交直流混联系统小干扰稳定性分析

交直流混联系统小干扰稳定性分析
交直流混联系统小干扰稳定性分析

多系统合路室内分布解决方案

多系统合路室内分布解决方案 (市场宣传资料) 北京东方信联科技有限公司 二○○五年

多系统合路室内分布解决方案 前言: 完整的覆盖是一个高质量移动蜂窝网络的必要条件,也是吸引用户的必要因素。所以运营商在建设移动网络时首先考虑的是给用户提供一个完善覆盖的无线网络。但是由于无线电波传播环境的复杂性,加上地形地物的影响以及城市规划和经济的发展,使得大型楼宇、车站、机场、地铁等人口密度大,流动性强,话务量高的场所的覆盖仅仅靠室外的基站来解决将是不可能的。为了解决这一问题,目前普遍采用的是室内分布系统来解决。 但是,传统的室内分布系统形式比较单一和孤立,要么是单系统室内分布、要么是多个系统独立建设,互不相关。这样做存在很多弊病,第一、布线比较困难,工程施工难度大;第二、设备重复投资,造成严重的资源浪费;第三、建设周期长,维护困难;第四、网络建设成本居高不下、竞争力不强;第五、多个室内天馈部分易造成相互间干扰。 随着未来3G网络的建设,还有WLAN的普及。如果脱离现有室内分布系统,不加任何利用的去新建室内分布系统,对于运营商来说:第一,网络的投资将不堪重负;第二,重复建设将造成网络资源的极大浪费;而对业主来说,多个系统的独立建设给业主的管理造成了极大困难。东方信联推出的多系统合路室内分布解决方案将可以使多个系统共用室内天馈部分,只需要对网络进行简单的改造,就能改善网络质量。 东方信联多系统合路室内分布解决方案是一种综合的、开放式的无线网络优化方案,通过多系统合路,不但实现了网络的融合,更重要的是实现了业务的融合,使原来互相独立的室内分布系统能够相互利用,互为补充,不仅降低了网络建设成本、缩短建设周期、增强竞争力;而且改善了网络的整体性能,在业务上更加完善和多样化。

励磁控制与电力系统的小干扰稳定性-中国励磁专业网

励磁控制与电力系统的小干扰稳定性 中国电力科学研究院朱方 2006年7月 1. 励磁控制系统的任务 励磁控制系统最基本和最重要的任务是维持发电机端(或指定控制点)电压为给定值。 我国国家标准规定,自动电压调节器应保证同步发电机端电压静差率小于1%。这就要求励磁控制系统的开环增益(稳态增益)不小于100p.u(对水轮发电机),或200p.u(对汽轮发电机)。 主要原因有3个: 第一,保证电力系统运行设备的安全。 发电机运行规程规定大型同步发电机运行电压正常变化范围为 5%,最高电压不得高于额定值的110%。 第二,保证发电机运行的经济性。 规程规定,大型发电机运行电压不能低于额定值的90%,当发电机电压低于95%时,发电机应限负荷运行,其他电力设备也有这个问题。 第三,提高维持发电机电压能力的要求和提高电力系统稳定的要求在许多方面是一致的。 励磁控制系统的重要任务 1)励磁控制系统的重要任务是提高电力系统的稳定性。 2)电力系统稳定可分为功角(机电)稳定、电压稳定和频率稳定等。3)功角稳定包括静态稳定、动态稳定和暂态稳定。 4)励磁控制系统对静态稳定、动态稳定和暂态稳定的改善,都有显著的作用,而且也是改善电力系统稳定的措施中,最为简单、经济而有效的措施。 同步发电机励磁控制系统对提高静稳定的作用

设Ut =1.0,Us =1.0,发电机并网后运行人员不再手动去调整励磁,则无电压调节器时的静稳极限、有能维持E ’恒定的调压器时的极限、有能维持发电机端电压恒定的调压器时的静稳极限分别为:0.4、1.0和1.43。 维持发电机电压水平的要求与提高电力系统静态稳定极限的要求是一致的,是兼容的。当励磁控制系统能够维持发电机电压为恒定值时,不论是快速励磁系统,还是常规励磁系统,静态稳定极限都可以达到线路极限。 以某省电网外送断面为例,计算励磁控制对静态稳定的影响。 该省发电机原采用Eq ’恒定模型计算,后进行了励磁模型的参数实测,对励磁性能不达标的机组进行整改,全面提高了励磁控制的技术性能。该省电网外送电力的主要通道共三回500kV 线路。发电机采用Eq ’恒定和Eq ”、Ed ”变化(使用实测励磁模型参数)两种模型,外送断面的静稳极限如下。 恒定的静稳极限增加418 MW ,提高了12.1% 。 同步发电机励磁控制系统对提高暂态稳定的作用 1、提高励磁系统强励倍数可以提高电力系统暂态稳定。 Eq d s q X U E Pe δsin ∑ ?=' ' sin 'E d s X U E Pe δ∑?=t U s t X U U Pe δsin ∑ ?=?????++=+++=+++=∑∑L T T e L T T d d L T T d d X X X X X X X X X X X X X X 2121''21

