电力变压器差动保护
变压器差动保护装置动作后检查方法与步骤 变压器常见问题解决方法

变压器差动保护装置动作后检查方法与步骤变压器常见问题解决方法当变压器的差动保护装置动作后,可按以下方法与步骤来进行检查。
(1)先对电力变压器及其套管与引出线进行检查。
如发觉问题应适时处理。
(2)如上述检查无问题,回忆故障之前变电站内直流部分是否有不稳定的接地隐患,是否曾带接地故障运行。
假如有,进一步要检查继电器的触点是否打开。
(3)如发觉触点都打开,再用万用表DC电压挡测量出口中心继电器线圈两端电压是否正常。
若电压正常,则多是由于直流两点重复接地致使差动保护装置误动作引起的。
(4)变压器差动保护装置动作有时也可能是由于高处与低处压电流互感器开路或端子接触不良以及变压器内部问题引起的。
对此,也不容忽视。
高压试验变压器在试验现场测试中时常会有故障涌现的情形,而最罕见故障便是铁芯短路形成的,形成铁芯短路的首要原因是:(1)变压器内具有导电悬浮物,在电磁场的作用下构成导电小桥,使心与油箱壁或者油箱底部短接。
(2)打造变压器或者改换铁芯大修时,选用的硅片品质有问题。
如硅片名义毛糙不润滑,冷轧硅片涂的绝缘漆膜零落,热轧硅片的绝缘氧化膜黏着力差也会零落。
之上几种情形城市形成片间短路,构成多点接地。
(3)变压器油箱和散热器在打造进程中,焊渣等清算不完全,在恒久的强油循进程中,渐渐被油流带出,将铁芯和油箱壁短接。
(4)铁芯加工工艺不正当。
如植株超编,剪切中放的夹板气,夹有粗大的非金属颗粒或者硬质非非金属微粒,将叠片压出一度个小坑,另一壁则成小凸点,叠装后也将毁坏涂层形成片间短路。
(5)叠压错误。
叠压系数获得过大,使压力过大,毁坏了片间绝缘。
(6)运行维护错误。
变压器恒久超铭牌定量运利用片间绝缘老化;平常巡逻和检测不够,使铁芯局部过热重点,片间绝缘遭毁坏形成多点接地。
再有,变压器在打造或者大修进程中,钢刷丝、起重用的钢丝绳的断股及巨大非金属丝在电磁场的作用下被树立,形成铁芯与油箱底部短接。
(7)变压器进水,使铁芯底部绝缘垫块挨冻或者穿芯螺杆绝缘败坏,导致铁芯绝缘急剧降落,形成铁芯多点接地。
变压器比率差动保护动作原因

变压器比率差动保护动作原因变压器的比率差动保护,这听起来是不是有点拗口?别急,今天我们就来聊聊这个在电力系统中可是非常重要的东西。
想象一下,变压器就像是一个大大的电力搬运工,它负责把电从一个地方搬到另一个地方,但在这个过程中,它可不能出错,否则后果可就不堪设想了。
1. 什么是比率差动保护?好吧,先来简单解释一下什么是比率差动保护。
我们可以把它想象成一个保镖,专门用来保护变压器免受各种“攻击”。
当变压器的输入和输出电流比例出现异常时,这个保镖就会出动,立马发出警报,甚至直接切断电源,防止变压器受损。
听起来是不是有点像超级英雄?对,就是这么强大!1.1 输入和输出不一致咱们说说这个“比率”。
变压器在正常运行的时候,输入的电流和输出的电流之间有个固定的比率。
如果这个比率发生变化,说明可能有啥不对劲的事情发生了,比如变压器内部可能出现了短路或者其他故障。
这时候,保护装置就会觉得“不对劲”,立刻出手,保护变压器。
1.2 故障原因大揭秘那么,这些不一致的情况都是怎么产生的呢?有很多原因哦!可能是设备老化、绝缘损坏、负荷过重等等,简直就像是变压器的健康问题,各种毛病层出不穷。
就像咱们人一样,年纪大了,身子骨就容易出问题嘛。
2. 为什么会出现动作?哎,这个问题就有点复杂了。
想象一下,你的朋友跟你借了钱,结果你发现他总是没还。
这时候你就得提高警惕了。
变压器也是一样,当它发现输入和输出的电流比率不对了,就会自动“报警”,提醒我们注意。
