支持向量机原理及应用(DOC)
(完整版)支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用一、SVM 的产生与发展自1995年Vapnik(瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。
同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。
SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。
),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。
例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。
此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。
支持向量机简介与基本原理

支持向量机简介与基本原理支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,被广泛应用于模式识别、数据分类以及回归分析等领域。
其独特的优势在于可以有效地处理高维数据和非线性问题。
本文将介绍支持向量机的基本原理和应用。
一、支持向量机的基本原理支持向量机的基本思想是通过寻找一个最优超平面,将不同类别的数据点分隔开来。
这个超平面可以是线性的,也可以是非线性的。
在寻找最优超平面的过程中,支持向量机依赖于一些特殊的数据点,称为支持向量。
支持向量是离超平面最近的数据点,它们对于确定超平面的位置和方向起着决定性的作用。
支持向量机的目标是找到一个超平面,使得离它最近的支持向量到该超平面的距离最大化。
这个距离被称为间隔(margin),最大化间隔可以使得分类器更具鲁棒性,对新的未知数据具有更好的泛化能力。
支持向量机的求解过程可以转化为一个凸优化问题,通过求解对偶问题可以得到最优解。
二、支持向量机的核函数在实际应用中,很多问题并不是线性可分的,此时需要使用非线性的超平面进行分类。
为了解决这个问题,支持向量机引入了核函数的概念。
核函数可以将低维的非线性问题映射到高维空间中,使得原本线性不可分的问题变得线性可分。
常用的核函数有线性核函数、多项式核函数、高斯核函数等。
线性核函数适用于线性可分问题,多项式核函数可以处理一些简单的非线性问题,而高斯核函数则适用于复杂的非线性问题。
选择合适的核函数可以提高支持向量机的分类性能。
三、支持向量机的应用支持向量机在实际应用中有着广泛的应用。
在图像识别领域,支持向量机可以用于人脸识别、物体检测等任务。
在生物信息学领域,支持向量机可以用于蛋白质分类、基因识别等任务。
在金融领域,支持向量机可以用于股票市场预测、信用评估等任务。
此外,支持向量机还可以用于文本分类、情感分析、异常检测等领域。
由于其强大的分类性能和泛化能力,支持向量机成为了机器学习领域中的重要算法之一。
支持向量机原理与应用

支持向量机原理与应用支持向量机是一种广泛应用于分类和回归问题的机器学习算法,其基本思想是通过寻找最优超平面将数据分成两类。
在这篇文章中,我们将深入探讨支持向量机的原理和应用。
一、支持向量机的原理支持向量机通过最大化间隔超平面来分类数据。
间隔是定义为支持向量(也就是最靠近分类边界的数据点)之间的距离。
因此,我们的目标是找到一个最优的超平面使得此间隔最大。
在二维空间中,最大间隔超平面是一条直线。
在高维空间中,最大间隔超平面是一个超平面。
这个超平面定义为:w\cdot x-b=0其中,w是一个向量,x是样本空间中的向量,b是偏差。
支持向量机的目标是找到一个可以将训练样本分成两个类别的最大间隔超平面,并且使得间隔为M(M是最大间隔)。
二、支持向量机的应用支持向量机是一种广泛应用于分类和回归问题的机器学习算法。
这里我们将讨论支持向量机在分类问题中的应用。
1. 图像分类支持向量机在图像分类中的应用非常广泛。
通过将图像转换为特征向量,可以用支持向量机实现图像分类。
支持向量机特别适用于图像分类,因为它可以处理高维特征空间。
