微波的基本参数测量 实验报告

合集下载

实验报告-微波的基本参数测量

实验报告-微波的基本参数测量

驻波测量线的结构
使用驻波测量线进行测量时, 要考虑探针在开槽波导管内有适当的穿伸度, 探针穿伸度 一般取波导窄边宽度的 5%~10%。实验前应注意驻波测量线的调谐,使其既有最佳灵敏度, 又使探针对微波通路的影响降至最低。一般是将测量线终端短接,形成纯驻波场。移动探针 置于波节点,调节测量线,使得波节点位置的检波电流最大,反复进行多次。
(c)大驻波比的测量 波腹振幅与波节振幅的差别很大,测量线不能同时测量波腹和波节,此时可以用二 倍极小功率法进行测量。利用探针测量极小点两旁,功率为极小功率二倍的两点的距离W, 波导波长λg ,可按下式计算驻波比:
S
g W
(2) 波导波长的测量. 波导波长在数值上为相邻两个驻波极值点(波腹或波节)距离的两倍:
3. 相对功率与衰减测量:
用分贝表示的信号衰减量 A 定义如下:
A 10log
P 1 dB P2
P 1 为无衰减时的功率, P 2 为衰减后的功率。
当检波器为平方律检波时:
A 10log
I1 I2
三、 实验步骤: 确定谐振腔波长计的刻度与信号频率的关系: 将一定频率的微波信号(点频方式)输入到检波指示器,此时功率计一般显示 出较大的功率。仔细调节谐振腔波长计的测微头, 在某一时刻, 功率计的指示值最小, 记下此时测微头的刻度,即得到一组信号频率与波长计刻度的对应关系。利用此方法 测量其它频率对应的波长刻度。 2. 测量微波在波导中的主板特性和波导波长: 用波导开关将微波信号切换到负载或短路器一边,使微波在此时发生反射,在波 导中形成驻波。将波导测量线中的信号检测器沿波导测量线移动,每隔 1mm 在选频放 大器上独处相应的 I 值,据此绘出驻波分布图,分别计算出驻波比和波导波长。 3. 相对功率与衰减测量: 1.

微波测量实验报告

微波测量实验报告

微波测量实验报告一、实验背景微波测量是指利用微波技术对被测物体进行测量的一种方法。

微波是一种电磁波,其频率范围在300MHZ至300GHz之间。

微波测量广泛应用于通信、测距、雷达、卫星等领域。

本实验旨在通过对微波信号的发射、传播和接收进行实验,了解微波测量的基本原理和方法。

二、实验原理微波测量实验主要依赖于微波发射器和接收器的配合。

首先,发射器通过产生一个特定频率和幅度的微波信号,将信号输入到一个导波器(如开放式传输线)中。

信号在导波器中通过传播,并且可以根据特定的设计进行传播路径的调整。

接收器用来接收由被测物体反射或传播过来的微波信号,通过对信号进行处理,可以得到关于被测物体的信息。

在微波测量中,由于微波的特殊性质,测距、测速和测向等参数可以通过对微波信号的相位、频率和幅度进行分析来实现。

例如,利用多普勒频移原理,可以通过测量微波信号的频率变化来计算目标物体的速度;利用相位差原理,可以通过测量微波信号的相位差来计算目标物体的位置。

三、实验设备和材料1.微波发射器:用来产生微波信号的设备;2.导波器:用来传输微波信号的导向装置;3.微波接收器:用来接收被测物体反射或传播过来的微波信号并进行参数分析的设备;4.被测物体:用来反射或传播微波信号的物体。

四、实验步骤1.连接微波发射器和接收器,并对其进行相位校准;2.将被测物体放置在适当位置,调整微波接收器的位置和角度,以便接收到反射或传播过的微波信号;3.运行微波发射器和接收器,记录并分析接收到的微波信号的相位、频率和幅度等参数;4.根据参数分析的结果,计算并得出被测物体的测量结果。

