遗传算法及其在TSP问题中的应用
实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。
遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。
本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。
2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。
其基本原理可以概括为:选择、交叉和变异。
(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。
(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。
交叉算子的选择及实现方式会对算法效果产生很大的影响。
(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。
通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。
3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。
(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。
(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。
(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。
b. 计算适应度:根据适应度函数,计算每个个体的适应度值。
c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。
d. 交叉操作:对父代进行交叉操作,生成新的个体。
e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。
实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇以下是关于遗传算法求解TSP问题的实验报告,分为三个部分,总计超过3000字。
一、实验背景与原理1.1 实验背景旅行商问题(Traveling Salesman Problem,TSP)是组合优化中的经典问题。
给定一组城市和每两个城市之间的距离,求解访问每个城市一次并返回出发城市的最短路径。
TSP 问题具有很高的研究价值,广泛应用于物流、交通运输、路径规划等领域。
1.2 遗传算法原理遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的搜索算法。
它通过选择、交叉和变异操作生成新一代解,逐步优化问题的解。
遗传算法具有全局搜索能力强、适用于多种优化问题等优点。
二、实验设计与实现2.1 实验设计本实验使用遗传算法求解TSP问题,主要包括以下步骤:(1)初始化种群:随机生成一定数量的个体(路径),每个个体代表一条访问城市的路径。
(2)计算适应度:根据路径长度计算每个个体的适应度,适应度越高,路径越短。
(3)选择操作:根据适应度选择优秀的个体进入下一代。
(4)交叉操作:随机选择两个个体进行交叉,生成新的个体。
(5)变异操作:对交叉后的个体进行变异,增加解的多样性。
(6)更新种群:将新生成的个体替换掉上一代适应度较低的个体。
(7)迭代:重复步骤(2)至(6),直至满足终止条件。
2.2 实验实现本实验使用Python语言实现遗传算法求解TSP问题。
以下为实现过程中的关键代码:(1)初始化种群```pythondef initialize_population(city_num, population_size): population = []for _ in range(population_size):individual = list(range(city_num))random.shuffle(individual)population.append(individual)return population```(2)计算适应度```pythondef calculate_fitness(population, distance_matrix): fitness = []for individual in population:path_length =sum([distance_matrix[individual[i]][individual[i+1]] for i in range(len(individual) 1)])fitness.append(1 / path_length)return fitness```(3)选择操作```pythondef selection(population, fitness, population_size): selected_population = []fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]for _ in range(population_size):individual = random.choices(population, fitness_probability)[0]selected_population.append(individual)return selected_population```(4)交叉操作```pythondef crossover(parent1, parent2):index1 = random.randint(0, len(parent1) 2)index2 = random.randint(index1 + 1, len(parent1) 1)child1 = parent1[:index1] +parent2[index1:index2] + parent1[index2:]child2 = parent2[:index1] +parent1[index1:index2] + parent2[index2:]return child1, child2```(5)变异操作```pythondef mutation(individual, mutation_rate):for i in range(len(individual)):if random.random() < mutation_rate:j = random.randint(0, len(individual) 1) individual[i], individual[j] = individual[j], individual[i]return individual```(6)更新种群```pythondef update_population(parent_population, child_population, fitness):fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]new_population =random.choices(parent_population + child_population, fitness_probability, k=len(parent_population)) return new_population```(7)迭代```pythondef genetic_algorithm(city_num, population_size, crossover_rate, mutation_rate, max_iterations): distance_matrix =create_distance_matrix(city_num)population = initialize_population(city_num, population_size)for _ in range(max_iterations):fitness = calculate_fitness(population, distance_matrix)selected_population = selection(population, fitness, population_size)parent_population = []child_population = []for i in range(0, population_size, 2):parent1, parent2 = selected_population[i], selected_population[i+1]child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)parent_population.extend([parent1, parent2]) child_population.extend([child1, child2])population =update_population(parent_population, child_population, fitness)best_individual =population[fitness.index(max(fitness))]best_path_length =sum([distance_matrix[best_individual[i]][best_individual[i +1]] for i in range(len(best_individual) 1)])return best_individual, best_path_length```三、实验结果与分析3.1 实验结果本实验选取了10个城市进行测试,遗传算法参数设置如下:种群大小:50交叉率:0.8变异率:0.1最大迭代次数:100实验得到的最佳路径长度为:1953.53.2 实验分析(1)参数设置对算法性能的影响种群大小:种群大小会影响算法的搜索能力和收敛速度。
利用遗传算法求解TSP问题

利⽤遗传算法求解TSP问题⼀、摘要TSP问题是指给定平⾯上N个点及每点的坐标,求⼀条路径,遍历所有的点并回到起点,使这条路径长度最⼩。
TSP问题是⼀个组合优化问题。
该问题可以被证明具有NPC计算复杂性。
因此,任何能使该问题的求解得以简化的⽅法,都将受到⾼度的评价和关注。
遗传算法是⼈⼯智能⽅法的⼀种,⽤于求解各种传统⽅法不⽅便求解或耗时很长的问题。
下⾯给出遗传算法求解TSP问题的步骤。
在传统遗传算法求解TSP的基础上,提出了⼀种新的编码⽅式,并且讨论了⼀种优化⽅法的可⾏性。
本次实验的程序⾸先在matlab上验证了基本的算法,然⽽由于matlab运⾏较慢,故⼜移植到C++平台上,经过测试,实验结果良好。
⼆、算法实现遗传算法的实现主要包括编码、选择、交叉、编译、将个体放⼊新种群这么⼏个步骤,经过很多代的编译求解,以逼近最优解。
下⾯讨论每⼀个步骤的实现,其中编码⽅式是我在考虑了传统编码⽅式不利于计算的缺点下,重新设计的⼀种全新的编码⽅式。
编码在传统TSP问题中,编码可以直接采⽤⼆进制编码或⾃然编码的形式,⽐如直接把城市转化成(2,5,4,1,3,6)的形式,表⽰从2到5到4到1到3到6最后回到起点。
但是在求解TSP问题时,如果直接采⽤此种编码⽅式,会导致在交叉或变异时出现冲突的情况。
如(2,5,4,1,3,6)和(3,5,6,1,2,4)交换后变成了(2,5,6,1,2,6)和(3,5,4,1,3,4),显然路径出现了冲突的现象,传统的解决⽅式是通过逐步调整的⽅法来消除冲突,但是这种⽅法增加了编码的复杂度,不利于问题的求解,根据问题的特点,提出了采⽤⼀种插⼊序号的编码⽅式。
假设6个城市(1,2,3,4,5,6)现在有编码(1,1,2,2,1,3),让第n个编码表⽰n放在第⼏个空格处。
那么⽣成路径的规则是⾸先取1放在第⼀个(1),然后取2放在第⼀个空格处(2,1),然后取3放在第⼆个空格处(2,3,1),然后取4放在第⼆个空格处(2,4,3,1)然后取5放在第⼀个空格处(5,2,4,3,1)最后取6放在第3个空格处(5,2,6,4,3,1)。
毕业论文--基于遗传算法的tsp问题研究

目录摘要 (I)Abstract (II)第1章绪论............................................................... - 1 -1.1旅行商问题......................................................... - 1 -1.2研究意义........................................................... - 1 -1.3 论文的组织结构..................................................... - 1 - 第2章遗传算法理论概述................................................... - 2 -2.1遗传算法的起源和发展............................................... - 2 -2.2遗传算法基本原理................................................... - 3 -2.3遗传算法的基本步骤................................................. - 4 -2.4 遗传算法的流程图................................................... - 4 -2.5遗传算法的特点..................................................... - 5 -2.6遗传算法的应用..................................................... - 6 - 第3章 TSP问题及研究的基本方法............................................ - 8 -3.1 TSP问题概述....................................................... - 8 -3.2 TSP的应用与价值................................................... - 8 -3.3 TSP问题的数学模型................................................. - 9 -3.4 TSP 问题的分类..................................................... - 9 -3.5 现有的求解TSP问题的几种算法...................................... - 10 - 第4章遗传算法在TSP的应用.............................................. - 12 -4.1遗传算法在TSP上的应用............................................ - 12 -4.2算法的实现........................................................ - 12 -4.3编码.............................................................. - 12 -4.4初始化种群........................................................ - 13 -4.5适应度函数........................................................ - 13 -4.6选择操作.......................................................... - 13 -4.7交叉操作.......................................................... - 15 -4.8变异操作.......................................................... - 17 -4.9实验结果.......................................................... - 18 - 结论................................................................... - 20 - 展望..................................................................... - 20 - 参考文献.............................................................. - 21 - 致谢................................................................... - 22 - 附录程序................................................................. - 23 -摘要TSP问题(Traveling Salesman Problem)是已知有n个城市,现有一推销员必须遍访这n个城市,且每个城市只能访问一次,最后又必须返回出发城市。
遗传算法求解TSP问题

实验六遗传算法求解TSP问题一、实验目的熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。
二、实验内容1、参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。
2、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。
3、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。
4、上交源代码。
三、遗传算法求解TSP问题的流程图四、遗传算法求解不同规模的TSP问题的算法性能(1)遗传算法执行方式说明:适应度值计算方法:当前路线的路径长度●个体选择概率分配方法:适应度比例方法●选择个体方法:轮盘赌选择●交叉类型:PMX交叉●变异类型: 两点互换变异(2)实验模拟结果:城市个数时间(ms)5 1692510 1663015 1883320 2259625 2415930 3028935 3523940 3860845 4003250 4375755 4774660 5814365 5994270 6436175 71417图1-1(3)分析由图1-1可知,遗传算法执行时间随着TSP问题规模的增大而增大,并且大致为线性增长。
五、不同参数下的计算结果对比(1)种群规模对算法结果的影响实验次数:10最大迭代步数:100交叉概率:0.85变异概率:0.15如表1-1或3-1-0-9-2-4-8-5-7-6,注意到这是一圈,顺时针或者逆时针都可以。
当种群规模为10,20时,并没有找到最优解。
(2)交叉概率对算法结果的影响实验次数:15种群规模:25最大迭代步数:100变异概率:0.15实验结果:在该情况下,交叉概率过低将使搜索陷入迟钝状态,得不到最优解。
(3)变异概率对算法结果的影响实验次数:10种群规模:25最大迭代步数:100交叉概率:0.85实验结果:又表1-3可知,当变异概率过大或过低都将导致无法得到最优解。
遗传算法(GA)解决TSP问题

遗传算法(GA)解决TSP问题 遗传算法解决TSP问题遗传算法遗传算法的基本原理是通过作⽤于染⾊体上的基因寻找好的染⾊体来求解问题,它需要对算法所产⽣的每个染⾊体进⾏评价,并基于适应度值来选择染⾊体,使适应性好的染⾊体有更多的繁殖机会,在遗传算法中,通过随机⽅式产⽣若⼲个所求解问题的数字编码,即染⾊体,形成初始种群;通过适应度函数给每个个体⼀个数值评价,淘汰低适应度的个体,选择⾼适应度的个体参加遗传操作,经过遗产操作后的个体集合形成下⼀代新的种群,对这个新的种群进⾏下⼀轮的进化。
TSP问题TSP问题即旅⾏商问题,经典的TSP可以描述为:⼀个商品推销员要去若⼲个城市推销商品,该推销员从⼀个城市出发,需要经过所有城市后,回到出发地。
应如何选择⾏进路线,以使总的⾏程最短。
从图论的⾓度来看,该问题实质是在⼀个带权完全⽆向图中,找⼀个权值最⼩的哈密尔顿回路。
遗传算法解决TSP问题概念介绍:种群 ==> 可⾏解集个体 ==> 可⾏解染⾊体 ==> 可⾏解的编码基因 ==> 可⾏解编码的分量基因形式 ==> 遗传编码适应度 ==> 评价的函数值(适应度函数)选择 ==> 选择操作交叉 ==> 编码的交叉操作变异 ==> 可⾏解编码的变异遗传操作:就包括优选适应性强的个体的“选择”;个体间交换基因产⽣新个体的“交叉”;个体间的基因突变⽽产⽣新个体的“变异”。
其中遗传算法是运⽤遗传算⼦来进⾏遗传操作的。
即:选择算⼦、变异算⼦、交叉算⼦。
遗传算法的基本运算过程(1)种群初始化:个体编码⽅法有⼆进制编码和实数编码,在解决TSP问题过程中个体编码⽅法为实数编码。
对于TSP问题,实数编码为1-n的实数的随机排列,初始化的参数有种群个数M、染⾊体基因个数N(即城市的个数)、迭代次数C、交叉概率Pc、变异概率Pmutation。
(2)适应度函数:在TSP问题中,对于任意两个城市之间的距离D(i,j)已知,每个染⾊体(即n个城市的随机排列)可计算出总距离,因此可将⼀个随机全排列的总距离的倒数作为适应度函数,即距离越短,适应度函数越好,满⾜TSP要求。
遗传算法解决TSP问题【精品毕业设计】(完整版)

GA(Fitness,Fitness_threshold,p,r,m)
Fitness:适应度评分函数,为给定假设赋予一个评估分数
Fitness_threshold:指定终止判据的阈值
p:群体中包含的假设数量
r:每一步中通过交叉取代群体成员的比例
m:变异率
初始化群体:P←随机产生的p个假设
在本程序的TSP问题中一共有20个城市,也就是在图模型中有20个顶点,因此一个染色体的长度为20。
3.3适应函数f(i)
对具有n个顶点的图,已知各顶点之间( , )的边长度d( , ),把 到 间的一条通路的路径长度定义为适应函数:
对该最优化问题,就是要寻找解 ,使f( )值最小。
3.4选择操作
选择作为交叉的双亲,是根据前代染色体的适应函数值所确定的,质量好的个体,即从起点到终点路径长度短的个体被选中的概率较大。
(2)交叉(Crossover):对于选中进行繁殖的两个染色体X,Y,以X,Y为双亲作交叉操作,从而产生两个后代X1,Y1.