多系统合路系统分析

1多系统合路系统分析 1.1多系统合路类型 单个运营商多网合路系统,如:GSM/TD-SCDMA/WLAN,一般新建室内覆盖站点和原GSM 室内覆盖站点改造需要考虑的共站的互干扰情况。因为这类系统所需要接入的系统相对较少,互干扰情况相对简单,可以采用多网合路器直接进行合路。 多个运营商多网合路系统,如:GSM/CDMA/PHS/WCDMA/TD-SCDMA/WLAN,特殊建设的室内覆盖站点如:会馆、地铁、机场等室内覆盖的重点和热点区域,由于环境限制,众多室内覆盖系统一并建设难以解决天线间互相干扰与有效覆盖等问题,同时这类系统所需要接入的系统相对较多,各系统间的互干扰比较复杂,可以采用多网合路器或者是POI系统进行合路。 1.2多系统合路互干扰分析 多网合路系统共用基于系统间互干扰理论分析以及验证,干扰分为干扰源产生加性噪声干扰、引起被干扰接收机的阻塞和互调干扰。解决干扰的措施是降低干扰源的功率、采用隔离的方法。常用的隔离方法是空间隔离和增加滤波器隔离。系统应用中,采用MCI(POI)平台进行合路,达到多系统间隔离度的目的。MCI(POI)由电桥和合路器组成,电桥进行制式系统的合路,合路器进行异系统的合路。 1.2.1 互干扰的类型 下图为接收机原理图。 图1接收机原理图 系统干扰的总体理解就是干扰源对被干扰接收机产生的干扰。干扰从理论上来讲大致可以分为四类: ?加性噪声干扰:干扰源在被干扰接收机工作频段产生的噪声,包括干扰源的杂散、 噪底、发射互调产物等,使被干扰接收机的信噪比恶化。 ?交调干扰:当多个强信号同时进入接收机时,在接收机前端非线性电路作用下产生

交调产物,交调产物频率落入接收机有用频带内造成的干扰,称为接收机交调干扰。 交调干扰主要由三阶交调引起。 ?阻塞干扰:接收微弱的有用信号时,带外的强信号同时进入接收机引起饱和失真所 造成的干扰,称为阻塞干扰。 ?ACS邻道干扰:在接收机第一邻频存在的强干扰信号,由于滤波器残余、倒易混频 和通道非线性等原因,引起的接收机性能恶化,称为邻道干扰。 1.2.2 互干扰解决措施 解决干扰的措施是降低干扰源的功率和采用隔离的方法,常用的隔离方法是空间隔离和增加滤波器隔离。 ●降低干扰源的功率,使得两个系统不产生干扰 ●空间隔离,对解决加性噪声干扰和接收机阻塞以及互调干扰都是有效的。隔离的大 小取决于各个干扰需要的最大隔离度 ●对于加性干扰,可以在发射机端增加滤波器,抑制杂散、噪底以及发射互调产物, 降低干扰。 ●对于接收机阻塞、交调干扰,可以在被干扰系统端增加滤波器,抑制带外强信号的 功率,降低干扰。 ●对于接收互调干扰,可以通过网络优化,避免三阶互调产物落入被干扰频段。 室内分布系统间干扰的研究需要考虑干扰源系统和被干扰系统是否同属于一个运营商,这对于系统间干扰解决方法的选取有非常重要的意义,涉及到运营商间协调、工程难度和建设成本等多个问题,以下将据此进行分类描述。 1.2.2.1 干扰源与被干扰系统属于同一个运营商 干扰源与被干扰系统属于同一个运营商的情况下,如果原有覆盖系统所使用无源器件的工作频段包括了新系统的工作频段,则可以采用合路器隔离的方法消除干扰,充分利用原有网络资源,以便经济、快速的完成网络建设;如果原有覆盖系统不能满足新系统的工作频段要求,则需要更换其中的窄带器件,在进行合路器隔离的方法消除干扰,简略图如下: 图2两系统基站共室内分布系统示意 被干扰基站和干扰源基站共室内分布时,为降低网络建设成本,通常采用共天馈的方式,实际上是通过特定的合路器器件将两系统进行信号合并和干扰隔离的,合路器中包含两个滤

多系统合路干扰分析

多系统合路的干扰分析 1、主题简单解读 多系统:运营商多,制式多。中国移动GSM900,DCS1800,TD;中国联通GSM900,DCS1800,WCDMA;中国电信CDMA800,CDMA2000,另外还有WLAN等等。 合路:由于多运营商、多制式、多频段,出于施工协调、美观、成本等方面的考虑,合路应运而生。 ?一次布放,施工简单; ?美观; ?综合造价低廉,共用天馈分布,减少重复建设; ?系统可扩展性强,升级改造周期短。 一般合路,有合路器方式,还有POI方式,也就是Point Of Interface,多系统合路平台,以及两种方式的混合使用。对于合路系统较少的中小规模场景(如:酒店宾馆、写字楼、住宅楼等),可以采用多系统频段合路器来共用室内覆盖系统;对于合路系统较多的复杂场景(如:地铁、机场、大型场馆等),建议采用POI构建的室内覆盖系统。 干扰:合路有好处有必要,但是合路后,就难免产生一些干扰信号,或者不同频率间也会相互干扰。 2、干扰的分类 系统间的干扰主要分为以下的三类: 1)杂散干扰 杂散干扰就是一个系统的发射频段外的杂散发射落入到了另一个系统的接收频段内而可能造成的干扰,(图)杂散干扰对系统最直接的一个影响就是降低了系统的接收灵敏度。 2)接收机阻塞

阻塞干扰,就是各系统信号及其频率组合成分,落在各系统中某基站接收机所接收的信道带宽之外,却仍然能进入该基站接收机,当此干扰大于相关标准中所规定的干扰电平时,就会引起接收机接收灵敏度的下降,恶化接收机的性能。 3)系统间互调干扰 互调干扰是指两个或以上不同的频率作用于非线性电路或器件时,频率之间相互作用所产生的新频率落入接收机的频段内所产生的干扰。通信系统中的无源器件的线性度一般优于有源器件,但也可能产生互调干扰。 互调干扰的常见形式及影响最大的是三阶互调干扰,可能产生干扰的频率组合有2f1-f2、2f1-f3、2f2-f1、2f2-f3、2f3-f1、2f3-f2、f1+f2-f3、f1-f2+f3、f2+f3-f1。这些频率组合可归纳为2f-f2(一型互调)及f1+f2-f3(二型互调)两种类型。互调干扰集中在各系统的下行输出,在进行合路时的互调产物上,主要表现为三阶互调干扰。如果互调产物落在其中某一个系统的上行接收频段内,从而对该系统基站的接收灵敏度造成一定的影响。 3、我国移动通信系统频谱划分 根据信息产业部相关频率规划的规定,目前我国移动通信系统频谱划分具体如下所示:表一各系统间的工作频段 系统制式上行频率 (MHz) 下行频率(MHz)备注 GSM900 890~915 935~960 移动 (MHz) 联通 (MHz)890-909 935-954 909-915 954-960 GSM1800 1710~1755 1805~1850 移动联通1710~1725 1805~1820 1745~1755 1840~1850 CDMA800 825~835 870~880 电信PHS 1900~1920 退网 TD-SCDMA 2010~2025(B频段) 1880~1900(A频段-已逐渐使用) 1900~1920(A频段-PHS退网后用) 移动 CDMA 1920~1935 2110~2125 电信