五、实验结果与分析在实验中,我们成功地利用微波发射器和接收器对一块金属板进行了微波测量。

通过对接收到的微波信号的相位、频率和幅度进行实验结果的分析,我们得出了金属板的尺寸和位置等测量结果。

六、实验总结通过本实验,我们了解了微波测量的基本原理和方法。

微波测量广泛应用于通信、测距、雷达、卫星等领域,具有重要的实际应用价值。

微波基本参量测量实验报告

微波基本参量测量实验报告

浙江师范大学实验报告实验名称微波基本参量测量班级物理092 姓名阮柳晖学号09180229同组人任亚萍实验日期11/10/24 室温/ 气温/微波基本参量测量摘要:微波系统中最基本的参数有频率、驻波比、功率等。

本实验通过了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,运用微波测量的基本技术,对微波的频率、驻波比、功率进行测量。

关键词:频率功率驻波比阻抗引言:微波成为一门技术科学,开始于20世纪30年代。

微波技术的形成以波导管的实际应用为其标志。

微波是指频率为300MHz-300GHz的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。

微波的基本性质通常呈现为穿透、反射、吸收三个特性。

微波的最重要应用是雷达和通信。

微波与其他学科互相渗透而形成若干重要的边缘学科,其中如微波天文学、微波气象学、微波波谱学、量子电动力学、微波半导体电子学、微波超导电子学等。

其应用及涉及领域仍在不断扩大。

正是由于微波的重要科技地位,学习其基础知识及工作原理等变得至关重要。

正文:一、实验原理微波介绍:微波及似声似光性微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。

微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。

微波作为一种电磁波也具有波粒二象性。

微波的基本性质通常呈现为穿透、反射、吸收三个特性。

对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。

对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。

微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。

使得微波的特点与几何光学相似,即所谓的似光性。

因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。

微波测量技术实验报告

微波测量技术实验报告

一、实验目的1. 理解微波测量技术的基本原理和实验方法;2. 掌握微波测量仪器的操作技能;3. 学会使用微波测量技术对微波元件的参数进行测试;4. 分析实验数据,得出实验结论。

二、实验原理微波测量技术是研究微波频率范围内的电磁场特性及其与微波元件相互作用的技术。

实验中,我们主要使用矢量网络分析仪(VNA)进行微波参数的测量。

矢量网络分析仪是一种高性能的微波测量仪器,能够测量微波元件的散射参数(S参数)、阻抗、导纳等参数。

其基本原理是:通过测量微波信号在两个端口之间的相互作用,得到微波元件的散射参数,进而分析出微波元件的特性。

三、实验仪器与设备1. 矢量网络分析仪(VNA)2. 微波元件(如微带传输线、微波谐振器等)3. 测试平台(如测试夹具、测试架等)4. 连接电缆四、实验步骤1. 连接测试平台,将微波元件放置在测试平台上;2. 连接VNA与测试平台,进行系统校准;3. 设置VNA的测量参数,如频率范围、扫描步进等;4. 启动VNA,进行微波参数测量;5. 记录实验数据;6. 分析实验数据,得出实验结论。

五、实验数据与分析1. 实验数据(1)微波谐振器的Q值测量:通过扫频功率传输法,测量微波谐振器的Q值,得到谐振频率、品质因数等参数;(2)微波定向耦合器的特性参数测量:通过测量输入至主线的功率与副线中正方向传输的功率之比,得到耦合度;通过测量副线中正方向传输的功率与反方向传输的功率之比,得到方向性;(3)微波功率分配器的传输特性测量:通过测量输入至主线的功率与输出至副线的功率之比,得到传输损耗。

2. 实验数据分析(1)根据微波谐振器的Q值测量结果,分析谐振器的频率选择性和能量损耗程度;(2)根据微波定向耦合器的特性参数测量结果,分析耦合器的性能指标,如耦合度、方向性等;(3)根据微波功率分配器的传输特性测量结果,分析功率分配器的传输损耗。

六、实验结论1. 通过实验,掌握了微波测量技术的基本原理和实验方法;2. 熟练掌握了矢量网络分析仪的操作技能;3. 通过实验数据,分析了微波元件的特性,为微波电路设计和优化提供了依据。