(3)变异(Mutation):对于选中的群体中的个体(染色体),随机选取某一位进行取反运算,即将该染色体码翻转。
用遗传算法求解的过程是根据待解决问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异操作。如果满足收敛条件,此种群为最好个体,否则,对产生的新一代群体重新进行选择、交叉、变异操作,循环往复直到满足条件。
3.变异:使用均匀的概率从Ps中选择m%的成员.对于选出的每个成员,在它表示中随机选择一个为取反
4.更新:P←Ps
5.评估:对于P中的每个h计算Fitness(h)
从P中返回适应度最高的假设
3.
3.1 TSP问题的图论描述
基于Matlab的遗传算法解决TSP问题的报告

报告题目:基于Matlab的遗传算法解决TSP问题说明:该文包括了基于Matlab的遗传算法解决TSP问题的基本说明,并在文后附录了实现该算法的所有源代码。
此代码经过本人的运行,没有发现错误,结果比较接近理论最优值,虽然最优路径图有点交叉。
因为本人才疏学浅,本报告及源代码的编译耗费了本人较多的时间与精力,特收取下载积分,还请见谅。
若有什么问题,可以私信,我们共同探讨这一问题。
希望能对需要这方面的知识的人有所帮助!1.问题介绍旅行商问题(Traveling Salesman Problem,简称TSP)是一个经典的组合优化问题。
它可以描述为:一个商品推销员要去若干个城市推销商品,从一个城市出发,需要经过所有城市后,回到出发地,应如何选择行进路线,以使总行程最短。
从图论的角度看,该问题实质是在一个带权完全无向图中。
找一个权值最小的Hemilton回路。
其数学描述为:设有一个城市集合其中每对城市之间的距离(),i j d c c R +∈,求一对经过C中每个城市一次的路线()12,,n c c c ΠΠΠ⋯使()()()1111min ,,n i n i i d c c d c c −ΠΠΠΠ+=+∑其中()12,,12n n ΠΠΠ⋯⋯是,的一个置换。
2.遗传算法2.1遗传算法基本原理遗传算法是由美国J.Holland 教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。
遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。
遗传算法,在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。
遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、负载平衡、电磁系统设计、生物科学、社会科学等方面都得到了应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传算法及其在TSP问题中的应用摘要:本文首先介绍了遗传算法的基本理论与方法,从应用的角度对遗传算法做了认真的分析和研究,总结了用遗传算法提出求解组合优化问题中的典型问题——TSP问题的最优近似解的算法。
其次,本文在深入分析和研究了遗传算法基本理论与方法的基础上,针对旅行商问题的具体问题,设计了基于TSP的遗传算法的选择、交叉和变异算子等遗传算子,提出了求解旅行商问题的一种遗传算法,并用Matlab语言编程实现其算法,最后绘出算法的仿真结果,并对不同结果作出相应的分析。
然后,本文还针对遗传算法求解TSP时存在的一些问题对该算法进行了适当的改进。
如针对初始群体、遗传算子作出适当改进,或者将遗传算法与其他方法相结合,以及在编程过程中对算法流程的改进。
本人在用计算机模拟遗传算法求解TSP问题时,首先分析了用Matlab语言设计遗传算法程序的优越性,接着以遗传算法求解TSP问题为例,深入讨论了各个遗传算子的程序实现,并通过分析实验数据,得到各个遗传算子在搜索寻优过程中所起的作用,最后指出了用Matlab语言编程同用其它高级程序语言编程的差异所在,以及运用Matlab编写遗传算法程序的一些注意事项。
最后,本文提出将遗传算法与其它算法相结合来求解一般问题的想法;并将遗传算法的应用范围扩展,提出可以运用遗传算法求解由TSP衍生出的各类TSP扩展问题,如求解配送/收集旅行商问题的遗传算法(TSPD)、遗传算法在货物配送问题中的应用(ST-TSP)、多旅行商问题(MTSP)等。
