排队论及应用举例 剖析
排队论在超市的运用与分析学士学位论文

排队论在超市的运用与分析摘要近年来,大型超市不断的兴起给人们带来了许多便利。
但是由于种种原因大型超市的排队服务系统并不完善,常常出现了队列过长或者服务台空闲等问题,因此,优化大型超市排队服务系统,减短队列便有具有了重大意义。
本文针对沈阳乐购超市服务排队系统进行优化。
首先对排队论的相关知识进行介绍,对多服务窗等待制M/M/n/∞/∞排队模型进行了重点阐述。
其次对沈阳乐购超市浑南店顾客服务时间,到达时间等数据进行调查,取得原始数据代入排队模型进行实证分析,计算出了相应的目标参量,确定了该超市各个时段应该开放的最佳收银台的数量。
然后运用FLEXSIM对服务系统进行仿真以确定该优化方案是可行的。
在此基础上本文对乐购超市的收银通道,扫描,员工专业度等方面提出问题并对其优化,最后对超市的发展提出意见。
本文的研究成果对大型商场、医院、银行等具有收费服务系统的服务企业具有普遍的借鉴意义。
关键词:大型超市;排队服务系统;建模;仿真;优化AbstractIn recent years, the continuous rise of large supermarkets have brought a lot of convenience to peaple. However, due to various reasons, the large supermarket's queuing system is not perfect, many problems often arised, such as the queue is too long or deskes are idling. Therefore, to optimize the queuing service system of large supermarket to shorten the queue will have a great significance.This thesis aimed at to optimize the service queuing system of Shenyang Tesco Supermarket. At first, the knowledge about queuing theory has beed introduced, and the multi-window waiting for M/M/n/∞/∞queuing model has beed focused on. Secondly, a survey of customer service time, arrival time and other data has beed conducted at Shenyang Tesco supermarket Hunnan store. Then, the original data abtained from the survey has been put into the queuing model to conduct a empirical analysis. And as a result, the corresponding target parameters are calculated, and so to determine the number of cash register at various hours of the supermarket should beed opened. Next, by using the FLEXSIM service system to conduct a simulation, finding out the optimization is feasible. On this basis, this thesis discussed the problem of cashier channel, scanning equipment and staff professionalism of the Tesco supermarket,and optimizing these problem at the same time.Finally, this thesis has give some advices about how to development the supermarket.The results of this paper