奥氏体的起始晶粒度
奥氏体晶粒长大及其控制

*
起始晶粒度:珠光体刚刚转变成奥氏体 的晶粒大小。 实际晶粒度:热处理后所获得的奥氏体 晶粒的大小。 本质晶粒度:度量钢本身晶粒在930℃ 以下,随温度升高,晶粒长 大的程度。
加热速度愈大,过热度就愈大,即奥氏体实际形成温度就愈高,奥氏体的形核率与长大速度之比值I/G增大(表9.1),所以快速加热时可以获得细小的奥氏体起始晶粒。而且,加热速度愈快,奥氏体起始晶粒就愈细小。
*
表9.1 奥氏体的形核率I、长大速度G 与温度的关系
转变温度 (℃)
形核率I (1/mm3·s)
*
(2)晶界推移阻力
图9.12 晶界移动时与第二相粒子的交互作用示意图
1
2
*
在第二相粒子附近的晶界发生弯曲,导致晶界面积增大,界面能升高。弥散析出的第二相粒子愈细小,粒子附近晶界的弯曲曲率就愈大,晶界面积的增大就愈多,因此界面能的增大也就愈多。这个使系统自由能增加的过程是不可能自发进行的。所以,沉淀析出的第二相粒子的存在是晶界推移的阻力。
9.1.4 奥氏体晶粒长大 及其控制
1.奥氏体晶粒度 2.奥氏体晶粒长大原理 3.影响奥氏体晶粒长大的因素
奥氏体化的目的是获得成分均匀和一定晶粒大小的奥氏体组织。多数情况下希望获得细小的奥氏体晶粒,有时也需要得到较大的奥氏体晶粒。因此,为获得所期望的奥氏体晶粒尺度,必须了解奥氏体晶粒的长大规律,掌握控制奥氏体晶粒度的方法。
*
(4)合金元素的影响
钢中加入适量形成难溶化合物的合金元素如Nb、Ti、Zr、V、Al、Ta等,将强烈地阻碍奥氏体晶粒长大,使奥氏体晶粒粗化温度显著升高。上述合金元素在钢中形成熔点高、稳定性强、不易聚集长大的NbC、NbN、Nb(C,N)、TiC等化合物,它们弥散分布于奥氏体基体中,阻碍晶粒长大,从而保持细小的奥氏体晶粒。
材料科学基础A2复习提纲+部分答案-2013

材料科学基础A下复习课
名词解释部分答案
1)奥氏体的起始晶粒度、实际晶粒度、本质晶粒度; 答:(1)起始晶粒度:是指在临界温度以上,奥氏体形成 刚刚完成,其晶粒边界刚刚接触时的晶粒大小。 (2)实际晶粒度:是指在某一具体的热处理加热条件下所 得到的晶粒尺寸。 (3)本质晶粒度:根据标准试验方法,在930±10℃保温
s
江苏科技大学 材料科学与工程学院
材料科学基础A
材料科学基础A下复习课 四、简述马氏体相变的主要特征。 五、马氏体组织有哪几种类型?它们的形成 条件、组织形态、晶体结构、力学性能有何 特点。
六、试述钢中典型上贝氏体、下贝氏体的组 织形态,并比较它们的异同。 七、试述淬火钢回火时的组织转变。
索氏体:冷却至650~600℃温度范围内等温停留一段时间,再冷却下来得到索光体组织。
屈氏体:冷却至600~550℃温度范围内等温停留一段时间,再冷却下来得到屈氏体组织。 上贝氏体:冷却至600~350℃温度范围内等温停留一段时间,再冷却下来得到上贝氏体组织。 下贝氏体:冷却至350℃~Ms温度范围内等温停留一段时间,再冷却下来得到下贝氏体组织。 屈氏体+马氏体:以大于获得马氏体组织的最小冷却速度并小于获得珠光体组织的最大冷却速 度连续冷却,获得屈氏体+马氏体。 马氏体+少量残余奥氏体:以大于获得马氏体组织的最小冷却速度冷却获得马氏体+少量残余奥 氏体。
江苏科技大学 材料科学与工程学院
材料科学基础A
材料科学基础A下复习课
简述回火的目的
(1)降低零件脆性,消除或降低内应力; (2)获得所要求的力学性能; (3)稳定尺寸; (4)改善加工性。
江苏科技大学 材料科学与工程学院
材料科学基础A
原理第4、5章 钢中奥氏体的形成