引言:优化问题可以自然地分为两类:一类是连续变量的优化问题;另一类是离散变量的优化问题,即所谓组合优化问题。
对于连续变量的优化问题,一般是求一组实数或一个函数;而在组合优化问题中,一般是从一个无限集或有限的几个无限集中寻找一个对象——它可以是一个整数,一个集合,一个排列或者一个图,也即是从可行解中求出最优解的问题。
TSP问题就是其中的典型例子,就本质上而言它可抽象为数学上的组合优化,它描述的是旅行商经N个城市的最短路径问题,因而对TSP问题的求解是数学上,同时也是优化问题中普遍关注的。
旅行商问题(Traveling Salesman Problem,简称TSP)也称为货担郎问题,是一个较古的问题,最早可以追溯到1759年Euler提出的骑士旅行问题[9]。
旅行商问题可以解释为,一位推销员从自己所在城市出发,必须邀访所有城市且每个城市只能访问一次之后又返回到原来的城市,求使其旅行费用最小(和旅行距离最短)的路径。
TSP是一个典型的组合优化问题,并且是一个NP难题,所以一般很难精确地求出其最优解,因而寻找出其有效的近似求解算法就具有重要的理论意义。
另一方面,很多实际应用问题,如公安执勤人员的最优巡回路线、流水作业生产线的顺序问题、车辆调度问题、网络问题、切割问题以至机组人员的轮班安排、教师任课班级负荷分配等问题,经过简化处理后,都可建模为TSP问题,因而对旅行商问题求解方法的研究也具有重要的应用价值。
再者,在各种遗传算法应用实例中,其个体编码方法大多都是采用二进制编码方法或浮点数编码方法,而TSP问题是一种典型的需要使用符号编码方法的实际问题,所以,研究求解TSP问题的遗传算法,对促进遗传算法本身的发展也具有重要意义。
在过去的20年里,在求解旅行商问题的最优解方面取得了极大的进展。
尽管有这些成就,但旅行商问题还远未解决,问题的许多方面还要研究,很多问题还在期待满意的回答。
另外,遗传算法就其本质来说,主要是解决复杂问题的一种鲁棒性强的启发式随机搜索算法。
早在1983年,就有学者用GA 求解组合优化中著名的TSP 问题[5]。
Wetzel 、Brady 、Grefenstette 等人都曾用遗传算子来讨论TSP 问题[6,7,8]。
实践也证明,遗传算法对于组合优化中的NP 完全问题非常有效。
因此遗传算法在TSP 问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP 问题等有着多方面地重要意义。
3.TSP 问题的数学模型和基本解法遗传算法的主要应用领域就包括组合优化问题,而组合优化中主要是TSP 问题等。
TSP问题是一个NP 完全问题,近几年来,基于遗传算法求解TSP 问题的研究相当活跃,在遗传算法研究中,TSP 问题已被广泛地用于评价不同的遗传操作及选择机制的性能[14,15]。
TSP 问题的提出最早可追溯到18世纪的欧拉时代,但直到20司世纪中叶才由于优化技术的兴起逐渐为人所认识而著名。
1948年,由美国兰德公司推动,TSP 成为近代组合优化领域的一个典型难题。
它是一个具有广泛应用背景和重要理论价值的组合优化问题。
TSP 的搜索空间随着城市规模数n 的增加而增大,这类组合优化问题称之为NP 完全问题[16]。
3.1TSP 问题的数学模型TSP 问题可以简单地描述成:一名旅行商从一个城市出发,欲遍访n 个城市推销商品,每个城市到一次且仅到一次后返回原出发城市,求总距离最短的巡回路径。
旅行商问题可分为两类:(1)对称旅行商问题(n j i d d ji ij ,,2,1,,⋅⋅⋅=∀=);(2)非对称旅行商问题(n j i dji d ij ,,2,1,,⋅⋅⋅=∃≠)。
TSP 问题的数学模型如下:设有n 个城市,寻找一条巡回路径),,,(21n t t t T ⋅⋅⋅=,使得下列目标函数最小:∑-=++=1111),(),()(n i n i i t t d t t d T f其中i t 为城市号,取值为1到n 之间的自然数,),(j i d 为城市i 和城市j 之间的距离,对于对称式TSP ,有),(),(i j d j i d =。