POI系统设计之多频合路干扰分析篇

POI系统设计之多频合路干扰分析篇 基配事业部产品研发部

本文目录 目录 一、P OI系统在室分系统中的应用场景及功能介绍; (3) 二、多频合路干扰分析 (5) 2.1、杂散干扰(介绍及其计算); (7) 2.2、阻塞干扰(介绍及其计算); (9) 2.3、互调干扰(介绍及其计算); (11) 三、天线系统和空间隔离(介绍及其计算); (14) 四、P OI设计中杂散干扰的考量; (16) 4.1室分各系统设计参数列表 (18) 4.2国内通信制式的常见干扰举例; (19) 4.3POI系统的分合缆设计特点; (22) 五、P OI系统干扰设计之工程案例举例; (24) 附表1:基站系统发射机隔离度列表; (30) 附表2:有源设备(直放站)杂散辐射规范要求列表; (36) 附表3:阻塞指标列表; (40) 附表4:共站址天线隔离度计算软件; (42) 附表5:互调计算工具以主流互调测试仪表介绍;; (42)

一、P OI系统在室分系统中的应用场景及功能介绍; 多系统接入平台(POI:Point Of Interface) 背景:室内分布系统合路建设随着近年来通信、电子技术以及相关工业的发展变得可行并且成熟。 ●在天线方面,宽频天线的应用使得一副天线就可以满足多个系统不同频段的信号覆 盖。 ●在机房使用方面,同时,由于微电子技术的长足发展、通信设备小型化,基站所占 的机房面积也大大减小,一个大机房就可以满足多家运营商几套设备的布放。 ●在射频和微波技术方面,目前采用的基于高Q多腔滤波器技术的POI合路平台, 能满足目前多系统合路建设的需要。 POI作为多种通信系统和多个区域的分布系统之间的界面,是在多系统信号分合路过程中的关键部分。 功能及作用:在室内覆盖系统中,POI的应用将避免错综复杂的走线,避免天花板上安装多个全向天线,避免了电梯井道内布放多个板状天线、多根同轴电缆;在地铁隧道覆盖系统中,采用POI之后,多系统信号可以共用一根泄漏电缆进行传输、覆盖,显著的减小了运营商的投资、降低了施工难度。 各路收发信机信号都通过独立的端口接入POI,混合后输出到相应分布系统的端口;同时将来自不同区域分布系统端口的信号混合后,再按需要分别送到信号源的上行端口。POI 是各通信系统汇集点,同时也是矛盾的焦点,好的POI设备不仅要求能够合路多系统信号而且要能够解决多系统合路带来的诸多问题,并且能够有简单的接口界面,有效的监控和可升级性,为解决室内空间资源的问题起到积极作用。

多系统合路干扰分析

多系统合路干扰分析 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

多系统合路的干扰分析 1、主题简单解读 多系统:运营商多,制式多。中国移动GSM900,DCS1800,TD;中国联通GSM900,DCS1800,WCDMA;中国电信CDMA800,CDMA2000,另外还有WLAN等等。 合路:由于多运营商、多制式、多频段,出于施工协调、美观、成本等方面的考虑,合路应运而生。 ?一次布放,施工简单; ?美观; ?综合造价低廉,共用天馈分布,减少重复建设; ?系统可扩展性强,升级改造周期短。 一般合路,有合路器方式,还有POI方式,也就是Point Of Interface,多系统合路平台,以及两种方式的混合使用。对于合路系统较少的中小规模场景(如:酒店宾馆、写字楼、住宅楼等),可以采用多系统频段合路器来共用室内覆盖系统;对于合路系统较多的复杂场景(如:地铁、机场、大型场馆等),建议采用POI构建的室内覆盖系统。 干扰:合路有好处有必要,但是合路后,就难免产生一些干扰信号,或者不同频率间也会相互干扰。 2、干扰的分类 系统间的干扰主要分为以下的三类: 1)杂散干扰

杂散干扰就是一个系统的发射频段外的杂散发射落入到了另一个系统的接收频段内而可能造成的干扰,(图)杂散干扰对系统最直接的一个影响就是降低了系统的接收灵敏度。 2)接收机阻塞 阻塞干扰,就是各系统信号及其频率组合成分,落在各系统中某基站接收机所接收的信道带宽之外,却仍然能进入该基站接收机,当此干扰大于相关标准中所规定的干扰电平时,就会引起接收机接收灵敏度的下降,恶化接收机的性能。 3)系统间互调干扰 互调干扰是指两个或以上不同的频率作用于非线性电路或器件时,频率之间相互作用所产生的新频率落入接收机的频段内所产生的干扰。通信系统中的无源器件的线性度一般优于有源器件,但也可能产生互调干扰。 互调干扰的常见形式及影响最大的是三阶互调干扰,可能产生干扰的频率组合有2f1-f2、2f1-f3、2f2-f1、2f2-f3、2f3-f1、2f3-f2、f1+f2-f3、f1-f2+f3、f2+f3-f1。这些频率组合可归纳为2f-f2(一型互调)及f1+f2-f3(二型互调)两种类型。互调干扰集中在各系统的下行输出,在进行合路时的互调产物上,主要表现为三阶互调干扰。如果互调产物落在其中某一个系统的上行接收频段内,从而对该系统基站的接收灵敏度造成一定的影响。 根据信息产业部相关频率规划的规定,目前我国移动通信系统频谱划分具体如下所示:表一各系统间的工作频段