2.1 短路和过载首先,短路是个大麻烦。
就像电线被虫子咬了一口,电流一下子就跑偏了,这时候变压器就会检测到电流异常,迅速启动保护机制。
再比如,负荷过重了,就像你背着个大背包,走不动了,变压器也会觉得不行,这时候就得动手“减负”。
2.2 设备故障设备老化也是一大元凶。
你想想,手机用了几年后,肯定也会慢下来,变压器也是一样,长时间工作后,难免会出现老化,导致保护动作。
这就像是一个老爷爷,年纪大了,偶尔也会咳嗽几声,你得注意点。
变压器差动保护工作原理

变压器差动保护工作原理变压器差动保护,听起来就像是科技界的一部大片,实际上它是电力系统中非常重要的一环。
想象一下,变压器就像电力的“超人”,负责把电压调整到我们日常生活中能用的水平。
可问题来了,超人也会有失误的时候,对吧?这时候,差动保护就像是他的“助手”,随时准备出手相助,确保变压器不会因为故障而“挂掉”。
这个保护的工作原理就像是在打扫卫生,保持一切井井有条。
变压器的输入和输出电流是它的“血液”,如果这两者不一致,就意味着有问题。
比如说,输入流量大于输出流量,这就像是你一边喝水,一边发现水龙头在流,结果你的杯子还是空的,这可不得了!变压器就像是开了一场“差动比赛”,这时候保护装置就会迅速反应,打响警报,阻止任何更大的损害发生。
这个差动保护的机制就像是一种“灵敏的雷达”,能够瞬间捕捉到任何异常的变化。
就算是微小的电流差异,它也能立马检测出来。
你想啊,电流的变化就像是气候变化,哪怕是一点点风吹草动,它都能敏锐察觉,真是个“敏感小精灵”。
这时候,保护装置就会开始动作,迅速切断电源,保护变压器免遭损坏。
有趣的是,这个过程其实是很迅速的,快得让人惊叹。
可以说,变压器在保护的帮助下,真的是“安全感爆棚”。
想象一下,一个人在马路上走,突然有车冲过来,他立马跳开,躲过了危机,这就是差动保护的效果。
它的反应速度可以说是“飞一般的感觉”,不容小觑。
变压器差动保护的设置也并不是一蹴而就的,它需要精确的参数设定。
就像是调味品,盐放多了,菜就咸了,少了又没味儿。
合理的设置能确保保护装置在恰当的时机发挥作用,而过度的保护反而可能导致频繁的误动作,给整个电力系统带来麻烦。
这时候就需要专业人员仔细调试,确保一切都在“正轨”上。
而这其中的每一步,就像是进行一场“高难度”的平衡木表演,既要有技巧又要有耐心。
搞定这些后,变压器的安全性就会大大提升。
毕竟,安全可不是小事,谁都不想在关键时刻掉链子,对吧?说到这里,大家可能会想,差动保护的优势究竟在哪里呢?答案简单明了,它不仅可以及时发现故障,避免变压器损坏,还能保护其他设备的安全。
变压器差动保护的基本原理

变压器差动保护的基本原理引言变压器是电力系统中常见且重要的设备,其稳定运行对电网的正常运行起着至关重要的作用。
然而,变压器在运行过程中可能会遇到各种故障,如短路、接地故障等,若这些故障不能及时得到保护和处理,将会对设备和系统产生严重影响。
因此,差动保护作为变压器保护的一种重要手段,具有重要意义。
变压器差动保护的概念变压器差动保护是指通过测量变压器主绕组和副绕组之间的电流差值,判断变压器是否存在故障,并在故障发生时迅速切除故障设备的保护方法。
基本原理变压器差动保护的基本原理是利用变压器主副绕组的电流之差来判断设备是否发生故障。
其基本原理可概括为以下几个方面:1. 差动电流测量原理差动保护通过测量变压器主绕组和副绕组之间的差动电流来实现。
通常情况下,变压器在正常运行时,主绕组和副绕组之间的电流是基本相等的。
若发生故障,导致主绕组和副绕组之间的电流不相等,则表示变压器发生了故障。
2. 差动电流比较原理差动保护系统会将主绕组和副绕组的电流进行比较,以判断两者是否相等。