旅行商问题属于典型的组合优化问题,并且是一个NP 完全问题,其可能的路径数目为(n-1)!/2 [11] ,至今尚未找到有效的解决方法。
在理论上一些方法是可以解这一问题,但 当n 较大时,解题的时间消耗会使这些方法显得没有任何实际价值,所以设计一种有效算法以获得问题的最优解或近似解是具有重要意义的。
目前已有很多求解TSP 近似最优解的算法,主要包括:分枝定界法(branch and bound )、最近邻法(nearestneighbor )、贪婪法(greedy algorithm )、最近插入法(nearest insertion )、最远插入法(farthest insertion )、双最小生成树法(double mining spaning tree )、剥脱法(strip)、空间填空曲线法(space-filling curve)、Karp法、Litke法、Christofides法、2-交叉法(2-opt)、k-交叉法及Lin-Kernighan法等[11,17,18]。
正是由于TSP问题在实际应用中所具有的典型意义,如可用来解决分配问题、路径问题、车辆调度问题等,以及算法理论研究上的价值,所以它一直吸引着各个领域的研究人员去研究各种新的算法。
3.2 TSP的传统解决方法几十年来对于求解TSP问题出现了很多传统方法,其中有精确算法如线性规划方法、动态规划方法、分枝定界法,近似优化算法如最近插入法、最近邻法、Clark&Wright算法、双最小生成树法、Christofides算法、r-opt算法、混合算法、概率算法等。
其中,线性规划方法是求解TSP的最早的一种算法,主要是采用整数规划中的割平面法。
动态规划方法一般用于很小规模的问题。
分枝定界算法是一种应用范围很广的搜索算法,它通过有效的约束界限来控制搜索进程使之能向着空间状态树上有最优解的分支推进,以便尽快找出一个最优解,该方法的关键在于约束界限的选取,不同的约束界限,可形成不同的分支定界法;但分枝定界算法对于解大规模问题不是很有效。
近似算法都是适用于对称TSP问题的。
其中r-opt方法是一种局部改进搜速算法。
混合算法是用某个近似算法求得初始解,然后借助一个或者若干个r-opt算法对解加以改进,这种混合型算法往往能获得较好的解,但也很耗时。
总而言之,传统的优化算法是一种局部搜索算法,一般得到局部最优解,很难达到全局最优解,并且很难适用于大规模的最优化问题。
3.3 TSP的智能优化算法近年来,有很多解决TSP问题的较为有效的智能优化方法不断被推出,例如禁忌搜索方法、模拟退火算法、遗传算法等。
禁忌搜索方法(TS)是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。
TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效搜索以实现全局优化。
模拟退火算法的出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。
模拟退火算法是在某一初温下,伴随温度参数的不断下降,结合概率突跳性在解空间中随机寻找目标函数的全局最优解,使得局部最优解能概率性的跳出并最终趋于全局最优解。
这两种方法是从一个解进行局域搜索,虽然都有其各自的长处,但却存在着全局搜索能力差的弱点,极有可能找到的是局部最优解;尽管可以采用一定机制有效避免陷入局部极小并最终趋于全局最优,但是时间效率比较低。
而遗传算法具有良好的全局搜索能力,是目前解决各种优化问题的最有效方法,已经形成研究热点。
因此,遗传算法在TSP问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP问题等有着多方面地重要意义。
传算法是按并行方式搜索一个种群数目的点,而不是单个点[16]。
它的并行性表现在两个方面,一是遗传算法的内在并行性,即可以多台机器各自进行独立种群的演化计算,运行过程中可以进行信息交换也可以不进行信息交换。
二是遗传算法的内含并行性,这是由于遗传算法采用种群的方式组织搜索。
此外,遗传算法还可以很好地与其它算法如上面讲到的禁忌搜索方法和模拟退火方法相结合,从而使得遗传算法更加有效。
图3-1就是传统优化方法与遗传算法的比较,从图中我们可以很直观的看出传统方法与遗传算法在求解具体问题时的区别。