实验一、微波测量基础知识实验报告

实验一、微波测量基础知识实验报告

实验一、微波测量基础知识班级:核32 姓名:杨新宇学号:2013011806 同组成员:杨宗谕一、实验目的(1)了解和掌握信号发生器使用及校准。

(2)了解微波测量系统的基本组成和工作原理。

(3)掌握常用微波测量系统各器件的调整和使用方法。

(4)频率计(波长表)校准。

(5)了解和掌握测量线使用方法二、实验原理及系统组成1、微波信号源图1是微波信号源的基本框图。

通常由微波信号源、微波测量装置和指示器三部分组成。

它负责提供一定频率和功率的微波信号。

同低频信号源一样,其信号可以是连续波也可以是调制波,工作方式有点频、扫频两种状态工作。

微波信号源被广泛应用的类型主要有以下两种:(1)标准信号发生器标准信号发生器其输出信号的频率、功率和调制系数可在一定范围内调节(有时调制系数可以固定不变),并能准确读数且屏蔽良好。

它能做到输出微波信号准确已知,并能精细调节,特别是能将信号功率连续衰减到毫瓦、微瓦级电平,根据不同用途可具有不同的调制方式。

(2)扫频信号发生器扫频信号发生器是能产生扫频信号的微波信号源,它能从所需频率范围的一端连续地“扫变”到另一端,所以能直接得到各个频率上的测量结果,在示波器或者记录仪上立即显示出所需要的频率特性曲线。

本实验采用的微波源是YM1123 标准信号发生器,工作在等幅模式下。

2、微波测量装置微波测量装置如图2 所示。

主要包括驻波测量线、调配元件、待测元件和辅助元件(如短路器、衰减器、匹配负载、移相器等)。

3、指示器部分指示器是用于显示测量信号特性的仪表,如直流电流表、测量放大器、功率计、示波器、数字频率计、频率计(波长表)等。

4、元件基本原理及作用信号源:本次实验采用YM1123标准信号发生器作为信号源,测量时工作在等幅模式,非测量时工作在其他模式,具体原理见本节第一部分。

数字频率计:由于信号源显示的频率不准,所以要用一个数字频率计来进行频率校准。

后面的频率值均为数字频率计的示数。

同轴波导转换:将同轴线和后面的矩形波导连接起来,将同轴线中的TEM波转变成要测量的微波信号。

微波技术基础实验报告

微波技术基础实验报告

微波技术基础实验报告一、实验目的1.掌握微波信号的基本特性和参数的测量方法;2.了解微波器件的性能指标和测试方法;3.加深对微波传输线和网络理论的理解和实践。

二、实验设备和原理实验设备:微波信号源、功率计、波导固有模发生器、波间仪、反射器等。

实验原理:微波技术是指在高频范围内进行电磁波的传输、控制和处理的一套技术体系,其频率范围通常为0.3GHz至300GHz。

微波技术具有频率高、信息容量大和传输距离远等优点,广泛应用于通信、雷达、航空航天等领域。

三、实验步骤和内容1.根据实验要求,搭建实验电路;2.测量微波信号源输出功率,通过功率计测量微波信号源输出功率;3.测量波导波导的传输特性,通过波间仪测量微波信号通过波导时的传输特性;4.测量波导器件的特性,通过波间仪测量波导器件的特性;5.测量波导管中的固有模,通过固有模发生器和反射器测量波导管中的固有模。

四、实验结果和数据分析1.根据实验条件,测量到微波信号源输出功率为10dBm;2.根据测量结果,绘制出波导波导的传输特性曲线,分析其传输性能;3.根据实验条件,测量到波导器件的插入损耗为3dB;4.根据实验条件和测量数据,计算出波导管中的固有模的频率范围和衰减值,并进行数据分析。

五、实验结论1.微波信号源输出功率为10dBm;2.波导波导的传输特性曲线显示了其良好的传输性能;3.波导器件的插入损耗为3dB,插入损耗越小,器件性能越好;4.波导管中的固有模的频率范围为0.3GHz至3GHz,衰减值为-10dB。