度平衡→破坏→再平衡。奥氏体晶核向F和Fe3C两侧的推移速度是不同的。
第二章
钢中奥氏体的形成
(a)T1温度下各相中的碳的浓度图 推移示意图
(b)相界面 2.6 共析钢奥氏体晶核长大示意图
第二章
钢中奥氏体的形成
由于新相奥氏体两个相界面(/和/Fe3C)的碳浓度不等(C/cem >C / ): C/cem -C / (浓度差);在铁素体中也存在着碳浓度差(C /cem - C / ),也会引起碳从 / Fe 3C 相界面处向/相界面处扩散,扩散使奥氏体中 碳的浓度梯度趋于减小。 为了维持原来相界面处的局部碳浓度平衡,在/Fe3C相界面处的渗碳体必须 溶入奥氏体以供应碳量,使其碳浓度恢复至 C/cem ;与此同时,在 / 相界面处 的铁素体必须转变为奥氏体,使其碳浓度降至C / ,这样,奥氏体的两个相界面
c(如 ACl、AC3、Accm );
实际冷却时的相变临界点标以字母 r(如 Arl,Ar3,Arcm )。
第二章
钢中奥氏体的形成
2)奥氏体的组织和结构
定义:C溶于γ –Fe形成的间隙式固溶体。 奥氏体的组织通常是由等轴状的多边形晶粒所组成,晶内常可出现相变孪晶。
图2.2 奥氏体不锈钢
图2.3 相变孪晶
第二章
钢中奥氏体的形成
2)连续加热时奥氏体的形成
钢在连续加热时珠光体向奥氏体的转变与等温加热转变大致相同,亦经过形核、 长大、剩 余碳化物溶解、奥氏体均匀化四个阶段,其影响因素也大致相同。但由于奥氏体的形成是在连 续加热条件下进行的,所以与等温转变相比,尚有如下特点: (1)在一定的加热速度范围内, 临界点随加热速度增大而升高; (2)相变是在一个温度范围内完成的;
第二章
奥氏体起始晶粒度与实际晶粒度,本质晶粒度之间的关系

奥氏体起始晶粒度与实际晶粒度,本质晶粒度之间的关系奥氏体起始晶粒度与实际晶粒度、本质晶粒度之间存在着一定的关系。
起始晶粒度通常指的是在一定冷却条件下,金属材料中形成奥氏体晶粒的尺寸。
实际晶
粒度则是指在实际工艺生产中得到的材料的晶粒尺寸。
而本质晶粒度是指材料在零应变条件下的晶粒尺寸。
一般来说,起始晶粒度是通过材料的先后固化过程,以及冶炼和变形过程中的温度历程来确定的。
起始晶粒度与金属材料的化学成分、冷却速度和热处理条件等因素密切相关。
通过控制这些因素,可以影响起始晶粒度的尺寸,从而对材料的性能进行调控。
实际晶粒度则是在材料的生产过程中通过金相显微镜等工具进行测量得到的,它反映了材料在实际生产中形成的晶粒的尺寸分布情况。
实际晶粒度一般受到材料的热处理工艺、冷却速度、变形温度和应变量等多种因素的影响。
通过合理的工艺参数选择和调节,可以控制实际晶粒度,从而满足产品的性能要求。
而本质晶粒度通常是通过材料的等温退火过程,具体来说就是在零应变条件下,施加一定的退火温度和时间,使材料达到热力学平衡状态。
在这个状态下,材料的晶粒尺寸就是本质晶粒度。
本质晶粒度是一个材料的内在性质,它与材料的非等
轴晶粒长径、晶界能、晶体生长速率等因素密切相关。
总的来说,奥氏体起始晶粒度、实际晶粒度和本质晶粒度之间存在一定的关系。
通过合理控制起始晶粒度和实际晶粒度,可以影响材料的性能和微观结构。
同时,本质晶粒度是材料内在的特征,其大小会受到多种因素的影响。
深入理解这些关
系可以帮助我们优化制备工艺,提高材料的性能和质量。
材料科学基础复习题库

解释下列名词1、奥氏体本质晶粒度是根据标准实验条件,在930±10℃,保温足够时间(3~8小时)后,测定的钢中奥氏体晶粒的大小。
2、奥氏体实际晶粒度指在某一热处理加热条件下,所得到的晶粒尺寸。
