遗传算法在TSP问题中的应用

合集下载

实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。

遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。

本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。

2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。

其基本原理可以概括为:选择、交叉和变异。

(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。

(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。

交叉算子的选择及实现方式会对算法效果产生很大的影响。

(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。

通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。

3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。

(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。

(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。

(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。

b. 计算适应度:根据适应度函数,计算每个个体的适应度值。

c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。

d. 交叉操作:对父代进行交叉操作,生成新的个体。

e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。

实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇以下是关于遗传算法求解TSP问题的实验报告,分为三个部分,总计超过3000字。

一、实验背景与原理1.1 实验背景旅行商问题(Traveling Salesman Problem,TSP)是组合优化中的经典问题。

给定一组城市和每两个城市之间的距离,求解访问每个城市一次并返回出发城市的最短路径。

TSP 问题具有很高的研究价值,广泛应用于物流、交通运输、路径规划等领域。

1.2 遗传算法原理遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的搜索算法。

它通过选择、交叉和变异操作生成新一代解,逐步优化问题的解。

遗传算法具有全局搜索能力强、适用于多种优化问题等优点。

二、实验设计与实现2.1 实验设计本实验使用遗传算法求解TSP问题,主要包括以下步骤:(1)初始化种群:随机生成一定数量的个体(路径),每个个体代表一条访问城市的路径。

(2)计算适应度:根据路径长度计算每个个体的适应度,适应度越高,路径越短。

(3)选择操作:根据适应度选择优秀的个体进入下一代。

(4)交叉操作:随机选择两个个体进行交叉,生成新的个体。

(5)变异操作:对交叉后的个体进行变异,增加解的多样性。

(6)更新种群:将新生成的个体替换掉上一代适应度较低的个体。

(7)迭代:重复步骤(2)至(6),直至满足终止条件。

2.2 实验实现本实验使用Python语言实现遗传算法求解TSP问题。

以下为实现过程中的关键代码:(1)初始化种群```pythondef initialize_population(city_num, population_size): population = []for _ in range(population_size):individual = list(range(city_num))random.shuffle(individual)population.append(individual)return population```(2)计算适应度```pythondef calculate_fitness(population, distance_matrix): fitness = []for individual in population:path_length =sum([distance_matrix[individual[i]][individual[i+1]] for i in range(len(individual) 1)])fitness.append(1 / path_length)return fitness```(3)选择操作```pythondef selection(population, fitness, population_size): selected_population = []fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]for _ in range(population_size):individual = random.choices(population, fitness_probability)[0]selected_population.append(individual)return selected_population```(4)交叉操作```pythondef crossover(parent1, parent2):index1 = random.randint(0, len(parent1) 2)index2 = random.randint(index1 + 1, len(parent1) 1)child1 = parent1[:index1] +parent2[index1:index2] + parent1[index2:]child2 = parent2[:index1] +parent1[index1:index2] + parent2[index2:]return child1, child2```(5)变异操作```pythondef mutation(individual, mutation_rate):for i in range(len(individual)):if random.random() < mutation_rate:j = random.randint(0, len(individual) 1) individual[i], individual[j] = individual[j], individual[i]return individual```(6)更新种群```pythondef update_population(parent_population, child_population, fitness):fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]new_population =random.choices(parent_population + child_population, fitness_probability, k=len(parent_population)) return new_population```(7)迭代```pythondef genetic_algorithm(city_num, population_size, crossover_rate, mutation_rate, max_iterations): distance_matrix =create_distance_matrix(city_num)population = initialize_population(city_num, population_size)for _ in range(max_iterations):fitness = calculate_fitness(population, distance_matrix)selected_population = selection(population, fitness, population_size)parent_population = []child_population = []for i in range(0, population_size, 2):parent1, parent2 = selected_population[i], selected_population[i+1]child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)parent_population.extend([parent1, parent2]) child_population.extend([child1, child2])population =update_population(parent_population, child_population, fitness)best_individual =population[fitness.index(max(fitness))]best_path_length =sum([distance_matrix[best_individual[i]][best_individual[i +1]] for i in range(len(best_individual) 1)])return best_individual, best_path_length```三、实验结果与分析3.1 实验结果本实验选取了10个城市进行测试,遗传算法参数设置如下:种群大小:50交叉率:0.8变异率:0.1最大迭代次数:100实验得到的最佳路径长度为:1953.53.2 实验分析(1)参数设置对算法性能的影响种群大小:种群大小会影响算法的搜索能力和收敛速度。