2. 自然语言处理支持向量机可以通过文本分类实现在自然语言处理中的应用。
支持向量机可以学习在给定文本语料库中的所有文档的特定类别的模式(如“金融”或“体育”)。
3. 生物信息学支持向量机在生物信息学中的应用非常广泛。
生物信息学家可以使用支持向量机分类DNA,RNA和蛋白质序列。
4. 金融支持向量机在金融中的应用也很广泛。
通过识别是否存在欺诈行为,可以使用支持向量机实现信用评估。
三、总结在这篇文章中,我们深入探讨了支持向量机的原理和应用。
通过理解支持向量机的原理,我们可以更好地了解如何使用它解决分类问题。
在应用方面,支持向量机广泛应用于各种领域,包括图像分类、自然语言处理、生物信息学和金融等。
因此,支持向量机是一种非常有用的机器学习算法,对于了解它的原理和应用非常重要。
支持向量机及其在预测中的应用

支持向量机及其在预测中的应用支持向量机(Support Vector Machine,简称SVM)是一种基于统计学习理论的二分类模型,可以用于数据分类和回归分析等领域。
SVM的核心思想是在高维空间中寻找最优超平面,将数据划分为两类,并让这个分类超平面与两个类的分界线尽可能远离,以提高模型的泛化能力和预测准确率。
SVM作为一种广泛应用的机器学习算法,已经得到了广泛研究和应用。
在预测应用中,SVM可以用于信用评估、股票市场预测、航空客流预测等大型数据场景。
下面将针对部分应用领域阐述SVM的应用原理和实际效果。
一、信用评估在金融领域中,SVM可以应用于信用评估和违约预测等方面。
经典案例是法国银行Credit Lyonnais所使用的SVM算法,在法国的个人信用评估中的成功应用。
该方法以客户的信用记录作为数据源,根据这些数据训练出分类器,最终用于预测客户贷款偿还的概率。
通过SVM模型的预测,银行可以更好地把握贷款风险,精准地控制坏账率,有效利用资金资源,提高银行的竞争力。
二、股票市场预测股票市场预测一直是投资人所关注的热点问题之一,也是SVM应用的一大领域。
SVM可以将之前的股票历史数据作为输入特征,通过训练得到预测模型,进一步用于预测未来的股票涨跌趋势。
值得注意的是,SVM算法在处理高维数据上表现非常优秀,这对于股票市场的复杂变化来说足以应对。
近年来,Kamruzzaman等学者通过选择适当的特征空间和核函数,成功地提高了SVM模型对股票预测的准确率,取得了良好的效果。
三、航空客流预测随着旅游业的兴起,航空客流的预测成为各航空公司的重要需求之一。
SVM可以针对航空客流的相关变量,如季节、星期和航班时间等信息进行分析建模,进而实现对航班客流量的精准预测。
在航班调度和营销策略制定方面,SVM的应用不仅可以提高客流预测的准确率,还可以增强航空公司对市场的洞察力和竞争优势。
总结SVM作为一种基于统计学习理论的二分类模型,在分类、预测、控制较难问题等方面有着非常广泛的应用。
使用支持向量机进行文本分类任务

使用支持向量机进行文本分类任务支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,广泛应用于文本分类任务。
本文将介绍SVM的基本原理,以及如何使用SVM进行文本分类。
一、支持向量机的基本原理支持向量机是一种二分类模型,其基本原理是找到一个超平面,将不同类别的样本分开。
在二维空间中,这个超平面就是一条直线;在多维空间中,这个超平面就是一个超平面。
支持向量机的目标是找到一个最优的超平面,使得离该超平面最近的样本点到该超平面的距离最大化。
具体来说,SVM通过将样本映射到高维特征空间,将低维线性不可分的问题转化为高维线性可分的问题。
然后,通过求解约束最优化问题,找到一个最优的超平面。
在这个过程中,只有一部分样本点被称为支持向量,它们离超平面最近。
二、文本分类任务文本分类是将文本按照一定的标准划分到不同的类别中。
在实际应用中,文本分类任务非常常见,如情感分析、垃圾邮件识别等。
文本分类任务的关键是将文本表示成机器学习算法可以处理的形式。
常用的文本表示方法有词袋模型(Bag-of-Words)和词向量(Word Embedding)。
词袋模型将文本看作是一个词的集合,忽略了词序和语法结构。
词向量则将每个词映射到一个实数向量,可以保留一定的语义信息。
