OC a ⋅=α2 惯性力主矢*F和主矩*M 方向如图所示,大小为mg l l g m a m F 528315161*1=⋅⋅=⋅=l m a m F 832*2⋅⋅=⋅=ααα222*19243])83(121[ml l m ml M =+=题8-1答案图列平衡方程式∑=0)(F m zO 01924353832=−⋅⋅αml l mg l g 215216=α 0=∑ixF 0sin cos 2cos N *1*2N =−++⋅A B F F F F θθθ 0=∑iyF0cos sin 2sin *1*2N =−−+⋅mg F F F B θθθ mg l g ml F 2158121521683*2=⋅=代入上式得:mg F B4349N =,mg F A 4337N =8-2 匀质杆AB 长l ,重G ,用两根软绳悬挂如图示。

求当其中一根软绳切断,杆AB 开始运动时,另一根软绳中的拉力。

题8-2图解:建立参考基e C−,连体基1e O −和2e B −设当AO 被切断时,BO 的角加速度为1α,AB 杆的角加速度为2α题8-2答案图以杆AB 为研究对象,受力分析如图示重力G ,绳中张力T F 。

杆AB 作平面运动,惯性力主矢*F 和主矩*M 方向如图所示,大小为:C ma F =*,2*αC J M =e C e C e tC C a a a a αω222 ++= , 02=eC a ω e B e B e tC a a a αω112 +=, 01=e B a ω , B e B a a=α1 e C e B C a a a αα21 +=, eC e B C a m a m a m αα21 += 11*122ααl m ma F e B ==∴ 22*22ααl m ma F e C == 22*121αml M =0)(=∑F m Dz0121442222=+⋅−⋅ααml lmg l ml lg 562=α0)(=∑F m Cz012122222T =−⋅⋅αml l Fmg F 52T =8-3 匀质杆AB 长2l ,重G ,一端A 用长l 的软绳OA 拉住,一端B 放在光滑地面上如图示。

清华大学-理论力学-习题解答-8-14

清华大学-理论力学-习题解答-8-14
2
9 mg sin ϕ − ( R + r ) mg sin ϕ = − mgr sin ϕ 2
33 2 9 ! + 3θ! 2 − 3ϕθ ! ! + mgr sin ϕ L = T − V = mr 2 ϕ 4 2
d ∂L 33 2 ∂L 9 ∂L 33 2 !! !! − 3mr 2θ ! − 3mr 2θ! , = mgr cos ϕ, = mr ϕ ! = mr ϕ ! 2 dt ∂ϕ 2 ∂ϕ 2 ∂ϕ ∂L ∂L d ∂L 2 !! 2 !! !, = 0, = 6mr 2θ! − 3mr 2ϕ = 6mr θ − 3mr ϕ ∂θ dt ∂θ! ∂θ!
将以上各式代入拉氏方程,得:
!! − 9 g cos ϕ = 0 33rϕ !! − 6rθ !! !! = 0 2θ − 3ϕ
即为系统得运动微分方程。
系统的所有主动力都为有势力,且拉格朗日函数不显含 θ ,所以有循环积分:
! =C 6mr 2θ! − 3以有广义能量积分:
θ! ϕ
x
y
系统的动能为:
T= 1 !2 1 1 1 2 2 ! 2 + mB vB J Aθ + J ABϕ + J Bω B 2 2 2 2
(1)
! = 3rϕ ! 。取杆 AB 为动系,即 ω e = ϕ ! ,则有: 其中, vB = ( R + r ) ϕ !,ω Br = − ω Ar = 2 (ϕ ! − θ! ) ω Ar = θ! − ϕ ! = 3ϕ ! − 2θ! 。又有: 所以 ω B = ω Br + ϕ
1 1 2 J AB = m ( R + r ) = 3mr 2,J A = 4mr 2,J B = mr 2 3 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档