遗传算法在优化问题中的应用

遗传算法在优化问题中的应用

遗传算法在优化问题中的应用遗传算法是一种基于进化原理的优化算法,它模拟了生物进化的过程,通过自然选择和基因交叉变异的操作,逐步寻找到最优解。

由于其优良的全局搜索性能和较好的适应性,在许多优化问题中都得到了广泛的应用。

本文将介绍遗传算法在三个典型的优化问题中的应用。

1. 旅行商问题(TSP)的优化旅行商问题是指一名商人需要穿越多个城市,且每个城市只能访问一次,要求找到一条最短的路径使得商人能够经过所有城市并返回出发点。

由于遍历所有可能的路径需要极大的计算量,使用遗传算法能够较好地解决这一问题。

在遗传算法中,将每个候选路径看做一个个体,通过编码方式将路径转化为遗传信息。

初始时,随机生成一定数量的路径表示种群。

然后使用选择、交叉、变异等操作对种群进行迭代优化。

优化终止的条件可以是达到最大迭代次数或者路径长度不再变化。

通过多轮迭代和选择操作,遗传算法可以逐渐生成新的路径,并筛选出较短的路径。

最终得到的路径就是旅行商问题的最优解。

2. 函数优化问题函数优化问题是指通过调整函数的自变量,使得函数的取值达到最大或最小。

常见的函数优化问题有参数的拟合、神经网络权值的优化等。

遗传算法可以应用于函数优化问题,通过自然选择和基因操作来逐步优化函数取值。

在遗传算法中,将函数的自变量看做个体的基因,将函数的取值看做个体的适应度。

通过选择、交叉、变异等操作,优化算法逐步在参数空间中搜索,寻找到函数的最优解。

3. 布尔函数优化问题布尔函数优化问题是指通过调整若干个布尔变量的取值,使得布尔函数的取值达到最大或最小。

布尔函数通常是指仅包含与、或和非等逻辑运算的函数。

遗传算法可以应用于布尔函数优化问题,通过基因编码和优化操作来求解函数的最优解。

在遗传算法中,将布尔函数的变量看做个体的基因,将布尔函数的取值看做个体的适应度。

通过选择、交叉、变异等操作,优化算法逐步在状态空间中搜索,寻找到布尔函数的最优解。

总结:遗传算法作为一种优化算法,在旅行商问题、函数优化问题和布尔函数优化问题等领域中发挥着重要作用。

基于遗传算法求解TSP问题

基于遗传算法求解TSP问题

适应度函数
适应度函数用于评估每个染色体的优劣程 度,根据问题的不同,适应度函数需要进 行定制设计。
交叉操作
交叉操作将两个染色体的基因进行交换, 以产生新的个体。常见的交叉方法有单点 交叉、多点交叉等。
选择操作
选择操作根据适应度函数的评估结果,选 择优秀的个体进入下一代种群。常见的选 择方法有轮盘赌选择、锦标赛选择等。
通过选择操作,优秀的个体有更大的机会被选中并参与交叉和变异操作 。交叉操作将两个个体的染色体进行交换,以产生新的个体。变异操作 则对染色体的某些基因进行随机改变,以增加种群的多样性。
遗传算法构成要素
种群
种群是由一组染色体组成的集合,每个染 色体都是优化问题的潜在解。
变异操作
变异操作对染色体的某些基因进行随机改 变,以增加种群的多样性。常见的变异方 法有位点变异、倒位变异等。
04
基于遗传算法的TSP问题求解
TSP问题的遗传算法建模
编码方式
使用染色体编码方式,将TSP问题的解编码 为染色体。
适应度函数
使用距离作为适应度函数,评估染色体的优 劣。
解码方法
通过解码方式将编码后的染色体还原为TSP 问题的解。
遗传操作
包括选择、交叉和变异等操作,用于产生新 的染色体。
编码方式与解码方法
VS
实验环境
本次实验在Windows 10操作系统下进行 ,使用Python 3.8作为编程语言,并利用 NumPy和Matplotlib等库进行数据处理 和可视化。
实验结果展示
最优解
通过运行遗传算法程序,我们得到了最优解为207.9km,与TSPLIB中的最优解206.2km相TSP问题是一个NP-hard问题,它具有以下特征