三、使用支持向量机进行文本分类在使用支持向量机进行文本分类时,首先需要将文本表示成机器学习算法可以处理的形式。
常见的方法是使用词袋模型或词向量。
1. 词袋模型词袋模型将文本表示为一个固定长度的向量,向量中的每个维度表示一个词的出现频率或权重。
可以使用TF-IDF等方法对词的重要性进行加权。
2. 词向量词向量将每个词映射到一个实数向量。
常见的词向量模型有Word2Vec和GloVe等。
词向量可以保留一定的语义信息,更适合表示文本的语义特征。
在将文本表示成机器学习算法可以处理的形式后,可以使用支持向量机进行分类。
具体步骤如下:1. 划分训练集和测试集将标记好类别的文本数据集划分为训练集和测试集,通常采用交叉验证的方法。
支持向量机(SVM)原理详解

支持向量机(SVM)原理详解支持向量机(Support Vector Machine, SVM)是一种机器学习算法,用于二分类和多分类问题。
它的基本思想是寻找一个超平面,能够将不同类别的数据分隔开来,并且与最近的数据点之间的间隔最大。
一、原理概述:SVM的基本原理是将原始数据映射到高维空间中,使得在该空间中的数据能够线性可分,然后在高维空间中找到一个最优的超平面。
对于线性可分的情况,SVM通过最大化分类边界与最近数据点之间的距离,并将该距离定义为间隔,从而使分类边界具有更好的泛化能力。
二、如何确定最优超平面:1.线性可分的情况下:SVM寻找一个能够将不同类别的数据分开的最优超平面。
其中,最优超平面定义为具有最大间隔(margin)的超平面。
间隔被定义为超平面到最近数据点的距离。
SVM的目标是找到一个最大化间隔的超平面,并且这个超平面能够满足所有数据点的约束条件。
这可以通过求解一个凸二次规划问题来实现。
2.线性不可分的情况下:对于线性不可分的情况,可以使用一些技巧来将数据映射到高维空间中,使其线性可分。
这种方法被称为核技巧(kernel trick)。
核技巧允许在低维空间中计算高维空间的内积,从而避免了直接在高维空间中的计算复杂性。
核函数定义了两个向量之间的相似度。
使用核函数,SVM可以在高维空间中找到最优的超平面。
三、参数的选择:SVM中的参数有两个主要的方面:正则化参数C和核函数的选择。
1.正则化参数C控制了分类边界与数据点之间的权衡。
较大的C值将导致更少的间隔违规,增加将数据点分类正确的权重,可能会导致过拟合;而较小的C值将产生更宽松的分类边界,可能导致欠拟合。
2.核函数选择是SVM中重要的一步。
根据问题的特点选择合适的核函数能够更好地处理数据,常用的核函数有线性核函数、多项式核函数和高斯核函数等。
四、优缺点:SVM有以下几个优点:1.在灵活性和高扩展性方面表现出色,尤其是在高维数据集上。
2.具有良好的泛化能力,能够很好地处理样本数量较少的情况。
机器学习中的支持向量机原理及应用

机器学习中的支持向量机原理及应用机器学习是一门以数据为基础,以预测或决策为目标的学科。
支持向量机是机器学习中的一种常见算法,它强调的是模型的泛化能力,独立于任何给定的输入样本集,且泛化误差尽可能小。
1. 支持向量机原理支持向量机是一种监督学习算法。
以二分类问题为例,其原理可以简单用“最大间隔超平面”来描述。
对于一个n维的特征空间,我们的目标就是要找到一个超平面,使得这个超平面将两个类别间的样本完全分开,并且对未知数据的分类能力最强。
如何定义“最大间隔”呢?我们首先在超平面两侧分别找到最靠近超平面的两个点,称之为支持向量点;这些支持向量点到超平面的距离和就是所谓的“间隔”。
在寻找最大间隔超平面时,我们的目标就是最大化这个间隔值。
同时,由于数据存在噪声、不可分等问题,我们需要一个优化目标,使其能够让分类错误率低。
这个目标在支持向量机算法中被形式化为一种“软”约束条件,用惩罚系数调整误差的大小。
2. 支持向量机应用支持向量机算法在实际应用中具有广泛的应用范围:分类,回归,异常检测等任务都可以使用它来完成。
2.1 分类在分类任务中,支持向量机常用于二分类问题,在高维数据分析中有很好的表现。
举个例子,我们可以使用支持向量机算法来判别肿瘤组织是恶性还是良性。
在这种情况下,我们使用一些之前的数据来生成一个分类器,然后根据这个分类器来对新病人进行分类。