六、实验总结通过本次实验,我深入理解了微波技术的基本特性和参数的测量方法,掌握了微波器件的性能指标和测试方法,并加深了对微波传输线和网络理论的理解和实践。

通过实验数据的测量和分析,我对微波技术的应用和性能有了更深入的认识,实验收获颇丰。

微波技术实验报告

微波技术实验报告

微波技术实验报告 Prepared on 22 November 2020微波技术实验指导书目录实验一微波测量仪器认识及功率测量实验目的(1)熟悉基本微波测量仪器;(2)了解各种常用微波元器件;(3)学会功率的测量。

实验内容一、基本微波测量仪器微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。

它主要包括微波信号特性测量和微波网络参数测量。

微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。

微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。

测量的方法有:点频测量、扫频测量和时域测量三大类。

所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。

图1-1 是典型的微波测量系统。

它由微波信号源、隔离器或衰减器、定向耦合器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。

图 1-1 微波测量系统二、常用微波元器件简介微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件:(1)检波器(2)E-T接头(3)H-T接头(4)双T接头(5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载(9)吸收式衰减器(10)定向耦合器(11)隔离器三、功率测量在终端处接上微波小功率计探头,调整衰减器,观察微波功率计指示并作相应记录。

微波元器件的认识螺钉调配器E-T分支与匹配双T波导扭转匹配负载波导扭转实验总结:在实验中我们认识了各种的微波元器件,让我们更好的理解课本上的知识,更是为了以后的实验做了准备。

实验二测量线的调整与晶体检波器校准实验目的(1)学会微波测量线的调整;(2)学会校准晶体检波器特性的方法;(3)学会测量微波波导波长和信号源频率。

完整微波基本参数测量实验报告

完整微波基本参数测量实验报告

(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。

微波成为一门技术科学,开始于20世纪30年代。

微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。

在第二次世界大战中,微波技术得到飞跃发展。

因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。

至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。

【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。

微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。

微波作为一种电磁波也具有波粒二象性。

微波的基本性质通常呈现为穿透、反射、吸收三个特性。

对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。

对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。

2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。

使得微波的特点与几何光学相似,即所谓的似光性。

因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。

由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。

3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波的基本参数测量【摘要】微波系统中最基本的参数有频率、驻波比、功率等。

在通过对微波测试系统的基本组成和工作原理的观察和研究后,我们需要对频率、功率以及驻波比等基本量进行测量。

了解了微波在波导中的传播特点,习用微波作为观测手段来研究物理现象,从而进一步认识微波。

【关键词】微波频率驻波比功率【引言】微波的用途极为广泛,已经成为我们日常生活中不可缺少的一项技术。

微波通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频段与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的波长要短的多,故把这一波段的无线电波称为微波,可划分为分米波、厘米波和毫米波。

微波的基本特性明显,如波长极短、频率极高、具有穿透性、似光性等。

基本特性明显使得微波被广泛应用于各类领域。

微波技术不仅在国防、通讯、工农业生产的各个方面有着广泛的应用,而且在当代尖端科学研究中也是一种重要手段,如高能粒子加速器、受控热核反应、射电天文与气象观测、分子生物学研究、等离子体参量测量、遥感技术等方面。

近年来,微波技术与各类学科交叉衍生出各类微波边缘学科,如微波超导、微波化学、微波生物学、微波医学等,在各自领域都得到了长足的发展。

微波的基本性质通常呈现为穿透、反射、吸收三个特性。

对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。

对于水和食物等就会吸收微波而使自身发热。

而对金属类东西,则会反射微波。

从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点:穿透性:微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。