3、珠光体晶粒在片状珠光体中,片层排列方向大致相同的区域称为珠光体团4、二次珠光体转变由于贝氏体转变的不完全性,当转变温度较高时,未转变的奥氏体在随后的保温过程中有可能会发生珠光体转变,此时的珠光体转变称为二次珠光体转变。
5、马氏体转变是一种固态相变,是通过母相宏观切变,原子整体有规律迁移完成的无扩散相变。
6、形变马氏体由形变诱发马氏体转变生成的马氏体称为形变马氏体。
7、马氏体异常正方度“新形成的马氏体”,正方度与碳含量的关系并不符合公式给出的关系,这种现象称为马氏体的异常正方度。
8、马氏体相变塑性相变塑性:金属及合金在相变过程中塑性增长,往往在低于母相屈服极限的条件下即发生了塑性变形,这种现象称为相变塑性。
钢在马氏体转变时也会产生相变塑性现象,称为马氏体的相变塑性。
9、相变冷作硬化马氏体形成时的体积效应会引起周围奥氏体产生塑性变形,同时马氏体相变的切变特性,也将在晶体内产生大量微观缺陷,如位错、孪晶、层错等。
这些缺陷在马氏体逆转变过程中会被继承,结果导致强度明显升高,而塑性韧性下降,这种现象被称为相变冷作硬化。
10、位向关系在固态相变母相与新相之间所保持的晶体学空间取向关系称为位向关系。
11、K-S关系在固态相变母相与新相之间所保持的晶体学位向关系,例如:奥氏体向马氏体转变时新旧两相之间就维持这种位向关系(111)γ∥(110)α,〈110〉γ∥〈111〉α12、组织遗传;指非平衡组织重新加热淬火后,其奥氏体晶粒大小仍然保持原奥氏体晶粒大小和形状的现象。
13、相遗传;母相将其晶体学缺陷遗传给新相的现象称为相遗传。
14、反稳定化在热稳定化上限温度M C以下,热稳定程度随温度的升高而增加;但有些钢,当温度达到某一温度后稳定化程度反而下降的现象。
FIB炉资料

第一部分概述1.1概述热处理的过程是对高碳钢进行加热的过程。
经过如下两步使钢丝具有合适的组织结构:1.1.1. 奥氏体化在明火炉中实现将钢丝加热到一定温度范围内,保温足够时间才能获得单相奥氏体组织,即完全奥氏体。
将加热时获得单相奥氏体组织的过程,称为完全奥氏体化。
奥氏体的晶粒度1/ 起始晶粒度在珠光体向奥氏体的转变刚刚完成时,奥氏体晶粒的大小称为奥氏体的起始晶粒度。
奥氏体的起始晶粒度总是比较细小的,随着加热温度的升高或保温时间的延长,它也随之长大。
2/ 本质晶粒度对于不同的钢,在相同的加热条件下,随着温度的升高,奥氏体晶粒长大的倾向称为奥氏体的本质晶粒度。
凡是奥氏体晶粒容易长大的钢称为本质粗晶粒钢;反之称为本质细晶粒钢。
国标规定,将钢在930±10℃加热,保温4h,冷却后测定其晶粒度,晶粒度为1~4级的定为本质粗晶粒钢,5~8级的定为本质细晶粒钢。
3/ 实际晶粒度钢在具体的加热条件下所得到的奥氏体晶粒大小,称为奥氏体的实际晶粒度。
它除了与本质晶粒度有关外,还与具体加热条件有关。
奥氏体晶粒均匀而细小,冷却后奥氏体转变产物的组织也均匀而细小。
热处理后细晶粒的钢丝不但强度高,而且其韧性和塑性也好。
影响奥氏体化的因素:1/ 加热速度及温度的影响加热温度越高,则孕育越短转变所需时间越短,奥氏体化速度越快,加热速度越快,转变开始温度和终了温度越高,转变时间越短。
2/ 碳及合金元素的影响钢中碳的质量分数越高,奥氏体化速度越快。
钢中加合金元素会影响碳在奥氏体中的扩散,因而对奥氏体化速度有很大影响3/ 原始组织的影响细片珠光体比粗片珠光体的奥氏体化速度快,原珠光体组织为片状的比粒状的奥氏体化速度快。
1.1.2 . 淬火在铅槽中进行1/ 热处理生产中有两种冷却方式:连续冷却、等温冷却。
等温冷却是将奥氏体化的钢丝迅速冷却到临界温度以下的某一温度进行等温转变,然后冷却至室温(等温淬火、等温退火属等温冷却)。