常用的比较方法有直流量比较方式和交流量比较方式。
直流量比较方式主要是将两个电流通过电流互感器转换为直流信号进行比较;而交流量比较方式则是将两个电流通过电流互感器转换为交流信号,利用相关技术进行相位比较。
3. 故障检测原理差动保护系统通过对差动电流进行检测,可以判断变压器是否发生了故障。
在差动保护系统中,通常会设置定值元件,用于设定差动电流的阈值。
当差动电流超过设定的阈值时,差动保护系统会判断变压器发生了故障,并触发相应的保护动作。
变压器差动保护的实现方式变压器差动保护可以通过硬件实现、软件实现以及硬件与软件相结合的方式实现。
常见的实现方式包括以下几种:1. 采用硬件差动保护装置硬件差动保护装置通常由差动保护继电器、电流互感器、采样器等组成。
差动保护继电器是实现差动保护的核心设备,它能够将主绕组和副绕组的电流进行比较,并根据设定的差动电流阈值进行故障判据。
变压器差动保护

变压器差动保护一、引言:电力变压器对电力系统的安全稳定运行至关重要。
一旦发生故障遭到损坏,将会造成很大的经济损失,因此,对继电保护的要求很高,差动保护是变压器主保护之一,动作迅速、灵敏而且可靠。
该保护也是我们继电保护调试人员在工作中经常接触到的设备。
下面将介绍一些有关于差动保护方面的一些知识。
二、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35KV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。
简单地讲,就是输入的两端TA之间的设备。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作。
差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器主保护。
三、差动保护的原理:差动保护是利用基尔霍夫电流定律中“在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零”的原理工作的。
差动保护把被保护的变压器看成是一个节点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。
在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的,从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流(折算后的电流)相等,差回路中的电流为零。
当变压器正常运行或区外故障(流过穿越性电流)时,各侧电流互感器的副边电流流入保护装置,通过微机保护程序运行,各侧电流存在的相位差由软件自动进行校正,自动计算出各侧电流IH-(IM-IL)接近为零(IH为高压侧电流,IM为中压侧电流,IL为低压侧电流)则保护不动作。
主变差动保护的保护范围

主变差动保护的保护范围
主变差动保护是一种用于保护变压器的保护装置,其保护范围主要包括以下几个方面:
1. 变压器绕组内部故障:主变差动保护可以检测到变压器绕组内部的短路故障,如匝间短路、相间短路等。
当发生这些故障时,差动电流会迅速增加,从而触发保护装置动作,快速切断变压器与电网的连接,避免故障进一步扩大。
2. 变压器套管故障:主变差动保护还可以保护变压器的套管。
当套管发生故障,如套管闪络、套管破裂等,也会导致差动电流的增加,从而触发保护动作。
3. 主变引出线故障:主变差动保护也能对主变引出线故障起到保护作用。
当主变引出线发生短路故障时,差动电流同样会增加,保护装置能够及时检测到并采取保护措施。