微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。

似光性和似声性:微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。

使得微波的特点与几何光学相似,即所谓的似光性。

因此使用微波工作,能使电路元件尺寸减小;使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。

非电离性:微波的量子能量还不够大,不足与改变物质分子的内部结构或破坏分子之间的键。

再有物理学之道,分子原子核原子核在外加电磁场的周期力作用下所呈现的许多共振现象都发生在微波范围,因而微波为探索物质的内部结构和基本特性提供了有效的研究手段。

另一方面,利用这一特性,还可以制作许多微波器件。

微波技术是一门独特的现代科学技术,其重要地位不言而喻,因此掌握它的基本知识和实验方法变得尤为重要。

【正文】一、实验原理微波是一种波长较短的电磁波。

在电磁波波谱表中,微波的波长介于无线电波与光波之间。

波长较长的分米波和无线电波的性能相近,波长较短的毫米波则与光波的性质相一致。

本实验是使用厘米波中的X波段,其标称波长为3.2cm,中心频率为9375MHz。

由于微波所辐射的能量可与物质发生相互作用,在近代物理领域中已成为一种十分重要的研究手段。

使用微波直线加速器和微波频谱仪可对原子和分子结构进行研究;微波衍射仪可用来研究晶体结构;微波波谱仪可测定物质的许多基本物理量;微波谐振腔又可用来测量低损耗物质的介质损耗及介质常数等。

微波的波长被规定在1mm~1M之间,其频率范围相当于300GHz~300MHz。

如此之高的振荡频率,势必会引起一系列新的问题。

现将微波与无线电波的主要不同点简述如下:1. 微波的产生具有其独特性电子管中,电子由阴极到达阳极的时间称为“电子渡越时间”,一般是在sec的数量级。

这对频率较低的无线电波来讲,几乎可被忽略。

但对频率高于300 MHZ的微波,则将受到制约。

若想从电子管中获得微波信号,只能借助于电子流与谐振腔相互交换能量的方式来进行。

2. 在研究方法上两者有明显的不同在低频电路中,工作波长已远远超出实际电路的几何尺寸(例如:对应于50Hz的电磁波其波长值为6000KM)。

电路中各点的电流和电压值可被认为是在同一时刻建立起来。

微波系统则不然,由于微波器件的线度十分接近于工作波长,电压、电流等概念将有别于低频电路。

为此,微波系统的研究方法必须从三度空间场的理论着手,把“路”的观点转化成“场”的观念、把“基尔霍夫定律”转化成“麦克斯韦方程组”、把“集总参数”转化成“分布参数”,才能认识和讨论有关问题。

3. 微波在传输特性上类似于光波微波与光波虽在波长值上有差异,但均远远地小于地球上一般物体的实际尺寸。

尤其对微波中的毫米波,其传输特性与光波更为接近,使用准光传输线就能同时传播微波与光波。

同样,一般的光学器件和光学特性,微波也都具备。

微波的突出贡献尤其表现在空间技术领域,使用会聚成束的微波电磁场能量,可以进行定向发射,并能顺利地穿透空间电离层,已被人们称为“宇宙的窗口”。

4. 微波基本参数的测量方法与低频电路大不相同阻抗、波长、驻波比和功率等微波参数的测量方法有其独特之处。

微波阻抗的测量是通过检测电场强度的相对值(即:驻波比)来实现。

波长的测量可经校准过的谐振腔来进行(即通常所称的“吸收式波长计”)。

功率的测量是利用微波的热效应,通过热电换能器进行间接的量测。

实验装置图:二、实验步骤:根据讲义中介绍的常用微波器件和实验室提供的仪器使用说明书,掌握它们的工作原理及使用方法。

1.频率测量 ①按微波信号源→隔离器→可变衰减器→波长表→测量线→可变电抗 的顺序连接好微波系统,将检波器及检波指示器接到被测件位置; ②旋转波长表上的测微头,边旋转边观察检波指示器上的指针偏转情 况。

当波长表与被测频率谐振时,将出现吸收峰,反映在检波指示器上的 是一跌落点,微调螺旋测微头,当指针偏转最小时,读出测量头读数,查 出相对应的频率。

2.功率测量 ①将传输线路终端接入功率探头探头和功率表,并选择合适的量程, 在无信号时对功率计调零(注意换挡调零) ; ②把波导开关旋转至功率探头一边,发现功率表上有读数出现,读出 功率读数并记录。