have universal referenceto for large shopping malls, hospitals, banks and other service enterprises who have the fee-based services systems.Keywords: supermarkets; queuing service system; modeling; simulation; optimization目录摘要 (I)Abstract (II)目录 ........................................................................................................................................ I II 1 绪论 .. (1)1.1 课题研究的背景及意义 (1)1.2 国内外研究现状 (1)1.3论文的主要研究内容及组织结构 (4)1.3.1论文主要研究内容 (4)1.3.2 论文主要组织结构 (4)2 超市排队服务系统相关理论知识 (5)2.1 排队论 (5)2.1.1 排队论的概念与发展 (5)2.1.2 排队论研究的内容 (6)2.2 排队系统 (7)2.2.1 排队系统的组成 (7)2.2.2 排队系统的主要指标 (9)2.2.3排队系统的最优化 (10)2.3 排队系统的建模 (12)2.3.1系统建模的要求 (12)2.3.2系统建模的原则 (12)2.3.3系统建模的方法 (13)2.3.4系统建模的步骤 (13)2.3.5排队系统建模的符号与分类 (14)2.3.6 M/M/n/∞/∞模型 (14)2.4 排队系统的仿真 (15)2.4.1 离散事件系统仿真 (15)2.4.2 FLEXSIM软件的介绍 (16)3 服务系统数据采集与指标计算 (17)3.1 沈阳乐购超市周边环境描述 (17)3.2 数据采集 (17)3.2.1 顾客到达时间服从分布的研究 (20)3.2.2 顾客服务时间服从分布的研究 (23)3.3 系统指标计算及优化 (25)3.3.1 超市收银服务系统应用排队模型 (25)3.3.2 系统指标计算 (26)3.4 大型超市各时段最优服务台数确定 (27)4 顾客排队状况的计算机仿真 (31)4.1 排队服务系统模型假设 (31)4.2 顾客排队状况的计算机仿真 (32)4.3 超市排队服务系统的主要参数技术指标结果分析 (37)5 大型超市服务工作优化设计 (40)5.1 现有超市收银服务工作 (40)5.2 超市收银通道优化 (41)5.3 超市商品扫描结算工作优化 (43)5.4 员工专业度的改进 (45)5.4 对超市发展的建议 (45)结论 (46)致谢 (47)参考文献 (48)附录A (50)附录B (58)1 绪论1.1 课题研究的背景及意义排队服务系统在人们实际生产生活中应用十分广泛,如顾客到超市付款,病人在医院排队看病,此外,计算机网络中数据的存储转发、电话机的占线问题、交通枢纽的车船堵塞和疏导、水库的存储调节等等都是排队现象。
哈尔滨工业大学运筹学教案排队论的应用案例分析PPT课件

最大排队乘客数:
Q=Q1-Q0=λ×t0-μ×t0
(4)
排队中最大延误时间:
ts=t1-t0 (若ts≤0,则表示没有排队产生) (5)
平均排队乘客数:
Q
1 2
(Q1
Q2 )
1 2
(
)
t0
(6)
排队平均延误时间:
排队乘客总的延误时间:
t
1 2
(t1
t0)
D=Q ts
2.@pel(load,S)
该函数返回值是当到达负荷为load,系统中有S个服务台且不 允许排队时系统损失的概率,也就是顾客得不到服务离开的概 率
3.@pfs(load,S,K)
该函数的返回值是当到达负荷为load ,顾客数为K,平行服务台 数量为S时,有限源的Poisson服务系统等待或返修顾客数的 期望值
26
等待制排队模型的基本参数
1.顾客等待的概率:Pwait=@peb(load,S), 其中S是服务台或服务员的个数,load= λ / μ =RT, 其中R= λ ,T= 1/μ ,R是顾客的平均到达率,T是平 均服务时间
2.顾客的平均等待时间:Wq= Pwait·T/(S-load), 其中T/(S-load)可以看成一个合理的长度间隔,
2019/9/21
可编辑
14
对一个排队系统来说,最大的排队乘客数为134人,排队 乘客的总的延误时间为73、38 min,而对整个站台来 说,有两个这样的排队系统,因此在一列车到来后的出站 乘客