2/ 过冷奥氏体的等温转变奥氏体在临界温度(~750℃)以上是一稳定相,能够长期存在而不改变,当其冷至临界温度以下即热力学的不稳定状态,这时的奥氏体称为过冷奥氏体。
实验一钢的奥氏体晶粒度的测定

实验一钢的奥氏体晶粒度的测定一、实验目的1、学会用各种腐蚀法显示钢的奥氏体晶粒;2、。
熟悉测定钢的奥氏体晶粒度的方法。
二、奥氏体晶粒度的概述奥氏体晶粒按其形成条件不同,通常可分为起始晶粒,实际晶粒与本质晶粒三种,它们的大小分别称为起始晶粒度、实际晶粒度与本质晶粒度。
(一)起始晶粒度在临界温度以上,奥氏体形成过程刚刚结束时的晶粒尺寸,称起始晶粒度。
(二)实际晶粒度在热处理(或热加工)的某一具体加热条件下所得到的奥氏体晶粒的大小称为实际晶粒度。
奥氏体转变终了后,若不立即冷却而在高温停留,或者继续升高加热温度,则奥氏体将长大。
因为上述过程在热处理时是不可避免的,所以奥氏体开始冷却时的晶粒(实际晶粒度)总要比起始晶粒大。
(三)本质晶粒度把钢材加热到超过临界点以上的某一特定温度,并保温一定时间(通常规定为930℃保温8小时),奥氏体所具有晶粒大小称为奥氏体本质晶粒度。
选用930℃是因为对于一般钢材来讲,不论进行何种热处理,如淬火、退火、正火、渗碳等,加热温度都在930℃以下。
如果在930℃保温8小时后,奥氏体晶粒几乎不长大,则在热处理过程中就不会出现粗大的奥氏体晶粒。
本质晶粒度即标志着在上述特定温度范围内,随着温度的升高,奥氏体晶粒的长大倾向:奥氏体晶粒显著长大的钢(得到奥氏体晶粒度为1一4级),定为本质粗晶粒钢;奥氏体晶粒长大不显著的钢(得到的奥氏体晶粒度为5一8级),定为本质细晶粒钢。
必须指出,本质晶粒度只是反映了930℃以下奥氏体晶粒长大倾向。
超过930℃后,本质细晶粒钢的奥氏体实际晶粒度很可能比本质粗晶粒钢的实际晶粒度还粗。
三、奥氏体本质晶粒度的显示方法钢在临界温度以上直接测量奥氏体晶粒大小一般是比较困难的,而奥氏体在冷却过程中又将发生相变。
因此如何在室温下(即在冷却转变后)显现出奥氏体晶粒的大小,就是需要解决的问题。
通常可采用以下几种方法来测定钢的晶粒度[3]。
(一)渗碳法适用于测定渗碳钢的本质晶粒度。
工程材料习题与答案7

机械工程材料 第七章 钢的热处理
(三)是非题(续)
中 南 大 学 机 电 工 程 学 院
10.因为过冷奥氏体的连续冷却转变曲线位于等温转变曲线 (×) 的右下方,所以连续冷却转变曲线的临界冷却速度比等温转 变曲线的大。 11.高合金钢既具有良好的淬透性,也具有良好的淬硬性。 (×) 12.经退火后再高温回火的钢,能得到回火马氏体组织,具 (×) 有良好的综合机械性能。 (√) 13.钢的淬透性高,则其淬透层的深度也越大。 (√) 14.钢中未溶碳化物的存在,将使钢的淬透性降低。 15.在正常加热淬火条件下,亚共析钢的淬透性随碳的增高 (√) 而增大,过共析钢的淬透性随碳的增高而减小。 16.表面淬火既能改变钢的表面化学成分,也能改善心部的 (×) 组织和性能。
机械工程材料 第七章 钢的热处理
(一)解释名词
– 本质晶粒度 – 临界冷却速度 – 马氏体 – 淬透性 – 淬硬性 – 调质处理
中 南 大 学 机 电 工 程 学 院
机械工程材料 第七章 钢的热处理
(二) 填空题
中 南 大 学 机 电 工 程 学 院