2.2 回归在回归任务中,支持向量机可用于非线性回归和多变量回归等问题。
举个例子,我们可以使用支持向量机算法来预测一辆车的油耗量。
在这种情况下,我们使用一些之前的数据来生成一个回归器,然后根据这个回归器来对新的车辆进行预测。
2.3 异常检测异常检测是指在数据中找到异常值或离群点。
支持向量机也可以用于这种任务。
学习算法在训练数据中学习正常的模式,然后将这些模式应用于测试数据,从而发现异常点。
举个例子,我们可以使用支持向量机算法来检测网站服务器的攻击行为。
3. 支持向量机优缺点支持向量机的优点在于:(1)在高维空间上表现出很好的泛化能力(2)对于数据错误或噪声具有较好的容错能力(3)支持向量机算法在样本量较少的情况下也能够有效应用支持向量机的缺点在于:(1)支持向量机算法在计算量上比较大,对大数据量处理较为困难(2)支持向量机算法对于非线性问题的处理需要经过核函数的处理,核函数的选择对结果产生较大的影响。
简述向量机的基本原理及应用

简述向量机的基本原理及应用一、向量机的基本原理向量机(Support Vector Machine,简称SVM)是一种非常流行且强大的机器学习算法,广泛应用于分类和回归问题。
它基于统计学习理论中的结构风险最小化原则,通过最大化分类间隔来进行分类。
1. 支持向量机的概念在支持向量机中,将数据点看作特征空间(高维空间)中的点,将向量看作特征空间中的向量。
支持向量机通过划分特征空间,找到一个超平面(决策边界),将不同类别的数据点分开。
2. 线性可分支持向量机当数据点能够被一个超平面完全分离的时候,称为线性可分。
线性可分支持向量机的目标是找到一个最佳的超平面,使得正负样本点到该超平面的距离最大。
这个最佳的超平面称为最优划分超平面。
3. 线性不可分支持向量机在实际应用中,数据点往往不是完全线性可分的。
对于线性不可分的情况,可以使用核函数(Kernel Function)将低维非线性可分问题映射到高维空间,从而实现线性划分的目的。
二、向量机的应用支持向量机作为经典的机器学习算法,在许多领域得到了广泛的应用。
1. 图像分类支持向量机在图像分类中具有良好的性能。
通过将图像数据表示为高维向量,将其映射到特征空间中,支持向量机可以对图像进行分类,例如人脸识别和手写体数字识别。
2. 文本分类支持向量机在文本分类中也具有很高的准确率。
通过将文本数据表示为向量空间模型(Vector Space Model),将其映射到特征空间中,支持向量机可以对文本进行分类,例如垃圾邮件过滤和情感分析。
3. 金融预测支持向量机在金融预测中有广泛的应用。
对于股票市场、外汇市场和期权市场等金融市场的预测,支持向量机可以通过对历史数据的学习,预测未来的价格趋势,帮助投资者做出决策。
4. 生物信息学支持向量机在生物信息学中也得到了广泛的应用。
通过对基因序列等生物数据的分析,支持向量机可以对蛋白质结构、基因功能和突变预测等问题进行分类和预测,帮助科研人员进行生物信息学研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
支持向量机简介摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。
我们通常希望分类的过程是一个机器学习的过程。
这些数据点是n 维实空间中的点。
我们希望能够把这些点通过一个n-1维的超平面分开。
通常这个被称为线性分类器。
有很多分类器都符合这个要求。
但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。
如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。
关键字:VC 理论 结构风险最小原则 学习能力1、SVM 的产生与发展自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。
同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。
SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。
