傅里叶变换红外(FTIR)光谱专题实验
傅里叶变换红外光谱仪的使用方法与实验设计

傅里叶变换红外光谱仪的使用方法与实验设计傅里叶变换红外光谱仪(FT-IR)是一种常用的分析仪器,广泛应用于化学、材料、生物等领域。
它通过测量和分析物质在红外光谱范围内的吸收特性,可以实现对物质的结构和组分进行快速、准确的分析。
1. FT-IR的基本原理FT-IR基于傅里叶变换原理,利用激光、光学元件和光学检测器等组成,将红外光谱信号转化为干涉信号。
具体来说,它将入射的红外光谱信号与参比光谱信号进行干涉,然后通过傅里叶变换将干涉信号转化为频谱图。
频谱图中的吸收峰对应于物质的特定化学键振动,可以用来确定物质的组分和结构。
2. FT-IR的使用方法使用FT-IR进行实验前,首先需要准备样品,通常是将样品制成薄膜或粉末,并在实验前进行预处理,消除或减小其它因素对红外吸收的干扰。
在进行实验时,先对仪器进行校准。
校准方法通常是通过测量一些已知物质的标准样品,得到它们的红外光谱图,并与已知数据进行比对,确定仪器的准确性和精度。
然后,将样品放置在透明的红外吸收盘中,以确保光线的通透性,并固定在样品架上。
将样品架放入FT-IR仪器中,调整仪器参数,如光源强度、积分时间等,以获取清晰的频谱图。
测量完成后,可以将频谱图导出并进行分析。
可以通过与已知物质的标准光谱对比,确定未知样品的组分和结构,或者通过数据库比对,进行物质的鉴定。
此外,还可以通过对频谱图进行峰面积计算,定量分析样品中不同组分的含量。
3. FT-IR实验设计在设计FT-IR实验时,首先需要根据需求确定实验目的,例如是进行物质的鉴定、组分分析还是化学反应的监测。
根据不同的实验目的,可以选择不同的实验条件和参数。
其次,需要选择适当的样品制备方法。
对于固态样品,可以通过压片或溶剂挥发法制备薄膜样品。
对于液态样品,可以直接放置在透明吸收盘中进行测量。
对于气态样品,可以将样品通过气流导入到红外吸收室中进行测量。
此外,实验中还需要选择适当的光谱区域进行测量,并调整仪器参数以获得最佳的信噪比。
红外光谱实验报告

红外光谱实验报告一、实验目的1、了解红外光谱的基本原理和应用。
2、学习红外光谱仪的操作方法。
3、通过对样品的红外光谱分析,确定样品的化学结构和官能团。
二、实验原理红外光谱是一种基于分子振动和转动能级跃迁而产生的吸收光谱。
当一束具有连续波长的红外光通过物质时,物质分子中的某些基团会吸收与其振动和转动频率相同的红外光,从而在红外光谱图上出现特征吸收峰。
不同的官能团具有不同的振动频率,因此可以通过分析红外光谱图中的吸收峰位置、强度和形状来推断物质的结构和成分。
分子的振动形式可以分为伸缩振动和弯曲振动。
伸缩振动是指化学键沿键轴方向的伸长和缩短,如 CH 键的伸缩振动;弯曲振动则是指化学键在垂直于键轴方向的振动,如 CH 键的弯曲振动。
红外光谱的波长范围通常在25 25 μm 之间,对应的波数范围为4000 400 cm⁻¹。
其中,4000 1300 cm⁻¹区域称为官能团区,主要反映分子中官能团的特征吸收;1300 400 cm⁻¹区域称为指纹区,主要反映分子的整体结构特征。
三、实验仪器与试剂1、仪器:傅里叶变换红外光谱仪(FTIR)、压片机、玛瑙研钵、干燥器。
2、试剂:KBr 粉末(光谱纯)、待测试样(固体或液体)。
四、实验步骤1、样品制备固体样品:采用 KBr 压片法。
称取 1 2 mg 样品,在玛瑙研钵中与100 200 mg KBr 粉末充分研磨混合,然后将混合物置于压片机中,在一定压力下压成透明薄片。
液体样品:采用液膜法或溶液法。