3.波长测量 换下检波器,接短路板,调节测微探头,记录与波幅、波节相对应的测量线上 的读数 L1、L2 调节测量线,λ=2(L2-L1) 。

4.驻波比的测量(1)小驻波比的测量在这种情况下,驻波波腹和波节都不尖锐,因此要多测几个驻波波节和波腹,按下式计算S 的平均值:max1max 2max min1min 2min x x E E E S E E E +++=+++当检波晶体管满足平方检波律时,则n U U U U U U S n min 2min 1min max 2max 1max ++++++= (2)中驻波比的测量此时只需测一个驻波腹和一个驻波节,按下式计算即可: min max min max U U E E S ==(3)大驻波比的测量波腹振幅与波节振幅的差别很大,测量线不能同时测量波腹和波节,此时可以用二倍极小功率法进行测量。

利用探针测量极小点两旁,功率为极小功率二倍的两点的距离W ,波导波长,可按下式计算驻波比:g W S λπ=波导波长的测量波导波长在数值上为相邻两个驻波极值点(波腹或波节)距离的两倍:三、实验要求(1) 熟悉和掌握微波测试系统中各种常用设备的结构原理及使用方法;(2) 掌握微波系统中频率、驻波比、功率等基本参数的测量方法;(3) 按要求测出测量线中的驻波分布;四、实验数据与处理:(1)频率测量:谐振腔的宽度:6.28mm 查表得谐振频率为9218MHz(2)功率测量功率(mw) 谐振腔的宽度(mm) 查表得对应的频率(GHZ)7.64 5.63 93017.60 4.65 94377.61 7.96 90287.65 7.23 9107实际测得功率平均值为:7.63MW(3)微波驻波比测量3.1在功率表前截止的通道:(大驻波比)四个相同电压的位置参数:X1(mm) X2(mm) X3(mm) X4(mm)85.3 98.1 108.8 121.4L1=(X1+X2)/2=91.7(mm)L2=(X3+X4)/2=115.1(mm)波导波长:g λ=2(L2-L1)=46.8(mm)利用探针测量极小点两旁,功率为极小功率二倍的两点X5=3.430mm X6=3.221mm得:W=X5-X6=3.430-3.221=0.209(mm)驻波比W g S πλ= =71.313 3.2指向功率表的通道:(小驻波比)测得的最大电压与最小电压Umax(uv) Umin(uv)4.55 3.504.75 3.704.40 3.55n U U U U U U S n min 2min 1min max 2max 1max ++++++= ≈1.1293.3指向检波器的通道:(中驻波比)Umax(uv) Umin(uv))(212L L g -=λ9.120.3 min max min max U U E E S ===5.5143.4指向最远端的通道:(大驻波比) 四个相同电压的位置参数:X1(mm) X2(mm) X3(mm) X4(mm) 146.9 131.7 123.6108.3L1=(X1+X2)/2=139.3(mm)L2=(X3+X4)/2=115.95(mm)波导波长:g λ=2*(L1-L2)=46.7(mm) 利用探针测量极小点两旁,功率为极小功率二倍的两点X5=6.000mm X6=6.591mmW=X6-X5=6.591-6.000=0.591(mm)驻波比W g S πλ==25.165 五、实验注意事项(1) 用选频放大器测驻波比时,体效应微波源必须使用“方波”档。

由于仪器的灵敏度很高,可将“分贝”及“增益”旋钮做为“粗”、“细”调使用。

切勿使电表指示超出100mA,否则极易损坏电表。

功率计探头的功率衰减为100,故真实的功率应为功率计示值的100倍。

(2) 微波系统各元件器件的波导口应注意对齐,以减少因电波在参差的波导口多次反射而引入的寄生波。

六、实验总结:通过实验,我学会了如何测量微波的频率、功率、驻波比,了解了微波传输系统的组成部分,通过观察反射式速调管振荡,了解了微波在波导中的传播特点,习用微波作为观测手段来研究物理现象,从而进一步认识微波。

当然,在实验中,存在读数误差,会对结果造成影响,但是关系不大,不会对判断驻波大小产生影响。

【参考文献】[1]近代物理实验讲义[M].浙江师范大学数理信息学院近代物理实验室.2011-9[2]百度文库。

相关文档
最新文档