LTE室分多系统合路干扰分析与整改措施

LTE室分多系统合路干扰分析与整改措施 中讯邮电咨询设计院有限公司 2014年06月

目次 1干扰问题现象 (3) 2干扰站点比例 (3) 3 干扰问题原因 (3) 3.1互调干扰分析 (3) 3.2互调干扰的影响因素 (6) 3.3功率容量影响分析 (7) 4建议整改措施 (9) 4.1整改目标 (9) 4.2整改方案 (9) 4.3其他工作要求 (9)

LTE室分多系统合路干扰分析与整改措施目前,广东联通1800MHz FDD-LTE室分建设方案大多为合路至原室分系统,开通后出现了WCDMA室分底噪异常抬升的干扰问题,严重影响了现网3G用户。为解决此类问题,广东联通网络建设部特制定《LTE室分多系统合路干扰分析与整改措施》用于指导LTE室分工程建设。 1干扰问题现象 LTE室分合路至原系统激活之后,WCDMA室分RTWP有1-5dB的抬升;LTE模拟下行加载100%后,部分WCDMA室分RTWP有15-20dB的明显抬升。干扰现象如下图所示: LTE室分多系统合路干扰示意图1(D/W/L合路) 2干扰站点比例 前期专项研究工作主要在广州开展,广州FDD规模为560站,其中合路站点共374站,占比66.8%。目前已开通LTE室分168个,其中方案为合路站点111个;存在干扰站点15个,占比13.5%。 广分LTE站点互调干 扰处理进度0512.xlsx 3 干扰问题原因 3.1互调干扰分析 无源互调是射频信号路径中两个或多个射频信号因各种无源器件 (例如天线、电缆或连接器) 的非线性特性引起的混频干扰信号。在大功率、多信道系统中,铁磁材料、异种金属焊接点、金属氧化物接点和松散的射频连接器都会产生信号

多系统合路平台POI概述

多系统合路平台(POI)应用 [摘要]本文对多系统合路平台(POI)的设计原理及作用进行了阐述,并以地铁多系统接入具体案例来说明。 一、概述 我国现有的移动通信网络有中国移动的GSM900/DCS1800,中国联通的GSM900/ DCS1800和CDMA800,中国电信、网通的PHS,WLAN,数字集群及其他通信系统。在不久的将来会存在WCDMA、CDMA2000、TD-SCDMA 3G 系统。室外场所网络信号可以通过各自的基站进行覆盖,室内信号可以通过传统的室内覆盖系统来解决。然而各运营商分别建设自己的覆盖系统所带来的重复建设等问题越来越突出。针对这样的问题,我们提出了多系统合路平台(POI)的解决方案。 POI(POINT OF INTERFACE),即多系统合路平台。主要应用在需要多网络系统接入的大型建筑、市政设施内,如大型展馆、地铁、火车站、机场、政府办公机关等场所。该POI产品实现了多频段、多信号合路功能,避免了室内分布系统建设的重复投资,是一种实现多网络信号兼容覆盖行之有效的手段。 二、POI介绍 作为连接信源和分布系统的桥梁,POI的主要作用在于对CDMA、GSM、DCS、PHS、WLAN、3G及集群等系统的下行信号进行合路,同时对各系统的上行信号进行分路,并尽可能抑制掉各频带间的无用干扰成分。 国人通信自主研发的POI系统特点:模块化设计,扩容性好;满足不同系统/频段的个性需求;系统具有整体监控功能,维护方便;信号合路损耗小;功率容量大;三阶互调性能好;可以预留端口,方面升级。 根据系统隔离度要求不同,通常POI可以有两种设计方案,系统信号分离方案和上/下行分离方案。 方案一:系统信号分离方案 从基站来的各系统双工信号各通过一个端口接入POI,设备天馈侧一个端口接出。下行信号体现为多路合一路进行信号下行覆盖,用户终端来的上行信号则是通过原通道反向传输,为一路信号分为多路分别回到各自的系统完成系统的上下行通信。 以下是某系统信号分离方案内部示意图:

POI多系统接入平台

上下行分缆(两套分布系统) 为保证各网络制式间系统隔离度需采用双路天馈布放方案,建议采用分合路平台(POI)将各运营商的多种无线信号进行分合路,使用同一套天馈系统进行全覆盖。 考虑到站点引入网络制式众多,几种不同制式及频段的信号之间易产生不同形式的干扰,故建议建设两路分布系统,即采用上、下行分缆独立覆盖的方式,以增加各系统间的隔离及LTE MIMO。 原则上优选单极化天线,两个单极化天线间距应保证不低于4λ(约为0.6米),在有条件的场景尽量采用10λ以上间距(约为1.5米)

POI定义 多系统合路平台(POI)是在多系统共享分布链路中,将多路移动信号下行合路输出,接收上行信号分路输出至相应接收机的一种设备,根据应用场景不同选取任意两个频段或多个特定频段进行合路和分路,完成若干系统的分布共用,达到充分利用资源、节省投资的目的。其主要作用是提供不同系统间的隔离和分合路,解决系统之间的发射干扰和防止接收路径引入的阻塞,并可有效改善信源的传输互调指标。 BTS T/RX POI T/RX T/RX 在上下行分缆的情况下,空间隔离统一默认为30dB。 表4 抑制杂散干扰的隔离度(9dB) CDMA800 GSM900 TD-SCDMA WCDMA 干扰系统 被干扰系统

CDMA800 GSM900 TD-SCDMA WCDMA CDMA800 / 87 90 90 GSM900 59 / 90 90 TD-SCDMA 80 81 / 86 WCDMA 83 81 81 / 表5 抑制阻塞干扰的隔离度 CDMA800 GSM900 TD-SCDMA WCDMA CDMA800 / 46 59 59 GSM900 56 / 35 35 TD-SCDMA 59 29 / 83 WCDMA 27 60 58 / 现网天馈线可能存在的问题 目前室分所用无源器件频段为800-2500M ,但目前运营商部分LTE 频段为2600M 干扰系统 被干扰系统 被干扰系统 干扰系统