将会有268人需要排队等候,排队中最大的延误时间为 65.72s,所有乘客总的排队时间为146.76 min。若排 队系统中最大延误时间大于列车发车间隔,则在楼梯和自 动扶
排队论

排队长度:等待服务的顾 客数量
平均等待时间:顾客在系统 中等待服务的平均时间
平均排队长度:系统中平均 排队的顾客数量
服务台数量:系统中的服 务台数量
利用率:服务台被利用的 程度
排队系统的稳定性:系统是 否处于稳定状态,即平均等 待时间和平均排队长度是否
收敛
排队系统的分析方法
01
排队论的基本概 念:顾客到达、 服务时间、等待
服务台:提供服务的地方
队列:等待服务的顾客队列
顾客到达时间:顾客到达服 务台的时间 服务台容量:服务台可以同 时服务的顾客数量 排队系统状态:当前系统中 顾客和服务员的状态
排队系统的参数
顾客到达率:单位时间内到 达系统的顾客数量
服务速率:单位时间内服务 台能够服务的顾客数量
排队规则:先进先出(FIFO) 或后进先出(LIFO)
谢谢
排队论
演讲人
排队论的基本概念 排队论的基本原理Biblioteka 目录CONTENTS
排队论的应用实例
排队论的基本概念
排队系统的定义
1
排队系统:由顾 客和服务台组成 的系统,顾客需 要等待服务台的
服务。
2
服务台:提供某 种服务的设施, 如收银台、售票
窗口等。
3
顾客:需要接受 服务台的服务的 人,如顾客、乘
客等。
4
时间均服从指数分布
M/G/1模型:单服务台、单 队列、顾客到达服从泊松分 布、服务时间服从指数分布
M/G/c模型:单服务台、多 队列、顾客到达服从泊松分 布、服务时间服从指数分布
M/G/∞模型:单服务台、 无限队列、顾客到达服从泊 松分布、服务时间服从指数
分布
G/M/1模型:多服务台、单 队列、顾客到达服从泊松分 布、服务时间服从指数分布
排队论的应用

排队论的应用排队是人们日常生活中常见的一种现象,它可以在各个领域中被发现。
排队有时看似简单,但实际上是一个涉及着许多细节和规则的复杂问题。
排队论是研究这种现象的一种数学方法,它可以帮助我们更好地理解和优化排队系统。
排队论的应用广泛而深入,涉及各个方面。
首先,排队论在运输领域得到了广泛应用。
例如,在公共交通系统中,排队论可以帮助优化乘客上下车的流程,减少等待和拥堵时间。
同时,在物流领域,排队论可以协助规划货物的运输路线和时程,提高运输效率。
其次,排队论在服务行业中也有重要的应用。
例如,在银行、医院和餐厅等场所,排队论可以帮助优化客户的等待时间,提高客户满意度。
通过合理安排服务窗口、分配服务资源以及优化服务流程,排队论可以帮助提供更高质量的服务体验。
此外,排队论还在制造业中发挥重要作用。
在生产线上,排队论可以帮助优化机器和工人的调度,提高生产效率。
通过合理调整工作流程、减少等待时间,排队论可以帮助企业提高生产线的整体效益。
不仅如此,排队论还在通信网络中得到了广泛应用。
在互联网时代,人们对于网络服务的需求越来越高,因此如何更好地管理网络流量成为了一个重要的问题。
通过排队论,可以帮助网络运营商合理分配带宽和资源,提高网络的可用性和稳定性。
另外,排队论还在金融行业中发挥着重要作用。
在股票交易所中,随着投资者数量的增加,交易系统的负荷也在不断增加。
排队论可以帮助交易所合理规划交易系统的容量和速度,提高交易效率和可靠性。
总体而言,排队论的应用范围非常广泛,几乎涉及到人们生活的方方面面。
通过排队论,我们可以更好地理解和优化排队系统,提高效率、降低成本。
然而,要注意的是,排队论只是一种方法论,具体的应用需要根据实际情况和需求来进行适当的调整和优化。
希望随着科技的发展和人们对服务质量的要求越来越高,排队论能够在更多领域中得到应用并取得更大的成就。
排队论(Lingo方法)

线性规划
01
Lingo方法是线性规划的一种求解算法,可以用于求解排队论中
的优化问题。
迭代法
02
对于一些复杂的问题,可以使用迭代法结合Lingo方法进行求解,
以逐步逼近最优解。
启发式算法
03
对于一些大规模问题,可以使用启发式算法结合Lingo方法进行
求解,以提高求解效率。
04
Lingo方法在排队论中的 案例分析
Lingo方法在排队论中的优化问题
最小化等待时间
通过Lingo方法,可以优化等待时间,以最小化顾 客或任务的等待时间。
最小化队列长度
通过Lingo方法,可以优化队列长度,以最小化等 待空间的使用。