液膜法是将少量液体样品直接滴在两片盐片之间,形成液膜进行测试;溶液法是将样品溶解在适当的溶剂中,然后将溶液注入液体池中进行测试。
2、仪器操作打开红外光谱仪电源,预热 30 分钟。
设置仪器参数,如扫描范围、分辨率、扫描次数等。
将制备好的样品放入样品室,进行扫描测量。
3、数据处理对获得的红外光谱图进行基线校正、平滑处理等。
标注吸收峰的位置和强度,并与标准谱图进行对比分析。
傅里叶变换红外光谱仪

傅里叶红外光谱仪(FTIR)(仅供参考)一.实验目的:1.了解FTIR的工作原理以及仪器的操作。
2.通过对多孔硅的测试,初步学会分析方法。
二.实验原理:1.傅里叶红外光谱仪的工作原理:FTIR光谱仪由3部分组成:红外光学台(光学系统)、计算机和打印机。
而红外光学台是红外光谱仪的最主要部分。
红外光学台由红外光源、光阑、干涉仪、样品室、检测器以及各种红外反射镜、氦氖激光器、控制电路和电源组成。
下图所示为红外光学台基本光路图。
傅里叶变换红外光谱是将迈克尔逊干涉仪动镜扫描时采集的数据点进行傅立叶变换得到的。
动镜在移动过程中,在一定的长度范围内,在大小有限,距离相等的位置采集数据,由这些数据点组成干涉图,然后对它进行傅立叶变换,得到一定范围内的红外光谱图。
每一个数据点由两个数组成,对应于X轴和Y轴。
对应同一个数据点,X值和Y值决定于光谱图的表示方式。
因此,在采集数据之前,需要设定光谱的横纵坐标单位。
红外光谱图的横坐标单位有两种表示法:波数和波长。
通常以波数为单位。
而对于纵坐标,对于采用透射法测定样品的透射光谱,光谱图的纵坐标只有两种表示方法,即透射率T 和吸光度A。
透射率T是由红外光透过样品的光强I和红外光透过背景(通常是空光路)的光强I0的比值,通常采用百分数(%)表示。
吸光度A是透射率T倒数的对数。
透射率光谱图虽然能直观地看出样品对红外光的吸收情况,但是透射率光谱的透射率与样品的质量不成正比关系,即透射率光谱不能用于红外光谱的定量分析。
而吸光度光谱的吸光度值A在一定范围内与样品的厚度和样品的浓度成正比关系,所以大都以吸光度表示红外光谱图。
本实验运用的仪器是Nicolet 380 智能傅立叶红外光谱仪。
2.傅里叶红外光谱仪的主要特点:⑴具有很高的分辨能力,在整个光谱范围内分辨能力达到0.1cm-1。
⑵具有极高的波数准确度,波数准确度可以达到0.01cm-1。
⑶杂散光的影响度低,通常在全光谱范围杂散光影响低于0.3%。
光谱分析实验报告

一、实验目的1. 了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR)和荧光光谱仪的基本原理、主要用途和实际操作过程。
2. 掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。
3. 学习分析影响测试结果的主要因素。
二、实验原理1. 光谱分析是利用物质对不同波长光的吸收、发射和散射特性来研究物质的组成和结构的一种方法。
2. 紫光/可见光光度计:当光波与物质相互作用时,物质会吸收一部分光能,产生吸收光谱。
紫外和可见光的能量接近于电子能级之间的能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁。
3. 傅里叶变换红外光谱仪(FTIR):当红外光照射到化合物上时,分子会吸收一部分光能转变为分子的震动能量或转动能量。
通过分析吸收光谱中的特征峰,可以推知被测物的结构。
4. 荧光光谱仪:当物质吸收光能后,由基态跃迁至激发态,激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态。
通过激发光谱和发射光谱,可以研究物质的性质。