多系统合路平台(POI)应用

多系统合路平台(POI)应用宋金刚高鹏 摘要:本文对多系统合路平台(POI)的设计原理及作用进行了阐述,并以地铁多系统接入具体案例来说明。 一、概述 我国现有的移动通信网络有中国移动的GSM900/DCS1800,中国联通的GSM900/ DCS1800和CDMA800,中国电信、网通的PHS,WLAN,数字集群及其他通信系统。在不久的将来会存在WCDMA、CDMA2000、TD-SCDMA这些3G系统。各运营商分别建设自己的室内覆盖系统所带来的重复建设等问题越来越突出。针对这样的问题,我们提出了多系统合路平台(POI)的解决方案。 POI(POINT OF INTERFACE),即多系统合路平台。主要应用在需要多网络系统接入的大型建筑、市政设施内,如大型展馆、地铁、火车站、机场、政府办公机关等场所。该POI产品实现了多频段、多信号合路功能,避免了室内分布系统建设的重复投资,是一种实现多网络信号兼容覆盖行之有效的手段。 二、POI介绍 作为连接信源和分布系统的桥梁,POI的主要作用在于对CDMA、GSM、DCS、PHS、WLAN、3G及集群等系统的下行信号进行合路,同时对各系统的上行信号进行分路,并抑制各频带间的无用干扰成分。 国人通信自主研发的POI系统特点:模块化设计,扩容性好;满足不同系统/频段的个性需求;系统具有整体监控功能,维护方便;信号合路损耗小;功率容量大;三阶互调性能好;可以预留端口,方便升级。 根据系统隔离度要求不同,通常POI可以有两种设计方案,系统信号分离方案和上/下行分离方案。 方案一:系统信号分离方案 从基站来的各系统双工信号各通过一个端口接入POI,设备天馈侧一个端口接出。下行信号体现为多路合一路进行信号下行覆盖,用户终端来的上行信号则是通过原通道反向传输,为一路信号分为多路分别回到各自的系统完成系统的上下行通信。 以下是某系统信号分离方案内部示意图: 方案二:上/下行信号分离方案 从基站来的各制式(频分双工)系统分上下行两个端口接入POI,通过设备后两个端口接出。下行信号体现为多路合一路从Tx口输出进行信号下行覆盖,用户终端来的上行信号则是通过另外一路Rx上行通道反向传输,然后分路回到各自的通信系统。 以下是某上/下行信号分离方案内部示意图:

电力系统小干扰稳定性分析

电力系统小干扰稳定性分析 【摘要】本文主要研究电力系统小干扰稳定性分析。阐述了电力系统小干扰稳定性对电力系统的重大意义,对电力系统小干扰稳定性的分析方法进行了总结归纳,并对各种方法的主要原理和适应性进行了详细分析,希望能够为电力系统小干扰稳定性的分析工作提供帮助。 【关键词】电力系统;小干扰稳定性 不同地区之间的电力系统的多重互联能够大大提高输电的经济性,但是这种互联电网会把很多动态问题诱发出来,系统更加复杂化,降低了稳定性。电力系统的安全运行需要满足一定的基本条件要求,例如电压、频率和小干扰等都需要有着相当的稳定性,并且这种稳定性应该是动态的,这些稳定性随着现代社会对电网的依赖越来越大而逐渐被人们重视起来。从上个世纪70年代开始,小干扰稳定性的失去就已经造成了很多严重的事故,对相关国家造成了严重的经济损失。为了保证电力系统的稳定性,保证其安全稳定运行,有必要对电力系统的小干扰稳定性进行分析,保障电力系统的安全运行。 一、电力系统小干扰稳定性分析方法 1.数值仿真法。使用一组微分方程来描述电力系统,根据电力系统扰动的特定性结合相关的数值计算方法计算系统变量及其完整的时间响应[1]。小干扰稳定性问题的本质是不能被时域响应最大程度的体现出来,造成系统稳定性下降的原因即便使用模拟仿真也不能够很好的找出来,也就无从找寻改进措施。 2.线性模型基础上的分析方法。这种方法是利用线性模型研究小干扰稳定性,使用微分方程和积分方程描述系统动态行为的变化,在稳态运行点现化,获得线性模型[2]。目前主流的电力系统小干扰稳定性分析方法就是基于线性模型的,目前来看主要有特征性分析方法和领域分析两种,前一种以状态空间模型为描述基础,后一种是基于函数矩阵的方法。 二、特征分析法 目前大多数电力系统分析软件都是暂态稳定仿真进行操作的,但是实际中相当多的限制条件约束了这种应用。相关结果受到选择的扰动或者时域响应观测量的很大影响,选择不合理时系统中的一些关键模式将不能被扰动触发,并且如果选择不合理,进行响应的观察时很多震荡模式中不明显的响应可能就是若阻尼模式[3]。因此,进行各种不同震荡模式阻尼特性分析时,单纯使用有关系系统变量时域可能会影响观测结果的准确性。同时为了有关系统震荡性质清晰的表现出来,需要对这些系统共动态过程进行长时间的仿真计算,计算量巨大。 特征分析方法把整个电力系统模拟成为线性模型,利用状态空间法,把电力系统的线性模型转换成为普通的线性系统表示。