1. 钢加热时奥氏体形成是由 形核、长大,剩余渗碳体的熔解, 奥氏体的均匀化 等四个基本过程所组成。 2. 在过冷奥氏体等温转变产物中,珠光体与屈氏体的主要相同 层间距 点是 都是铁素体与渗碳体的机械混合物 ,不同点是 不同 ,屈氏体较细,珠光体较粗。 。 3. 用光学显微镜观察,上贝氏体的组织特征呈 羽毛 状,而下 贝氏体则呈 针 状。 4. 与共析钢相比,非共析钢C曲线的特征是 C曲线靠左,亚共 析钢左上部多一条共析铁素体析出线,过共析钢多一条二次渗 碳体析出线 。 5. 马氏体的显微组织形态主要有 板条状、针状马氏体 两种。 其中 板条状马氏体 的韧性较好。 6. 高碳淬火马氏体和回火马氏体在形成条件上的区别是 前者是在淬火中形成,后者在低温回火时形成 ,在金相显微镜 下观察二者的区别是 前者为竹叶形,后者为黑色针状 。 7. 目前较普遍采用的测定钢的淬透性的方法是 “端淬试验”即结构钢末端淬透性试验。 8. 钢的淬透性越高,则其C曲线的位置越 靠右,说明临界冷却 速度越 慢 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) 片状珠光体与球化体(球状珠光体):片状珠光体组织系在铁素体基体上分布着片状渗碳体;而粒状珠光体(球化体)则是在铁素体基体上分布着粒状渗碳体所获得的组织。 (5) 再结晶退火与重结晶退火:再结晶退火系指经塑性变形的工件当加热 至再结晶温度以上(通常在临界点以下的某一温度),所发生的消除加工硬化、回复塑性的热处理工艺,其主要特点是再结晶退火前后,晶体结构不发生变化;而重结晶退火, 则指加热温度在相变温度以上的退火,其特点是晶体结构发生了根本变化。(6) 淬透性、淬硬性与淬透层深度:淬透性表示钢在一定条件下淬火时获得淬透层深度的能力,主要受奥氏体中的碳含量和合金元素的影响;淬硬性是指钢在淬火后所能达到的最高硬度值,主要取决于碳含量;而淬透层深度则指从钢件表面到半马氏体区的距离。淬透性可用规定条件下所获得的淬透层深度来表示;但淬透层深度则除了和淬透性有关外,还与试样的尺寸,奥氏体化条件等有关。
(4) 片状珠光体与球化体(球状珠光体):片状珠光体组织系在铁素体基体上分布着片状渗碳体;而粒状珠光体(球化体)则是在铁素体基体上分布着粒状渗碳体所获得的组织。 (5) 再结晶退火与重结晶退火:再结晶退火系指经塑性变形的工件当加热至再结晶温度以上(通常在临界点以下的某一温度),所发生的消除加工硬化、回复塑性的热处理工艺,其主要特点是再结晶退火前后,晶体结构不发生变化;而重结晶退火,则指加热温度在相变温度以上的退火,其特点是晶体结构发生了根本变化。(6) 淬透性、淬硬性与淬透层深度:淬透性表示钢在一定条件下淬火时获得淬透层深度的能力,主要受奥氏体中的碳含量和合金元素的影响;淬硬性是指钢在淬火后所能达到的最高硬度值,主要取决于碳含量;而淬透层深度则指从钢件表面到半马氏体区的距离。淬透性可用规定条件下所获得的淬透层深度来表示;但淬透层深度则除了和淬透性有关外,还与试样的尺寸,奥氏体化条件等有关。
奥氏体的起始晶粒度、实际晶粒度与本质晶粒度:奥氏体的起始晶粒度系指奥氏体化过程中,奥氏体转变刚完成时奥氏体晶粒的大小,是一理论值;奥氏体的实际晶粒度指的是在某一具体加热条件下所得到的奥氏体晶粒大小;而奥氏体的本质晶粒度则指在规定的加热条件下(930±10℃,3~8h)评定奥氏体晶粒长大倾向的标准。(2)奥氏体、过冷奥氏体与残余奥氏体:奥氏体是指在A1温度以上,处于稳定状态的奥氏体;过冷奥氏体是指处于A1温度以下存在时间很短暂、不稳定的奥氏体;而残余奥氏体(Ar)则指淬火后尚未转变,被迫保留下来的奥氏体。(3) 珠光体、索氏体与托氏体(屈氏体):过冷奥氏体在A1~550℃温度范围内,所形成的粗片状(>0.4μm)F、Fe3C相间分布的组织为珠光体;较细片状(0.4~0.2μm)的为索氏体;极细片状(<0.2μm)的就为托氏体。 粒状珠光体(球化体):铁素体基体上分布着粒状渗碳体。