三、实验仪器与试剂1. 仪器:紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR)、荧光光谱仪、样品池、光源、单色器、探测器等。
2. 试剂:玻璃样品、薄膜样品、固体粉末样品、固体发光材料样品、标准样品等。
四、实验步骤1. 紫光/可见光光度计实验(1)开启仪器,预热30分钟。
(2)选择合适的波长,设置合适的参比溶液。
(3)依次测量样品溶液的吸光度。
2. 傅里叶变换红外光谱仪(FTIR)实验(1)开启仪器,预热30分钟。
(2)将样品置于样品池中。
(3)设置合适的扫描参数,进行红外光谱扫描。
3. 荧光光谱仪实验(1)开启仪器,预热30分钟。
(2)将样品置于样品池中。
(3)设置合适的激发光波长和发射光波长。
(4)依次测量样品的荧光强度。
五、实验数据记录与处理1. 记录实验过程中测得的吸光度、红外光谱、荧光强度等数据。
光谱分析实验实验报告(3篇)

第1篇一、实验目的和要求通过本次实验,掌握光谱分析的基本原理和方法,了解不同光谱仪(如紫外-可见分光光度计、傅里叶变换红外光谱仪、荧光光谱仪等)的原理和操作步骤。
学会如何通过光谱分析技术来鉴定物质、研究物质的组成和结构,并分析实验过程中可能影响结果的因素。
二、实验原理光谱分析是一种基于物质对电磁辐射吸收、发射或散射特性的分析方法。
当物质与电磁波相互作用时,会发生能量转移,从而产生吸收、发射或散射现象。
通过分析这些现象,可以获得有关物质的定量和定性信息。
1. 紫外-可见分光光度计:基于物质对紫外和可见光的吸收特性,通过测量吸光度来定量分析物质的浓度。
2. 傅里叶变换红外光谱仪(FTIR):基于物质对红外光的吸收特性,通过分析红外光谱中的吸收峰来鉴定物质的结构。
3. 荧光光谱仪:基于物质对紫外光的吸收和荧光发射特性,通过分析荧光光谱来研究物质的性质。
三、主要仪器设备1. 紫外-可见分光光度计2. 傅里叶变换红外光谱仪(FTIR)3. 荧光光谱仪4. 标准样品5. 待测样品6. 空白溶液四、实验内容和原理1. 紫外-可见分光光度计实验- 原理:根据比尔-朗伯定律,吸光度与物质的浓度成正比。
- 步骤:配制标准溶液,测量吸光度,绘制标准曲线,测定待测样品的浓度。
2. 傅里叶变换红外光谱仪(FTIR)实验- 原理:根据红外光谱的吸收峰位置和强度,鉴定物质的结构。
- 步骤:将待测样品制成薄片,进行红外光谱扫描,与标准光谱图进行比对,鉴定物质的结构。
3. 荧光光谱仪实验- 原理:根据物质的荧光发射光谱,研究物质的性质。
- 步骤:将待测样品制成薄片,进行荧光光谱扫描,分析荧光光谱,研究物质的性质。
五、实验数据记录和处理1. 紫外-可见分光光度计实验数据:- 标准溶液浓度:C1, C2, C3, ...- 吸光度:A1, A2, A3, ...- 标准曲线:y = ax + b2. 傅里叶变换红外光谱仪(FTIR)实验数据:- 待测样品红外光谱图3. 荧光光谱仪实验数据:- 待测样品荧光光谱图六、实验结果与分析1. 紫外-可见分光光度计实验结果:- 标准曲线线性良好,相关系数R² > 0.99。
红外识别分析实验报告(3篇)

第1篇一、实验目的本实验旨在通过红外识别技术,对特定样品进行红外光谱分析,识别其中的功能团和化学结构,掌握红外光谱仪的使用方法,并学会如何通过红外光谱数据对样品进行定性分析。
二、实验原理红外光谱分析是一种基于分子振动和转动能级跃迁的光谱分析方法。
当分子中的化学键或基团振动时,会吸收特定波长的红外光,从而产生红外光谱。
通过分析红外光谱中吸收峰的位置和强度,可以识别分子中的特定官能团和化学结构。