需要注意的是,主变差动保护的保护范围主要针对变压器内部故障和引出线故障,对于变压器外部故障,如母线故障、线路故障等,差动保护可能无法提供有效的保护。
在实际应用中,主变差动保护需要与其他保护装置相配合,以实现对变压器的全面保护。
同时,保护装置的设置和整定需要根据变压器的具体参数和运行情况进行合理配置,确保其在故障发生时能够快速、准确地动作,保障变压器的安全运行。
如果你需要更详细的信息,建议咨询专业的电力工程师或相关技术人员。
电力变压器差动保护技术分析

电力变压器差动保护技术分析【摘要】电力变压器是电力系统中最关键的主设备之一,它承担着电压变换,电能分配和传输,并提供电力服务,变压器差动保护中诸多问题,不能够很好的解决这些问题,就会直接影响变压器差动保护的性能,甚至造成变压器差动保护的误动或拒动。
本文笔者根据多年从事工作经验对其技术进行阐述,谈谈个人一些认识与见解。
【关键词】电力系统;变压器;差动保护;技术分析1.电力变压器差动保护的原理差动保护的原理是基于节点电流定律,利用基尔霍夫电流定理工作的,当变压器正常工作或发生区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。
当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。
因而它只对被保护设备内部发生的短路故障发出响应,因此差动保护具有百分之百的选择性,即使外部的故障极其严重,它也不会对其做出任何动作,因此也可以作为线路、电机等电力设施的主保护。
绕组变压器两侧设有电流互感器,而它的二次侧则是按照循环电流法进行线路连接。
两侧的电流互感器同极端如果同时朝向母线,则会与同极性的端子连接,并且会在两个接线之间接入电流继电器。
继电线圈内部的电流为两边的电流互感器的二次电流差,所以差动继电器的位置是在差动回路上。
2.变压器差动保护技术的实现总结变压器纵差保护所遇到的技术问题,要实现变压器差动保护必须做到:使差动保护各侧电流的相位相同或相反;使由变压器各侧ta二次流入差动保护的电流产生的效果相同,即是等效的;变压器差动保护能可靠躲过励磁涌流空,保证投变压器时不会误动;大电流侧系统内发生接地故障时保护不会误动,即避开零序电流的影响;能可靠躲过稳态及暂态不平衡电流。
2.1变压器差动保护两侧电流的移相呈y,d接线的变压器,两侧电流的相位不同,就不能满σi=0。
因此,要使正常工况下差动保护各侧的电流向量和为零,首先应将某一侧差动ta二次电流进行移相。
变压器差动保护的基本原理

变压器差动保护的基本原理
变压器差动保护是一种常用的电力系统保护方式,主要用于检测变压器的内部故障。
其基本原理如下:
差动保护是通过比较变压器的输入端和输出端的电流差值来实现的。
正常情况下,输入端和输出端的电流应当相等,因为变压器是一个能量转换设备,输入端的电流应当等于输出端的电流(不考虑损耗)。
如果发生内部故障,例如短路或绕组断线,就会导致输入端和输出端的电流不相等。
差动保护系统的基本组成包括电流互感器、比率变压器、差动继电器和保护装置。
电流互感器用于测量输入端和输出端的电流,传输给差动继电器进行比较。
比率变压器用于调整输入端和输出端电流的比例,以匹配差动继电器的输入要求。
当差动继电器检测到输入端和输出端的电流差值超过设定的阈值时,保护装置将触发,切断故障区域的电源,防止进一步损坏。
变压器差动保护的优点是能够快速、准确地检测到内部故障,并迅速采取保护措施,保证电力系统的安全稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将元件两端电流互感器按差接法连接,正常运行或外部故障时,流入继电器的电流为两侧电流差,接近零;内部故障时,流入继电器的电流为两侧电流和,其值为短路电流,继电器动作。