遗传算法(GA)解决TSP问题

遗传算法(GA)解决TSP问题

遗传算法(GA)解决TSP问题 遗传算法解决TSP问题遗传算法遗传算法的基本原理是通过作⽤于染⾊体上的基因寻找好的染⾊体来求解问题,它需要对算法所产⽣的每个染⾊体进⾏评价,并基于适应度值来选择染⾊体,使适应性好的染⾊体有更多的繁殖机会,在遗传算法中,通过随机⽅式产⽣若⼲个所求解问题的数字编码,即染⾊体,形成初始种群;通过适应度函数给每个个体⼀个数值评价,淘汰低适应度的个体,选择⾼适应度的个体参加遗传操作,经过遗产操作后的个体集合形成下⼀代新的种群,对这个新的种群进⾏下⼀轮的进化。

TSP问题TSP问题即旅⾏商问题,经典的TSP可以描述为:⼀个商品推销员要去若⼲个城市推销商品,该推销员从⼀个城市出发,需要经过所有城市后,回到出发地。

应如何选择⾏进路线,以使总的⾏程最短。

从图论的⾓度来看,该问题实质是在⼀个带权完全⽆向图中,找⼀个权值最⼩的哈密尔顿回路。

遗传算法解决TSP问题概念介绍:种群 ==> 可⾏解集个体 ==> 可⾏解染⾊体 ==> 可⾏解的编码基因 ==> 可⾏解编码的分量基因形式 ==> 遗传编码适应度 ==> 评价的函数值(适应度函数)选择 ==> 选择操作交叉 ==> 编码的交叉操作变异 ==> 可⾏解编码的变异遗传操作:就包括优选适应性强的个体的“选择”;个体间交换基因产⽣新个体的“交叉”;个体间的基因突变⽽产⽣新个体的“变异”。

其中遗传算法是运⽤遗传算⼦来进⾏遗传操作的。

即:选择算⼦、变异算⼦、交叉算⼦。

遗传算法的基本运算过程(1)种群初始化:个体编码⽅法有⼆进制编码和实数编码,在解决TSP问题过程中个体编码⽅法为实数编码。

对于TSP问题,实数编码为1-n的实数的随机排列,初始化的参数有种群个数M、染⾊体基因个数N(即城市的个数)、迭代次数C、交叉概率Pc、变异概率Pmutation。

(2)适应度函数:在TSP问题中,对于任意两个城市之间的距离D(i,j)已知,每个染⾊体(即n个城市的随机排列)可计算出总距离,因此可将⼀个随机全排列的总距离的倒数作为适应度函数,即距离越短,适应度函数越好,满⾜TSP要求。

遗传算法解决TSP问题【精品毕业设计】(完整版)

遗传算法解决TSP问题【精品毕业设计】(完整版)
2.2遗传算法原型:
GA(Fitness,Fitness_threshold,p,r,m)
Fitness:适应度评分函数,为给定假设赋予一个评估分数
Fitness_threshold:指定终止判据的阈值
p:群体中包含的假设数量
r:每一步中通过交叉取代群体成员的比例
m:变异率
初始化群体:P←随机产生的p个假设
在本程序的TSP问题中一共有20个城市,也就是在图模型中有20个顶点,因此一个染色体的长度为20。
3.3适应函数f(i)
对具有n个顶点的图,已知各顶点之间( , )的边长度d( , ),把 到 间的一条通路的路径长度定义为适应函数:
对该最优化问题,就是要寻找解 ,使f( )值最小。
3.4选择操作
选择作为交叉的双亲,是根据前代染色体的适应函数值所确定的,质量好的个体,即从起点到终点路径长度短的个体被选中的概率较大。
(2)交叉(Crossover):对于选中进行繁殖的两个染色体X,Y,以X,Y为双亲作交叉操作,从而产生两个后代X1,Y1.
(3)变异(Mutation):对于选中的群体中的个体(染色体),随机选取某一位进行取反运算,即将该染色体码翻转。
用遗传算法求解的过程是根据待解决问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异操作。如果满足收敛条件,此种群为最好个体,否则,对产生的新一代群体重新进行选择、交叉、变异操作,循环往复直到满足条件。
3.变异:使用均匀的概率从Ps中选择m%的成员.对于选出的每个成员,在它表示中随机选择一个为取反
4.更新:P←Ps
5.评估:对于P中的每个h计算Fitness(h)
从P中返回适应度最高的假设
3.
3.1 TSP问题的图论描述