三、实验仪器与试剂1. 仪器:- 傅里叶变换红外光谱仪(FTIR)- 红外光谱仪附件(样品池、衰减器等)- 计算机及红外光谱分析软件2. 试剂:- 样品:未知化合物- 标准样品:已知化合物四、实验步骤1. 样品准备:将未知化合物和标准样品分别称量,并制备成适当浓度的溶液。
2. 样品测试:将溶液分别注入样品池中,放入红外光谱仪中,进行红外光谱扫描。
3. 数据采集:记录样品的红外光谱数据,包括吸收峰的位置、强度和形状。
4. 数据分析:使用红外光谱分析软件对样品光谱进行分析,识别其中的功能团和化学结构。
5. 结果比较:将未知化合物光谱中的吸收峰与标准样品光谱中的吸收峰进行对比,确定未知化合物的结构。
五、实验结果与分析1. 未知化合物红外光谱图:(此处插入未知化合物红外光谱图)2. 数据分析:(1)吸收峰识别:通过分析未知化合物红外光谱图,识别出以下吸收峰:- 3440 cm-1:O-H伸缩振动峰,表明分子中存在羟基;- 2920 cm-1:C-H伸缩振动峰,表明分子中存在甲基;- 1730 cm-1:C=O伸缩振动峰,表明分子中存在羰基;- 1600 cm-1:C=C伸缩振动峰,表明分子中存在双键;- 1450 cm-1:C-H弯曲振动峰,表明分子中存在甲基。
(2)结构推断:根据吸收峰的识别,推断未知化合物可能的结构为:含有羟基、甲基、羰基和双键的有机化合物。
3. 结果比较:将未知化合物光谱中的吸收峰与标准样品光谱中的吸收峰进行对比,发现两者在3440 cm-1、1730 cm-1和1600 cm-1处的吸收峰位置和强度相似,因此推断未知化合物与标准样品具有相似的结构。
傅里叶红外实验报告

傅里叶红外实验报告
傅里叶红外实验是一种常见的分析化学实验,它利用傅里叶变换原理,将物质的红外光谱图像转换为频率分布图像,从而得到物质的结构信息。
本次实验我们使用的是红外光谱仪,通过对样品的红外光谱进行分析,得到了样品的结构信息。
实验步骤如下:
1. 准备样品:将待测样品制成薄膜或粉末,并将其放置在红外光谱仪的样品室中。
2. 调整仪器:打开红外光谱仪,调整仪器的参数,如光源强度、光谱分辨率等,以保证实验的准确性。
3. 开始实验:启动红外光谱仪,让样品受到红外光的照射,记录下样品的红外光谱图像。
4. 分析数据:将得到的红外光谱图像进行傅里叶变换,得到频率分布图像,从中分析出样品的结构信息。
通过本次实验,我们得到了样品的红外光谱图像和频率分布图像,从中可以看出样品的结构信息。
例如,我们可以通过红外光谱图像中的吸收峰来判断样品中的化学键类型,如羰基、羟基、胺基等。
同时,我们还可以通过频率分布图像中的峰位和峰形来判断样品中的分子结构,如分子中的取代基、环状结构等。
傅里叶红外实验是一种非常重要的分析化学实验,它可以帮助我们了解样品的结构信息,从而更好地进行化学研究和应用。
傅里叶变换红外(FTIR)光谱专题实验

傅里叶变换红外(FTIR)光谱专题实验实验一、红外吸收光谱仪的结构及基本操作(老师讲解)实验二、薄膜样品的层数定量分析二、实验准备准备好某种塑料薄膜,分别制成1、2、3、4层样品。
三、实验步骤1)开机步骤a.开启计算机b.打开仪器c.打开Perkinelmer Spectrum软件2)测定步骤a.设置合适的各参数(扫描范围在4000-400)b.背景扫描c.用强磁力样品架,依次扫描准备好的样品d.对图谱进行数据处理并保存至文件夹四、注意事项a.所制薄膜样品不可太厚或太薄。
过薄或浓度过低常使弱的甚至中等强度的吸收谱带显示不出来;如果样品过厚或过浓会使许多主要吸收谱带彼此连成一片(或峰过宽),看不出准确的波数位置和其精细结构。