最大化服务台效率
通过Lingo方法,可以优化服务台效率,以提高服 务台的工作效率。
Lingo方法在排队论中的求解算法
等问题。
计算机科学
排队论用于研究计算机 网络的性能分析、负载 均衡和分布式系统等问
题。
排队论的发展历程
1903年,费尔南多·柯尔莫哥洛夫提出概率论的公理化 体系,为排队论奠定了理论基础。
1950年代,肯德尔提出了肯德尔模型,为多服务台排 队模型奠定了基础。
1930年代,厄兰格和朱伯夫提出了厄兰格模型,为单 服务台排队模型奠定了基础。
Lingo方法的适用范围
Lingo方法适用于各种线性规划问题,包括生产计划、资源分 配、运输问题等。
尤其适用于具有大量约束条件和决策变量的复杂问题,能够 有效地解决这些问题的最优解。
Lingo方法的优势和局限性
Lingo方法的优势在于它能够处理大规模的线性规划问题,并且具有较高的计算效率和精度。此外,Lingo方法还具有灵活性 和通用性,可以应用于各种不同的领域和问题。
遗传算法在排队论问题中的应用案例研究

遗传算法在排队论问题中的应用案例研究引言:排队论是一门研究人们在排队等待服务过程中效率和性能的学科。
在现实生活中,我们经常会遇到排队等待的情况,如超市收银台、医院候诊室等。
为了提高排队系统的效率,减少等待时间,研究者们一直在探索各种方法。
其中,遗传算法作为一种优化算法,被广泛应用于排队论问题的研究中。
本文将通过介绍一个具体的应用案例,探讨遗传算法在排队论问题中的应用。
一、排队论问题简介排队论问题是研究排队系统中的等待时间、服务能力等性能指标的学科。
在实际应用中,我们常常需要优化排队系统的性能,以提高服务效率和用户满意度。
排队论问题的核心是如何合理分配资源和调度顾客,使得整个系统的性能最优。
二、遗传算法在排队论问题中的原理遗传算法是一种模拟生物进化过程的优化算法。
它通过模拟自然界的选择、交叉和变异等过程,逐步搜索最优解。
在排队论问题中,遗传算法可以用来寻找最优的资源分配和顾客调度方案。
三、案例研究:超市收银台排队优化以超市收银台排队优化为例,介绍遗传算法在排队论问题中的应用。
1.问题描述:假设一个超市有多个收银台,每个收银台的服务时间和到达顾客的间隔时间都是随机的。
我们的目标是设计一个最优的顾客调度方案,使得整个超市的平均等待时间最短。
2.遗传算法的应用:首先,我们需要定义适应度函数,用来评估一个顾客调度方案的优劣。
适应度函数可以根据等待时间、服务时间、顾客数量等指标来进行评估。
然后,我们使用遗传算法来搜索最优解。
具体步骤如下:(1)初始化种群:随机生成一组初始的顾客调度方案。
(2)选择操作:根据适应度函数,选择一部分优秀的个体作为父代。
(3)交叉操作:对选出的父代进行交叉操作,生成新的子代。
(4)变异操作:对子代进行变异操作,引入新的基因组合。
(5)评估适应度:计算子代的适应度值。
(6)选择操作:根据适应度函数,选择一部分优秀的个体作为下一代的父代。
(7)重复步骤(3)-(6),直到达到终止条件。
排队论及应用举例-剖析

t 1 e 。通过这种
方法,就可以计算出某一特定时间顾客到达
图6-4 指数分布
t
的概率。
例如:在顾客是单个到达服务系统( 1 )
t 时,可通过两种方法得到表 5-1。一种是根
(1)
(2) 下一个顾客将在 大于t分钟内 到达的概率 1.00 0.61 0.37 0.22 0.14
“只发生一次事件(appendectomy-only once case)”:顾客 重新要求服务的可能性极小,即不可能重新要求服务。如:机器 进行彻底检查和修理后,在一段时间内不会重新维修。
顾客源有限时,对回头客服务的任何改变都会改变顾客到达率,引起排队问题的特征的改变。
三、排队模型
问题一:顾客等待。 银行希望知道有多少顾客在等待其服务到车(drive-in)出纳员的服务?出纳员的效率 是多少?如果要求在95%的时间内,任一时刻系统中不超过三辆车,则其服务率应达到什 么水平? 问题二:设备选择。 公司有三中不同的设备可以提供同一种服务,设备功率越大,成本也越高,但服务速度 越快。因此作决策时,成本与收入是紧密相联的。 问题三:服务人数决策。 经销公司的一个销售部门必须决定一个柜台雇佣多少职员。职员越多,成本也越高,但 服务等待时间的减少能带来部分成本的节约。 问题四:有限总体。 前述都是无限总体,而对于有限顾客总体,如:车间有若干台设备,一名维修工负责4 台设备的运转,在充分考虑设备闲置成本和维修工的服务成本的基础上,决定应该雇佣多 少名维修工?