将此原理应用于变压器,即为变压器差动保护1.母联死区保护的概念对于双母线或单母线分段,在母联单元上只安装一组TA情况下,母联TA与母联断路器之间(K点)故障称为死区故障。
当K点发生故障,II母判为区内故障,I母判为区外故障,II母保护动作并跳开母联断路器后,K点故障仍然存在于I母,未能彻底切除故障。
双母线保护装置具有"母联死区保护"功能。
死区故障时,I母或II母保护动作后,发令切除该段母线上所有运行单元(包括母联开关),同时保护程序继续判别大差是否返回、母联TA上故障电流是否消失。
若经过延时(确保母联断路器可靠跳闸),大差未返回、母联TA仍有故障电流,则启动母联死区保护,发令动作于另一段母线保护的出口,从而彻底切除死区故障。
双母线母联单元热备用状态,即母联的两隔离刀闸闭合而母联断路器断开时,在死区发生故障,若母线保护按母联隔离刀闸状态计算两小差,则将造成故障母线判为区外,而非故障母线判为区内。
为解决此问题,将母联断路器辅助接点(常开接点)接入保护装置,作为判定母联单元"断"或"联"运行方式的依据。
母联断路器的辅助接点未闭合时,母线保护按双母线分列运行时的保护逻辑判别及出口。
I母小差及II母小差判据中不计入母联电流。
此时,若发生死区故障,故障母线判为区内而正确迅速动作,非故障母线则判为区外可靠不动作。
母联断路器的辅助接点闭合后,母线保护则按常规双母线并列运行时的保护逻辑判别及出口。
2、电容式电压互感器(CVT)的简单结构和特点电容式电压互感器是由串联电容器抽取电压,再经变压器变压作为表计、继电保护等的电压源的电压互感器,电容式电压互感器还可以将载波频率耦合到输电线用于长途通信、远方测量、选择性的线路高频保护、遥控、电传打字等。
因此和常规的电磁式电压互感器相比,电容式电压互感器器除可防止因电压互感器铁芯饱和引起铁磁谐振外,在经济和安全上还有很多优越之处。
电容式电压互感器主要由电容分压器和中压变压器组成。
电容分压器由瓷套和装在其中的若干串联电容器组成,瓷套内充满保持0.1MPa正压的绝缘油,并用钢制波纹管平衡不同环境以保持油压,电容分压可用作耦合电容器连接载波装置。
中压变压器由装在密封油箱内的变压器,补偿电抗器和阻尼装置组成,油箱顶部的空间充氮。
一次绕组分为主绕组和微调绕组,一次侧和一次绕组间串联一个低损耗电抗器。
由于电容式电压互感器的非线性阻抗和固有的电容有时会在电容式电压互感器内引起铁磁谐振,因而用阻尼装置抑制谐振,阻尼装置由电阻和电抗器组成,跨接在二次绕组上,正常情况下阻尼装置有很高的阻抗,当铁磁谐振引起过电压,在中压变压器受到影响前,电抗器已经饱和了只剩电阻负载,使振荡能量很快被降低。
3、在综合重合闸装置中。
通常采用两种重合闸时间,即“短延时”和“长延时”.这是为什么?这是为了使三相重合和单相重合的重合时间可以分别进行整定。
因为由于潜供电流的影响,一般单相重合的时间要比三相重合的时间长。
另外可以在高频保护投入或退出运行时,采用不同的重合闸时间。
当高频保护投入时,重合闸时间投“短延时”;当高频保护退出运行时,重合闸时间投“长延时”。
4、电压切换回路在安全方面应注意哪些问题?手动和自动切换方式各有什么优缺点?在设计手动和自动电压切换回路时,都应有效地防止在切换过程中对一次侧停电的电压互感器进行反充电。
电压互感器的二次反充电,可能会造成严重的人身和设备事故。
为此,切换回路应采用先断开后接通的接线。
在断开电压回路的同时,有关保护的正电源也应同时断开。