b.样品中不应有游离水c.样品表面反射回引起能量损失,造成普带变形。
并产生干涉条纹,可使样品表面粗糙些来消除。
d.样品扫描过程中禁止打开样品舱盖五、数据处理图11、对图谱进行基线校正,并标出个谱峰的位置对照红外波谱数据解析,了解所标普带表示的化学键2、分析所实验样品得结果并与标准样品对照,考察其匹配程度。
分析:由上图1红外光谱对照红外数据推知约3600处的吸收为自由,峰尖很大可能是材料表面有水分所导致。
重点是该材料在400~4000的特征吸收主要有3组,分别为峰为2912(与2849是一组)、1466和722四处峰,其中2912对应于反对称伸缩振动,2849对称伸缩振动(并由图可知材料中基团浓度较高,该组振动强度很大);1466对应弯曲振动;722处的峰是()亚甲基平面摇摆振动。
据此可初步判断该材料为聚乙烯。
3、薄膜层数计算由origin软件经积分处理得到薄膜层数与特征吸收峰高度和薄膜层数与特征吸收面积数据表(未转换成吸收光谱):层数特征吸收峰高特征吸收峰面积1 89.85 283072.2852 80.64 238567.813 73.26 200488.654 66.55 168540.35x 55.24 127166.7薄膜层数与特征吸收峰高度和薄膜层数与特征吸收面积标准工作曲线如下图2:图2Lambert-beer定律式中::光度;:透射率;b:厚度;c:表示浓度;:摩尔吸光系数,单位;据此建立吸光度-厚度d的标准工作曲线,得到未知薄膜的厚度.不同层数塑料薄膜在722处特征峰的吸光度值如下表:1 0.483462 0.957033 1.360514 1.68825用Origin软件处理得到塑料薄膜层数与特征峰吸光度的标准工作曲线如图3图3用Origin拟合得n-A线性关系为:n=-0.27505+2.47261A.相关度R=0.99672,显著性概率P=0.00328.由此可见该拟合结果的线性相关性很强,相关度为99.672%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶变换红外(FTIR )光谱专题实验
实验一、红外吸收光谱仪的结构及基本操作(老师讲解)
实验二、薄膜样品的层数定量分析
二、实验准备
准备好某种塑料薄膜,分别制成1、2、3、4层样品。
三、实验步骤 1)开机步骤
a.开启计算机
b.打开仪器
c.打开Perkinelmer Spectrum 软件 2)测定步骤
a.设置合适的各参数(扫描范围在4000-4001
cm )
b.背景扫描
c.用强磁力样品架,依次扫描准备好的样品
d.对图谱进行数据处理并保存至文件夹 四、注意事项
a.所制薄膜样品不可太厚或太薄。
过薄或浓度过低常使弱的甚至中等强度的吸收谱带显示不出来;如果样品过厚或过浓会使许多主要吸收谱带彼此连成一片(或峰过宽),看不出准确的波数位置和其精细结构。
b.样品中不应有游离水
c.样品表面反射回引起能量损失,造成普带变形。
并产生干涉条纹,可使样品表面粗糙些来消除。
d.样品扫描过程中禁止打开样品舱盖 五、数据处理
040
80
T r a n s m i t t a n c e %
wavenumber (cm -1
)
图1
1、对图谱进行基线校正,并标出个谱峰的位置对照红外波谱数据解析,了解所标普带
Area
n
表示的化学键
2、分析所实验样品得结果并与标准样品对照,考察其匹配程度。
分析:由上图1红外光谱对照红外数据推知约36001
-cm 处的吸收为自由OH -,峰尖很大可能是材料表面有水分所导致。
重点是该材料在400~40001
-cm 的特征吸收主要有3组,分别为峰为2912(与2849是一组)、1466和7221