等待成本 最佳能力 服务设施能力 图6-1 顾客到达 服务成本与等待成本的关系 服务需求量 服务 时间 普通 能力
排队问题的实际应用
如图6-2表示的是到达某一服务机构(银 行)的人数和对这一机构服务的需求(信 贷人员)。 在服务系统营业过程中,每一小时到达 系统的顾客人数是一个很重要的变量。从 提供服务的观点来看,顾客对于服务的需 求是不断变化的,而且经常超过正常的服 务能力。可以通过不同的方法对到达人数 加以控制。如特殊顾客通道、临时加班、 设定等待座位数等。一般服务时间受到服 务速度、机器运转速度的影响,另外,服 务时间也会因使用的工具、材料或计划的 不同而变化。 到 达 的 数 目
排队论

(三)、建立排队模型步骤 1.确定表达排队问题各个变量并建立它们之间的相互 关系。 2.根据现有的数据,运用适当的统计检验,假设检验 有关分布。 3.应用已得到的概率分布,确定描述整个系统的运行 特征。 4.根据系统的特征,通过应用适当的决策模型,改进 系统的功能。 (四)、生灭过程的差分微分方程组 当顾客到达时间间隔为负指数分布(即输入过程具有 Poisson特征,N(t)服从Poisson分布),服务时间为负 指数分布,则系统的排队过程是Markov(马尔科夫)过程, 而且它具有一类特殊Markov过程的特征,通常称这类随 机过程的生灭过程。
2 排队系统的特征 为了描述一个给定的排队系统,必须规定系统的下列组成 (1)输入过程 顾客陆续来到的过程,设N(t):(0,t)时间内来到的顾客数(非负 整数值) {N (t ), t 0} 是随机过程,又设 Ti 第i个顾客到达的时间,从 j {Ti } 随机变量序列, i Ti Ti 1 时间间距(隔) N (t ) max{ j, i t} 而 i 1 一般假设顾客来到时间间隔 i 相互独立与随机变量 有相同的; 分布 可以根据原始资料,由顾客到达的规律、作出经验分布, 然后按照统计学的方法(如x 检验法)确定服从哪种理论分布,并 估计它的参数值。我们主要讨论 概率分布为负指数分布 M (另外有定长分布D, k阶爱尔兰分布 E k ,一般独立分布GI等)
n 1
(9.2) 若能求解这组方程,则可得到在时刻t系统状态概 率分布 { pn ( t ) , n s} 称为生灭过程的瞬时解,一 般这种瞬时解是难以求得的
3.统计平衡下的极限解 实际应用中,关心的是 t 时,方程的解称为生 灭过程微分差分方程组的极限解。 lim 令 t pn( t ) pn 由pn' ( t ) 0 及(9.1)(9.2)式得当S为有限状 态集时,(9.1)式变为 1 n k n 1 p n 1 ( n n ) p n n 1 p n 1 0 (9.3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其次,在设定时间长度为 T,然后确定在时间 T段内有多少顾客到达并进入系统?通常假定单位 时间到达的人数服从泊松分布。
4. 第一种情况:指数分布。 当顾客已完全随机
方式到达服务机构时,相邻到达时间间隔服
最小值
总成本 服务成本
等待成本
最佳能力
服务设施能力 图6-1 服务成本与等待成本的关系
顾客到达
服务需求量
服务 时间
普通 能力
时间
时间
图6-2 到达与服务的关系
二、排队系统
如图 5-3所示,一个排队系统有三个主要部分 组成: 一是:顾客源和顾客到达系统的方式 二是:服务系统 三是:顾客离开系统的方式 (是否回到顾客源? )
在服务系统营业过程中,每一小时到达 到 系统的顾客人数是一个很重要的变量。从 达 提供服务的观点来看,顾客对于服务的需 的 求是不断变化的,而且经常超过正常的服 数 务能力。可以通过不同的方法对到达人数 目 加以控制。如特殊顾客通道、临时加班、 设定等待座位数等。一般服务时间受到服 务速度、机器运转速度的影响,另外,服 务时间也会因使用的工具、材料或计划的 不同而变化。
2. 无限总体。 对于服务系统来说顾客数量足够大,由于人数增减而引起的总体规模的变化不会对 系统的概率分布产生显著的影响。
3. 顾客到达的分布。 这是一个到达率或单位时间到达数的问题。固定到达的分布呈周期性的,即 相继到达的两个顾客之间的时间间隔几乎相同。在生产系统中,通常运用一些技术控制顾客在固 定的时间间隔内到达。多数情况下,顾客的到达呈随机分布。
从指数分布。如图 5-4所示。其概率密度函
数为:
f(t)
f (t) ? ?e??t
(6-1 )
期望值 ?
1
?
方
差?