电压回路切换采用手动方式和自动方式,各有其优缺点。
手动切换,切换开关装在户内,运行条件好,切换回路的可靠性较高。
但手动切换增加了运行人员的操作工作量,容易发生误切换或忘记切换,造成事故。
为提高手动切换的可靠性,应制定专用的运行规程,对操作程序作出明确规定,由运行人员执行。
自动切换可以减轻运行人员的操作工作量,也不容易发生误切换和忘记切换的事故。
但隔离开关的辅助触点,因运行环境差,可靠性不高,经常出现故障,影响了切换回路的可靠性。
为了提高自动切换的可靠性,应选用质量好的隔离开关辅助触点,并加强经常性的维护。
5、跳闸位置继电器与合闸位置继电器有什么作用?它们的作用如下:1)可以表示断路器的跳、合闸位置如果是分相操作的,还可以表示分相的跳、合闸信号。
2)可以表示断路器位置的不对应或表示该断路器是否在非全相运行壮态。
3)可以由跳闸位置继电器的某相的触点去启动重合闸回路。
4)在三相跳闸时去高频保护停信。
5)在单相重合闸方式时,闭锁三相重合闸。
6)发出控制回路断线信号和事故音响信号。
6、简述微机保护投运前为什么要用系统工作电压及负荷电流进行检验。
利用系统工作电压及负荷电流进行检验是对装置交流二次回路接线是否正确的最后—次检验,因此事先要做出检验的预期结果,以保证装置检验的正确性。
(1)检验交流电压、电流的相序:通过打印的采样报告来判断交流电压、电流的相序是否正确,零序电压、零序电流应为零。
(2)测定负荷电流相位:根据打印的采样报告,分析各相电流对电压的相位,是否与反应—次表计值换算的角度与幅值相—致。
(3)检验3U回路。
1)L、N线检查:主要依靠校对导线来确定。
2)检查电压互感器开口三角的接线是否符合保护装置的极性要求。
对于新建变电站,应在屋外电压互感器端子箱和保护屏端子排处,分别测定二次和三次绕组的各同名相电压,以此来判断极性端。
然后在电压互感器端子箱处,引出S—N电压加到微机保护3Uo 绕组上,打印采样值,判断3U。
的极性是否正确。
对于已运行的变电站,可参照已运行的,且零序功率方向元件正确动作过的电压互感器开口三角的接线进行核对。
或者在L、N线校对导线正确,L线无断线的基础上,把S端用电缆芯临时引至微机保护屏上代替L端,参照上法检验。
(4)检验3I。
回路:在3I。
回路通一个IA电流,若3I。
与IA的采样值的相位与幅值相同,说明3I。
回路正确。
7、三相重合闸起动回路中的同期继电器常闭触点回路中,为什么要串接检线路有电压常开触点?三相检同期重合闸起动回路中串联KV常开触点,目的是为了保证线路上确有电压才进行检同期重合,另外在正常情况下,由于某种原因在检无压重合方式下,因为断路器自动脱落,线路有电压无法进行重合,此时,如果串有KV常开触点的检同期起动回路与检无压起动回路并联工作,就可以靠检同期起动回路纠正这一误跳闸。
8、继电保护装置中的作为电流线性变换成电压的电流互感器和电抗变压器,其主要区别有哪些?前者如何使I1与U2:同相?后者如何使I1与U2达到所需要的相位?主要区别在铁芯结构上,TA无气隙,而DKB有气隙,开路励磁阻抗TA大而DKB小;在一次电流和二次电压相位上,TA同相,DKB一次电流落后二次电压90°;TA二次电压取自负荷电阻R上的压降,为达到同相可并适当的电容,DKB可在二次线圈上并联可变电阻,靠改变电阻获得所需的相位。
9、什么叫电压互感器反充电?对保护装置有什么影响?通过电压互感器二次侧向不带电的母线充电称为反充电。