-cm 四处峰,其中29121
-cm 对应于反对称伸缩振动,28491
-cm 对称伸缩振动(并由图可知材料中H C -基团浓度较高,该组振动强度很大);14661
-cm 对应弯曲振动;7221
-cm 处的峰是n CH )(2(4≥n )亚甲基平面摇摆振动。
据此可初步判断该材料为聚乙烯。
3、薄膜层数计算
由origin 软件经积分处理得到薄膜层数与特征吸收峰高度和薄膜层数与特征吸收面积数据表(未转换成吸收光谱):
图2
Lambert-beer 定律
bc I I T A t
ε=-=-=)lg(
lg 0
n
Height
式中:A :光度;T :透射率;b:厚度;c:表示浓度;ε:摩尔吸光系数,单位11
--⋅⋅cm mol L ;
据此建立吸光度A -厚度d 的标准工作曲线,得到未知薄膜的厚度. 不同层数n 塑料薄膜在7221
-cm 处特征峰的吸光度值如下表:
用Origin 软件处理得到塑料薄膜层数
与特征峰吸光度的标准工作曲线如图3
n
Abs
图3
用Origin 拟合得n-A 线性关系为:n=-0.27505+2.47261A.相关度R=0.99672,显著性概率P=0.00328.由此可见该拟合结果的线性相关性很强,相关度为99.672%。
未知层数的薄膜红外光谱在7221
-cm 处特征峰的吸光度4318.2)0037.0lg(lg =-=-=T A ,所以未知层数
6737843.54318.247261.227505.0≈=⨯+-=n (未知层数实际为6)
结论:①根据分析判断该薄膜材料为聚乙烯;②未知层数为6.
六、思考题
该实验应选择哪个特征峰作为定量分析定律判定峰?为什么?
答:应选7221
-cm ,其相关系数R 最大趋近于1. 峰尖,受其他干扰小。
实验三、固体样品定性分析
一、实验准备
准备柠檬酸样品、干净且干燥的钥匙两个、氯化钠(用于稀释样品) 二、实验步骤
1、将准备好的O H O H C 2786⋅与NaCl 粉末按100:1的比例放入玛瑙研钵中研磨至均
匀细粉末。
2、压片
3、扫描背景然后扫描样品
4、处理图谱数据并保存至文件夹 三、数据处理
1、对图谱进行基线校正,并标出个谱峰的位置对照红外波谱数据解析,了解所标普带表示的化学键
2、分析所实验样品得结果并与标准样品对照,考察其匹配程度。
4000
3000
2000
1000
10
20
30
40
1729
1398
1227
785
599
T r a n s m i t t a n c e %
wavenumber (cm -1
)
3449
1126
图4 CH 2—COOH
分析:实验用柠檬酸分子式:C 6H 8O 7·H 2O 其结构式为:|
HO —C —COOH ·H 2O
|
CH 2—COOH
由上图4红外光谱对照红外数据推知34491-cm 是H O -的伸缩振动,17291-cm 、
13981-cm 、12271-cm 分别是羧基中的O C =ν键、OH ν键和OH ν。
11261-cm 为O C -键伸缩振动。
结论:由常见官能团红外吸收特征频率表知:该物质中含有羧基,羟基,亚甲基。
四、注意事项
1、压片所用模具都应用酒精清洗干净;
2、取氯化钠试剂时,不能将氯化钠污染,避免影响其他实验结果;
3、用压片机压片时,严格按照操作:
4、进口压片模具的不锈钢小垫片应放在中心轴,压片过程中移动模具时应小心以免小垫片移位。
5、压片应较为透明
6、实验室应保持干燥,尽量避免对着样品呼吸
实验报告
实验名称傅里叶变换红外(FTIR)光谱专题实验
专业物理学
课程仪器分析技术
姓名汪永杰
学号S120601005。