电力系统小干扰稳定分析

第7章电力系统小干扰稳定分析 电力系统在运行过程中无时不遭受到一些小的干扰,例如负荷的随机变化及随后的发电机组调节;因风吹引起架空线路线间距离变化从而导致线路等值电抗的变化,等等。这些现象随时都在发生。和第6章所述的大干扰不同,小干扰的发生一般不会引起系统结构的变化。电力系统小干扰稳定分析研究遭受小干扰后电力系统的稳定性。 系统在小干扰作用下所产生的振荡如果能够被抑制,以至于在相当长的时间以后,系统状态的偏移足够小,则系统是稳定的。相反,如果振荡的幅值不断增大或无限地维持下去,则系统是不稳定的。遭受小干扰后的系统是否稳定与很多因素有关,主要包括:初始运行状态,输电系统中各元件联系的紧密程度,以及各种控制装置的特性等等。由于电力系统运行过程中难以避免小干扰的存在,一个小干扰不稳定的系统在实际中难以正常运行。换言之,正常运行的电力系统首先应该是小干扰稳定的。因此,进行电力系统的小干扰稳定分析,判断系统在指定运行方式下是否稳定,也是电力系统分析中最基本和最重要的任务。 虽然我们可以用第6章介绍的方法分析系统在遭受小干扰后的动态响应,进而判断系统的稳定性,然而利用这种方法进行电力系统的小干扰稳定分析,除了计算速度慢之外,最大的缺点是当得出系统不稳定的结论后,不能对系统不稳定的现象和原因进行深入的分析。李雅普诺夫线性化方法为分析遭受小干扰后系统的稳定性提供了更为有力的工具。借助于线性系统特征分析的丰富成果,李雅普诺夫线性化方法在电力系统小干扰稳定分析中获得了广泛的应用。 下面我们首先介绍电力系统小干扰稳定分析的数学基础。 李雅普诺夫线性化方法与非线性系统的局部稳定性有关。从直观上来理解,非线性系统在小范围内运动时应当与它的线性化近似具有相似的特性。 将式(6-290)所描述的非线性系统在原点泰勒展开,得 式中:()()0e e x x x f x x f x A x x ?=?=?+??==????如果()h x ?在邻域内是x ?的高阶无穷小量,则往往可以用线性系统 的稳定性来研究式(6-288)所描述的非线性系统在点e x 的稳定性[1]:

小干扰稳定的鲁棒性能指标及分析

小干扰稳定的鲁棒性能指标及分析 莫逆,杨素,刘锋,梅生伟 (清华大学 电力系统及发电设备安全控制和仿真国家重点实验室 北京100084) 摘 要:本文借助鲁棒性能分析方法,通过选取恰当的扰动和评价输出信号,构成电力系统小干扰稳定的鲁棒分析模型,提出采用系统从扰动输入到评价输出信号的2/H H ∞范数组合作为小干扰稳定的评价指标,全面反映 系统抑制振荡的能力。为验证该指标的正确性,本文选取4机2区域系统作为测试系统,与现有指标进行了对比研究,测试结果表明:本文提出的2/H H ∞组合物理意义清晰,直观有效,能全面反映系统的小干扰稳定性,显示出应用上的优越性。系统测试还表明:该指标可有效地应用于系统小干扰稳定性能的评估、控制器安装位置选择,以及指导控制器参数调整等方面。 关键词:小干扰稳定;低频振荡;2/H H ∞组合指标 0 引言 随着现代电力系统规模日益增大,低频振荡 问题时有发生,严重威胁电网的安全稳定,因此,电力系统的小干扰稳定研究一直是各国学者长期关注的问题。目前小干扰稳定研究最主要的指标是线性化系统状态矩阵的特征值和阻尼比。系统的特征值与系统的各种振荡模式对应,特征值实部的符号决定了系统的小干扰稳定性,而阻尼比则体现了某个振荡模式下的系统阻尼能力[1,4]。为了保证整个系统稳定性,研究小干扰稳定需要考虑所有振荡模式的阻尼,同时也必须考虑控制模式以及其他特征值。通常的控制设计方案只以振荡模式阻尼比为控制目标,有可能在改善一个模式的阻尼时引起其他模式的性能恶化。因此,如何实现多阻尼控制策略之间的相互协调在理论和工程两方面都是一个具有重要意义的课题。 鲁棒性分析方法中的2/H H ∞指标是从控制系统中提出,本质是定量描述系统输入输出增益,换句话说,是衡量系统对输入的抑制能力。其中,H ∞指标表示系统对最坏输入的抑制能力,而2H 指标则描述系统对全部频段输入的平均抑制能力[2,3] 。借鉴这一观点,本文提出采用2/H H ∞组合指标综合评价系统的小干扰稳定性能。 1 小干扰稳定的鲁棒性分析模型 电力系统的机电动态特性可以用微分代数方程进行统一描述。本文发电机采用三阶模型, 则其微分方程的具体形式为: 0m e ''''d0q f q d d d (1) (1)()M p p D T e v e x x i δ ωωωω?=-?=---??=---? (1-1) 其接口方程为: ''q a q q d l d d a d q l q 0()0()v r i e x x i v r i x x i ?=+-+-?=+--? (1-2) 其中: δ为发电机转子角度,ω为角速度标幺值, 0ω为角速度额定值,m p 为机械功率,' q e 为q 轴暂态电动势,D 为阻尼系数,' d0T 为d 轴暂态时间常数,M 为惯量时间常数,f v 为励磁电动势, d x 为d 轴电抗,' d x 为d 轴暂态电抗,q x 为q 轴电抗,a r 和l x 分别为定子电阻和漏抗,d i 和q i 分别为定子电流的d 轴和q 轴分量,d v 和q v 分别为定子电压的d 轴和q 轴分量。 为了消去代数变量,还必须考虑输电网络模型。建立系统状态方程,通过节点收缩得到系统的ODE 形式,并在平衡点处线性化,得到相对坐标下的小干扰稳定分析的状态方程模型[4]: ?=?x A x (1-3) 在系统(1-3)中添加干扰输入和评价输出信号, 即可得电力系统小干扰稳定的鲁棒分析模型[3]: ?=?+=?+1111x A x B w z C x D w (1-4) 其中,w 为干扰输入,z 为评价输出信号,1B 为干扰的输入增益矩阵,1C 为评价输出信号中状态变量的系数矩阵,11D 为评价输出信号中扰动的直接输出增益矩阵。 2 2/H H ∞组合指标 设系统从扰动输入w 到评价输出信号z 的 传递函数矩阵为()s zw T ,即: ()()()s s s =zw z T w (2-1) 根据Parseval 定理,可以推得传递函数矩阵 ()s zw T 的2H 范数2()s zw T 的物理意义为w 为脉冲输入时,评价输出信号z 的总的能量[2]。()s zw T 的H ∞范数等于系统的频率响应的最大奇异值的上界,它恰好等于系统的评价输出信号能量与扰动输入能量的比的上界,即:

小干扰稳定计算

第五章 小干扰稳定计算 一、实验目的 理解电力系统分析中小干扰稳定计算的相关概念,掌握PSASP 小干扰稳定计算的过程。学会根据特性值判断系统的小干扰稳定性。复习PSASP 潮流计算、暂态稳定计算。 二、预习要求 复习《电力系统分析》中有关小干扰稳定计算的内容,了解有关小干扰稳定计算的功能,掌握系统小干扰稳定性的判断方法。 三、实验内容 (一)PSASP 小干扰稳定计算概述 电力系统小干扰稳定是指系统受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到起始运行状态的能力。系统小干扰稳定性取决于系统的固有特性,与扰动的大小无关。 从理论上来说,电力系统的小干扰稳定性相当于一般动力学系统在李亚普诺夫意义下的渐近稳定性。当前,用于研究复杂电力系统小干扰稳定的方法主要是基于李雅普诺夫一次近似法的小干扰法。该方法的基本原理如下: 系统的状态方程为:X A X ??= 其中A 为n ×n 维系数矩阵,称为该系统的状态矩阵。对于由状态方程描述的线性系统,其小干扰稳定性由状态矩阵的所有特征值决定。如果所有的特征值实部都为负,则系统在该运行点是稳定的;只要有一个实部为正的特征值,则系统在该运行点是不稳定的;如果状态矩阵A 不具有正实部特征值但具有实部为零的特征值,则系统在该运行点处于临界稳定的情况。因此,分析系统在某运行点的小干扰稳定性问题,可以归结为求解状态矩阵A 的全部特征值的问题。 PSASP 小干扰稳定计算程序还提供了一些相应的分析手段,使之更加实用方便。其中包括: ? 特征值分布及其单线图上显示的模态图; ? 特征值和特征向量报表;

?线性系统频域响应曲线,包括幅频特性、相频特性、乃奎斯特(Nyquist)曲线; ?线性系统时域响应曲线。 PSASP小干扰稳定的过程如下图所示: 线性化 时域频域响应 用基于稀疏性 的方法求解系 统特征值 QR法求特性值 系统状态矩阵A 系统增广矩阵J 系统元件线性化 网络线性化 初值计算 公用数据及模型库 潮流结果 (二)数据准备 以WEPRI-7节点系统为例,其系统图如下: PSASP程序中给出了WEPRI-7节点系统的基础数据,为方便起见,就用暂态稳定计算中参数导入的方法将基础数据库(Basic、G1-CTRL)、公用参数库、单线图、地理位置接线图等数据图形导入目标数据目录(C:\XGRJS\)。

多系统合路干扰分析

多系统合路干扰分析 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

多系统合路的干扰分析 1、主题简单解读 多系统:运营商多,制式多。中国移动GSM900,DCS1800,TD;中国联通GSM900, DCS1800,WCDMA;中国电信CDMA800,CDMA2000,另外还有WLAN等等。 合路:由于多运营商、多制式、多频段,出于施工协调、美观、成本等方面的考虑,合路应运而生。 一次布放,施工简单; 美观; 综合造价低廉,共用天馈分布,减少重复建设; 系统可扩展性强,升级改造周期短。 一般合路,有合路器方式,还有POI方式,也就是Point Of Interface,多系统合路平台,以及两种方式的混合使用。对于合路系统较少的中小规模场景(如:酒店宾馆、写字楼、住宅楼等),可以采用多系统频段合路器来共用室内覆盖系统;对于合路系统较多的复杂场景(如:地铁、机场、大型场馆等),建议采用POI构建的室内覆盖系统。 干扰:合路有好处有必要,但是合路后,就难免产生一些干扰信号,或者不同频率间也会相互干扰。 2、干扰的分类 系统间的干扰主要分为以下的三类: 1)杂散干扰 杂散干扰就是一个系统的发射频段外的杂散发射落入到了另一个系统的接收频段内而可能造成的干扰,(图)杂散干扰对系统最直接的一个影响就是降低了系统的接收灵敏度。 2)接收机阻塞

阻塞干扰,就是各系统信号及其频率组合成分,落在各系统中某基站接收机所接收的信道带宽之外,却仍然能进入该基站接收机,当此干扰大于相关标准中所规定的干扰电平时,就会引起接收机接收灵敏度的下降,恶化接收机的性能。 3)系统间互调干扰 互调干扰是指两个或以上不同的频率作用于非线性电路或器件时,频率之间相互作用所产生的新频率落入接收机的频段内所产生的干扰。通信系统中的无源器件的线性度一般优于有源器件,但也可能产生互调干扰。 互调干扰的常见形式及影响最大的是三阶互调干扰,可能产生干扰的频率组合有 2f1-f2、2f1-f3、2f2-f1、2f2-f3、2f3-f1、2f3-f2、f1+f2-f3、f1-f2+f3、f2+f3-f1。这些频率组合可归纳为2f-f2(一型互调)及f1+f2-f3(二型互调)两种类型。互调干扰集中在各系统的下行输出,在进行合路时的互调产物上,主要表现为三阶互调干扰。如果互调产物落在其中某一个系统的上行接收频段内,从而对该系统基站的接收灵敏度造成一定的影响。 根据信息产业部相关频率规划的规定,目前我国移动通信系统频谱划分具体如下所 示:表一各系统间的工作频段