基于Matlab的遗传算法解决TSP问题的报告

基于Matlab的遗传算法解决TSP问题的报告

报告题目:基于Matlab的遗传算法解决TSP问题说明:该文包括了基于Matlab的遗传算法解决TSP问题的基本说明,并在文后附录了实现该算法的所有源代码。

此代码经过本人的运行,没有发现错误,结果比较接近理论最优值,虽然最优路径图有点交叉。

因为本人才疏学浅,本报告及源代码的编译耗费了本人较多的时间与精力,特收取下载积分,还请见谅。

若有什么问题,可以私信,我们共同探讨这一问题。

希望能对需要这方面的知识的人有所帮助!1.问题介绍旅行商问题(Traveling Salesman Problem,简称TSP)是一个经典的组合优化问题。

它可以描述为:一个商品推销员要去若干个城市推销商品,从一个城市出发,需要经过所有城市后,回到出发地,应如何选择行进路线,以使总行程最短。

从图论的角度看,该问题实质是在一个带权完全无向图中。

找一个权值最小的Hemilton回路。

其数学描述为:设有一个城市集合其中每对城市之间的距离(),i j d c c R +∈,求一对经过C中每个城市一次的路线()12,,n c c c ΠΠΠ⋯使()()()1111min ,,n i n i i d c c d c c −ΠΠΠΠ+=+∑其中()12,,12n n ΠΠΠ⋯⋯是,的一个置换。

2.遗传算法2.1遗传算法基本原理遗传算法是由美国J.Holland 教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。

遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。

遗传算法,在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。

遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、负载平衡、电磁系统设计、生物科学、社会科学等方面都得到了应用。

遗传算法解决TSP问题,C++版(带注释)

遗传算法解决TSP问题,C++版(带注释)