1
?2
式中 ? 代表单位时间段到达的顾客数量。
图5-4中曲线下方的阴影区域即为函数 5-1在
正数范围内的积分,即 1 ? ? e? ?。t 通过这种
方法,就可以计算出某一特定时间顾客到达
顾客源
服务系统 等待队列 服务机构
离开
顾客到达
到达服务系统的顾客可以分为两类:有限总体和无限总体。
图6-3 排队系统的组成
1. 有限总体。 要求服务的顾客数是有限的,通常是排成一队的。顾客总体中的某一位离开其位置 (如一台设备停机待修理),顾客就少一个,同时减少了下一次要求服务的概率。相反,当被服 务的顾客回到顾客总体中,总体人数对服务需求的概率也就增加了。
问题中的权衡。
等待成本随着服务能力的增大而减小,可 以用负指数曲线描述;服务成本可以简单地 用线性变化表示;总成本或复合成本则是U 型曲线。所以,理想的最优化(最小)成本 位于服务成本曲线和等待成本曲线的交点上。
排队问题的实际应用
如图6-2表示的是到达某一服务机构(银 行)的人数和对这一机构服务的需求(信 贷人员)。
第六章 排队论
关键词
排队(Queue) 指数分布(Exponential Distribution) 单通道、单阶段(Single Channel, single Phase) 排队系统(Queuing System) 泊松分布(Poisson Distribution) 多通道、多阶段(Multichannel, Multiphase ) 到达率(Arrival Rate) 服务率(Service Rate) 有限队列(Finite Queue)
时间T内
有n人到
.224
达的概率
.20 .149
.224
期望值 ? ? ? 3 方差
.168
平滑曲线
PT (n)
?
(?T ) n e ??T n!
( 6-2 )
.10
.102
式5-2表示在 T时间内有 n个顾客
.05
到达的概率。例如,如果一个
0
系统的平均到达率是每分钟有 3
个顾客到达( ? ? 3 ),要求 1
图6-4 指数分布
t
的概率。
例如:在顾客是单个到达服务系统( ? ? 1 )
时e,?可? t 通过两种方法得到表 5-1。一种是根
据
式,另e一? x种可以应用负指数分布
。
表的第二栏是下一个到达的顾客时间间隔超
过 t 分钟的概率;第三栏为下一个顾客到
达时间小于 t 分钟的概率。
(1)
t 分钟
0 0.5 1.0 1.5 2.0
分钟内有 5个人到达的概率为:
.050
12 3 4 5 6
8
到达人数n
10 12
图6-5 泊松分布( ? T ? 3 )
P1 (5) ?
(3 ? 1) 5 e ?3?1 5!
?
0.101
? 解决排队问题的基本目标是平衡等待成本与增加资源引起的成本之间的关系。对 于一个服务系统来说,这意味着若要给顾客创造很短的等待时间,服务台的利用 率将回降低。排队问题中一个关键问题是用什么样的程序或优先规则来选择下一 个产品或顾客作为服务对象。
成本效益平衡
成
本
如图6-1所示,是一个典型(稳定)的客运 $
(2)
(3)
下一个顾客将在 大于t分钟内 到达的概率
下一个顾客将在小于t 分钟内到达的概率 (3)=(1)-(2)
1.00
0
0.61
0.39
0.37
0.63
0.22
0.78
0.14
0.86
5. 第二种情况 :泊松分布。 主要针 对某一时段 T内有n人到达的概
率,到达过程是随机的,则服 从泊宋分布。如图 5-5所示。计 算公式为:
一、排队问题的经济含义
? 在日常经济生活中,经常遇到排队现象,如:在超市等待结帐、工厂中等待加工 的工件或待修理的机器、开车上班等,排队论是运作管理中重要的方法,它是计 划、工作设计、存货控制以及其他问题的基础。
? 每一个排队事例的核心问题就是对不同因素作权衡决策,管理者必须衡量为提供 更快捷服务而增加的成本和等待费用之间的关系。
? 一种情况是:直接对成本进行权衡决策,例如考虑到顾客排队等待可以增加设备, 就要权衡增加设备的成本与多服务顾客所带来的价值的大小,决策比较直观和容 易;
另一种情况是:排队问题是对医院床位的需求,可以估算增加床位带来的房屋建 筑、附加设备以及增加的维护费用等成本,但衡量标准时什么?因为用金钱成本 来度量病人对病床的需求显然是徒劳的,尽管可以估计出医院因病床不足会损失 多少收入,但无法估计病人因得不到适当的医护所遭受的损失。