浅谈风力发电对电力系统小干扰稳定性的影响

浅谈风力发电对电力系统小干扰稳定性的影响 发表时间:2018-05-30T10:18:39.223Z 来源:《电力设备》2018年第1期作者:王辉[导读] 摘要:电力系统小干扰稳定性,是电力传输安全性分析的重要分支,对电网正常传输产生直接影响,也是电力传输结构不断优化的构成要素。 (响水长江风力发电有限公司 224600)摘要:电力系统小干扰稳定性,是电力传输安全性分析的重要分支,对电网正常传输产生直接影响,也是电力传输结构不断优化的构成要素。基于此,本文对电力系统小干扰稳定性的分析,主要结合风力发电的模式,对现代电网电力传输的状态进行探究,实现现代电力传输模式,高效、安全、稳定性应用。 关键词:风力发电;电力系统;小干扰稳定性引言:风力发电是现代电力供应的主要渠道,是社会电网资源长久性传输的重要保障。随着风力发电技术的不断创新,当前,我国风力发电技术在实践过程中不断革新,风力发电已经逐步从单项电力传输向着并网式电力供应的趋向转变。为了充分发挥风力发电技术在实际中应用的优势,除了要保障电流传输量增加、传输电压稳定,同时也要做好风力发电传输的外部干扰问题的有效处理,才能够推进风力发电技术不断升级、拓展。 一、电力系统小干扰稳定性理论论述 电力系统小干扰稳定性,是指电网传输结构受到小型电流冲击波,外部携带电流波等小规模的干扰后,电力传输系统能够自动进行结构调整,电力传输周期不会出现传输混乱的问题[1]。我们以电力传输动态管理的分析模式进行探究,电网结构中出现小干扰问题,是由于线路传输中的线路做功夹角与同步转矩的速率不协调,导致线路两侧电流不均衡所引起的;或者,当发动机做功转矩的转子运动方程与线性模型分析的比值不同,也容易出现电力系统小干扰问题[2]。 二、风力发电对电力系统小干扰稳定性的影响 现代风力发电系统的周期运作,是在现有资源基础上,实现了电力传输结构的运转结构调整,它能够有效克服传统电力系统中部分小干扰问题,从而使电力传输体系的稳定性得到了保障。 (一)线路做功与同步转矩速率的协调新型风力发电模式,将传统资源传输的基础上,实现风力发电结构周期性运转,同时,增加了风力发电的外部机械转换的整体动力,保障发电过程中,发电机始终保持匀速运动。简单来说,就是外部机械做功部分的传输来源增多,替代了发电站外部机械做功,会出现间断性做功的状态。而后期线路传输分析时,也只需按照供电部分的运作周期设定即可,线路传输中出现电压不稳的频率会大大减少。此外,风力发电设计系统保障线路小干扰稳定性,也在发动机转矩调整方面发挥着重作用,现代风力发电的发动机,逐步应用双馈式发电机取代异步转矩发动机,双馈式模式主要借助电磁感应原理,实行发动机周期转换,因此,即使电力转换过程中受到电流波干扰振动,电磁转换依旧是按照磁场周期运转的模式做功,从而保障了电力系统传输的稳定性。 (二)发动机转子运动方程与线性模型比值的调整风力发电对电力系统小干扰稳定性的影响解析,也可以从发动机运动方程与线性模型比值之间的相互调整进行分析。我们设定本次电力分析的域为Q,电力传输向量值为Y,发动机转子运动为G,方程协调运作中小干扰稳定性为X,按照Y=GQ的模式,计算出Y的向量值。如果Y向量值为正数,则说明此时发动机转子运动方程的结果大于线性模型比值,风力发电的电力传输稳定性高;如果Y向量值为负数,则说明此时发动机转子运动方程的结果小于线性模型比值,风力发电的电力传输稳定性低。由此,发电人员能够按照电力传输的实际情况,调整风力发电机械做功速率。通过以上分析可知,风力发电结构作为电力传输的主要构成部分,其传输干扰调整模式,为电力传输模式的周期运转提供了可调节空间,因此,风力发电模式能够保障电力系统小干扰稳定性。 (三)电流系统稳定器的调整电流系统稳定器的调整,也是风力发电对电力系统小干扰稳定性影响分析的主要方面。这种设备是一种附加性监控设备,能够在电力系统传输的过程中,实现动态性检测线路各部分的电流传输情况。风力发电系统将该装置作为能源转换的监控装置,当外部出现线路干扰振动时,电流系统稳定器,能够进行小规模的调整,也就达到了辅助电力系统有效应对小干扰问题的目的了。值得注意的是,电流系统稳定器只能用于风力发电系统电力传输的小型干扰调整,而不能作为发电结构大干扰电流调整的措施,一旦风力发电模式中出现大规模电流波干扰,要实行有效的系统维护。 (四)电力系统阻尼分析风力发电对电力系统小干扰稳定性的影响,也可以通过电力系统的阻尼变化进行分析。阻尼是电网传输波自身携带的干扰信号,一般而言,如果电力系统母线、子线的电流传输稳定,则电力系统阻尼的振动变化频率规律性较强,电力结构的信号传输结构的综合运转效果较好;反之,如果电力系统母线、子线的电流传输受到外部强电流的干扰,则电力系统阻尼的振动变化频率变化较大,规律性不明显,电力结构的信号传输结构的综合运转效果较差。我们进行系统结构判断时,就要可以调整风力发电结构的电流传输运转速率,降低电流传输波动率。那么,当电力系统受到外部干扰波的影响,其干扰结构的传输调整,也能够通过风力发电机械持续性动力进行电流波补给,使电力系统的电流传输,始终保持恒定状态,线路应对小干扰的能力自然较强[2]。 结论:综上所述,浅谈风力发电对电力系统小干扰稳定性的影响分析,为现代电力传输结构的不断优化提供了理论指导。在此基础上,为了确保风力发电在现代电力系统中的有机融合,应实行线路做功与同步转矩速率的协调、发动机转子运动方程与线性模型比值的调整、电流系统稳定器的调整、以及电力系统阻尼动态分析,才能够达到稳定电力传输线路的效果。因此,风力发电对电力系统小干扰稳定性的影响剖析,将为国内电力供应结构的优化提供技术保障。 参考文献: [1]王铭.风光储接入对电力系统稳定性的影响分析[D].太原理工大学,2016. [2]和萍,文福拴,薛禹胜,LedwichGerard.风力发电对电力系统小干扰稳定性影响述评[J].电力系统及其自动化学报,2014,26(01):1-7+38.

相关文档
最新文档