//遗传算法解决简单TSP问题,(VC6.0)//一、定义头文件(defines.h)#ifndef DEFINES_H#define DEFINES_H///////////////////////////////// DEFINES /////////////////////////////////////// //窗口定义大小#define WINDOW_WIDTH 500#define WINDOW_HEIGHT 500//城市数量及城市在窗口显示的大小#define NUM_CITIES 20#define CITY_SIZE 5//变异概率,交叉概率及种群数量#define MUTATION_RATE 0.2#define CROSSOVER_RATE 0.75#define POP_SIZE 40//倍数#define NUM_BEST_TO_ADD 2//最小容许误差#define EPSILON 0.000001#endif//二、一些用得到的小函数(utils.h)// utils.h: interface for the Cutils class.//头文件名//////////////////////////////////////////////////////////////////////#ifndef UTILS_H#define UTILS_H#include <stdlib.h>#include <math.h>#include <sstream>#include <string>#include <iostream>using namespace std;//--------定义一些随机函数--------//----定义随机整数,随机[x,y]之间的整数---inline int RandInt(int x, int y){return rand()%(y-x+1)+x;}//--------------随机产生0到1之间的小数----------inline float RandFloat(){return rand()/(RAND_MAX + 1.0);}//-----------------随机产生0和1-------------inline bool RandBool(){if (RandInt(0,1))return true;elsereturn false;}//-----定义一些方便的小功能包括:整形转字符型,浮点型转字符型--- string itos(int arg);//converts an float to a std::stringstring ftos (float arg);//限制大小void Clamp(double &arg, double min, double max);void Clamp(int &arg, int min, int max);#endif//三、地图头文件(CmapTSP)#ifndef CMAPTSP_H#define CMAPTSP_H//如果没有定义那么就定义////////////////////////////////////////////////////类名:CmapTSP.h////描述:封装地图数据、城市坐标以及适应度计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l SSN 1 0 — 0 4 0 9 3 4
E— i e u @c c .e .n ma l d f c c n t : c
h t Hwww. z .e .n tp: dn sn tc
C m ue K o ld ea dT c n l y电脑 知 识 与技术 o p tr n we g n e h o g o
旅 行 商 问 题 (s )也 称 为 货 郎担 问 题 , ap, 是一 个 较 古 老 的问 题 。最 早 可 以追 溯 到 15 7 9年 E l 提 出的 骑 士 旅 行 问 题 。14 ue r 9 8年 , 由 美 国兰 德 公 司 推 动 ,S T P成 为 近 代组 合 优 化 领 域 的一 个 典 型 难 题 。 应 该 说 ,S T P是 一 个 具 有 广 泛 应 用 背 景 和 重 要 理 论 价 值 的 组合 优 化 难 题 . 已 经被 证 明 属 于 N 它 P难 题 。对 T P问题 的入 量 研 究 使 得 T P问题 成 为 了一 个 著 名 的组 合 优 化 问 题 目前 , 解 T P问 题 的 S S 求 S 较 为 常 用 的方 法 有 二 叉 树 描 述法 、 发 式 搜 索 法 、 近 邻 法 、 经 网络 法 、 拟 退 火 法 和 遗 传 算 法 等 。遗 传 算 法 是 模 拟 生 物 在 自然 环 启 最 神 模 境 中 的遗 传 和 进 化 过 程 而形 成 的一 种 自适 应 全 局 概 率 搜 索 算 法 , 有 良好 的全 局 寻 优 能 , , 为 解 决 问题 的 有 效 方 法 之 一 。 具 成 J
a dmua o p r o . ta , o leT P i eftr wi b V n n t ino ea r A s h w t s v S t u e l e百 e . t t lt oo nh u l
Ke r s y wo d :TS ; e e cag rtm ; e e i o e ain o e ao P g n t a z o g YA n — u I Hu — h n , NG J g h a i ( o ue S i c n e h oo yIstt o a o e ef m n n A r utr i r t, h n qu 4 6 , hn ) C mp t c n ea dT c n l tue f r e g n i Hu C H g o He a gi l a Unv s y S a g i 7 1 3 C ia Yu r c ul ei 1
Ab t a t F rt t e p s g n r d c d t e p o lm fTS , h ai fau e a d p o e u e o n t l o t m. e i u sd t e w s r c : i , h as e i t u e r b e o P t e b s e t r n r c d r f s a o h c Ge ei ag r h c i Th n ds se h c o o i g h f dn ,t e ̄n d n o t eso li g TS y Ge e c ag r h c c o ff n s fs n P b n d lo i m.Th p l a o n f c fsl cin o eao , r s v ro e o i o t e a p i t n a d e e to e t p r t r c o s e p mt r ci e o o
1T P 问题 描述 S
T P 旅行商问题 ) 简单描还是 : S( 的 一名 商 人 欲 到 n个 城 市 推 销 商 品 , 两 个 城 市 i J 间 的距 离 为 d 存 在 ii 何 使 商 人 每 每 和 之 , ,如 个 城 市 走 一 遍 后 回 到起 点 , 所 走 的 路 径 最 短 。用 数 学 符 号 表 示 ’ : n维 向量 表 示 一 条 路 径 X (.C … -C , 且 设 :C. . 。 目标 函 数 为 ,
摘要 : 文章 首先 介 绍 T P 问题 与 遗 传 算 法的 基 本 特 点 及 其 基 本 步骤 。接 着 讨 论 用 遗 传 算 法解 决 T P 问题 的 编码 、 应 度 函数 设 计 S S 适 方 面的 采 用 的 方 法 , 以及 选择 算 子 , 交叉 算 子 和 变 异 算子 的应 用现 状 以及 效 果 , 最后 对 解 决 T P 问题 的 前 景 提 出 了展 望 。 S
Vo., .,a u r 01 , P6 2 6 3 1 No3J n ay 2 0 P .7 — 7 6
T l 8 — 5 — 6 0 6 5 9 94 e: 6 5 5 9 9 3 + 1 606
遗传算法在 T P问题 中的应用 S
李 中杨 花 华 ,景
( 南 农 业 大 学 华豫 学 院 计 算 机 科 学 与 技 术学 院 . 南 商 丘 4 6 1 ) 河 河 7 13
关 键 词 : S 遗 传 算 法 ; 传 操 作 ; 子 T P; 遗 算 中圈 分 类 号 : P 1 T 31 文献标识码 : A 文 章 编 号 :0 9 3 4 (0 00 - 7 — 2 1 0 - 0 4 2 1 )3 6 2 0
Ap l ain i P sd o n tcAlo ih pi t nTS Bae n Ge ei g rtm c o
相关文档
最新文档