如220kV电压互感器,变比为2200,停电的一次母线即使未接地,其阻抗(包括母线电容及绝缘电阻)虽然较大,假定为1MΩ,但从电压互感器二次测看到的阻抗只有1000000/(2200)2=0.2Ω,近乎短路,故反充电电流较大(反充电电流主要决定于电缆电阻及两个电压互感器的漏抗),将造成运行中电压互感器二次侧小开关跳开或熔断器熔断,使运行中的保护装置失去电压,可能造成保护装置的误动或拒动。
文章转载来自北极星电力招聘网,旨在抛砖引玉供广大网友分享交流。
一、电力系统继电保护的概念与作用1.电力系统故障和不正常运行故障:短路和断线(断相)短路:大电流接地系统d(3)、d(2)、d(1)、d(1。
1)小电流接地系统d(3)、d(2)、d(1。
1)断相:单相断线和两项断线(不要与PT二次断线混淆)其中最常见且最危险的是各种类型的短路。
其后果:1I增加危害故障设备和非故障设备;2U降低影响用户正常工作;3破坏系统稳定性,使事故进一步扩大(系统震荡,互解)I2(I0)旋转电机产生附加发热I0—相邻通讯系统故障特征:I增加、U降低、Z降低接地故障、断线有零序不对称故障有负序不正常运行状态:电力系统中电气元件的正常工作遭到破坏,但没有发生故障的运行状态。
如:小电流接地系统d(1)、过负荷、过电压、频率降低、系统震荡等。
2.继电保护的作用:要求能区分故障和正常运行、判断故障设备(区内还是区外故障)两个作用:故障不正常运行状态故障和不正常运行状态—>事故(P1),不可能完全避免且传播很快(光速)要求:几十毫秒内切除故障人(×),继电保护装置(√)任务:P2.被形象的比喻为“静静的哨兵”二、继电器继电器动作:继电器返回:继电特性:三、继电保护的基本原理、构成与分类:1.基本原理:为区分系统正常运行状态与故障或不正常运行状态——找差别:特征。
①增加故障点与电源间—>过电流保护②U降低—>低电压保护③变化;正常:20°左右—>短路:60°~85°—>方向保护.④;模值减少—>阻抗保护⑤—>——〉电流差动保护⑥I2、I0序分量保护等。
另非电气量:瓦斯保护,过热保护原则上说:只要找出正常运行与故障时系统中电气量或非电气量的变化特征(差别),即可找出一种原理,且差别越明显,保护性能越好。
2.构成以过电流保护为例:正常运行:Ir=IfLJ不动故障时:Ir=Id>IdzLJ动—>SJ动(延时)—>XJ动—>信号TQ动—>跳闸一般由测量元件、逻辑元件和执行元件三部分组成。
(1)测量元件作用:测量从被保护对象输入的有关物理量(如电流、电压、阻抗、功率方向等),并与已给定的整定值进行比较,根据比较结果给出“是”、“非”、“大于”、“不大于”等具有“0”或“1”性质的一组逻辑信号,从而判断保护是否应该启动。
(2)逻辑元件作用:根据测量部分输出量的大小、性质、输出的逻辑状态、出现的顺序或它们的组合,使保护装置按一定的布尔逻辑及时序逻辑工作,最后确定是否应跳闸或发信号,并将有关命令传给执行元件。
逻辑回路有:或、与、非、延时启动、延时返回、记忆等。
(3)执行元件:作用;根据逻辑元件传送的信号,最后完成保护装置所担负的任务。
如:故障时→跳闸;不正常运行时→发信号;正常运行时→不动作。
3.分类:几种方法如下:(1)按被保护的对象分类:输电线路保护、发电机保护、变压器保护、电动机保护、母线保护等;(2)按保护原理分类:电流保护、电压保护、距离保护、差动保护、方向保护、零序保护等;(3)按保护所反应故障类型分类:相间短路保护、接地故障保护、匝间短路保护、断线保护、失步保护、失磁保护及过励磁保护等;(4)按继电保护装置的实现技术分类:机电型保护(如电磁型保护和感应型保护)、整流型保护、晶体管型保护、集成电路型保护及微机型保护等;(5)按保护所起的作用分类:主保护、后备保护、辅助保护等;主保护满足系统稳定和设备安全要求,能以最快速度有选择地切除被保护设备和线路故障的保护。