例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。
此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM的典型应用进行总结,并设计开发出较为完善的SVM工具包,也就是LIBSVM(A Library for Support Vector Machines)。
上述改进模型中,v-SVM是一种软间隔分类器模型,其原理是通过引进参数v,来调整支持向量数占输入数据比例的下限,以及参数 来度量超平面偏差,代替通常依靠经验选取的软间隔分类惩罚参数,改善分类效果;LS-SVM则是用等式约束代替传统SVM中的不等式约束,将求解QP问题变成解一组等式方程来提高算法效率;LIBSVM是一个通用的SVM软件包,可以解决分类、回归以及分布估计等问题,它提供常用的几种核函数可由用户选择,并且具有不平衡样本加权和多类分类等功能,此外,交叉验证(cross validation)方法也是LIBSVM对核函数参数选取问题所做的一个突出贡献;SVM-1ight的特点则是通过引进缩水(shrinking)逐步简化QP问题,以及缓存(caching)技术降低迭代运算的计算代价来解决大规模样本条件下SVM学习的复杂性问题。
2、支持向量机基础2.1 统计学习理论基础与传统统计学理论相比,统计学习理论(Statistical learning theory或SLT)是一种专门研究小样本条件下机器学习规律的理论。
该理论是针对小样本统计问题建立起的一套新型理论体系,在该体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在有限信息条件下得到最优结果。
Vapnik等人从上世纪六、七十年代开始致力于该领域研究,直到九十年代中期,有限样本条件下的机器学习理论才逐渐成熟起来,形成了比较完善的理论体系——统计学习理论。
统计学习理论的主要核心内容包括:(1)经验风险最小化准则下统计学习一致性条件;(2)这些条件下关于统计学习方法推广性的界的结论;(3)这些界的基础上建立的小样本归纳推理准则;(4)发现新的准则的实际方法(算法)。
2.2 SVM原理SVM方法是20世纪90年代初Vapnik等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。
支持向量机的基本思想是:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。
在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输入空间的样本映射到高维属性空间使其变为线性情况,从而使得在高维属性空间采用线性算法对样本的非线性进行分析成为可能,并在该特征空间中寻找最优分类超平面。
其次,它通过使用结构风险最小化原理在属性空间构建最优分类超平面,使得分类器得到全局最优,并在整个样本空间的期望风险以某个概率满足一定上界。
其突出的优点表现在:(1)基于统计学习理论中结构风险最小化原则和VC维理论,具有良好的泛化能力,即由有限的训练样本得到的小的误差能够保证使独立的测试集仍保持小的误差。
(2)支持向量机的求解问题对应的是一个凸优化问题,因此局部最优解一定是全局最优解。
(3)核函数的成功应用,将非线性问题转化为线性问题求解。
(4)分类间隔的最大化,使得支持向量机算法具有较好的鲁棒性。
由于SVM自身的突出优势,因此被越来越多的研究人员作为强有力的学习工具,以解决模式识别、回归估计等领域的难题。
3 支持向量机相关理论3.1 学习问题●产生器(G),随机产生向量,它带有一定但未知的概率分布函数F(x) ●训练器(S),条件概率分布函数F(y|x) ,期望响应y和输入向量x关系为y=f(x,v)●学习机器(LM),输入-输出映射函数集y=f(x,w),w W,W是参数集合。
●学习问题就是从给定的函数集f(x,w),w W中选择出能够最好的逼近训练器响应的函数。
而这种选择是基于训练集的,训练集由根据联合分布F(x,y)=F(x)F(y|x)抽取的n 个独立同分布样本 (xi,yi), i=1,2,…,n 组成 。
3.2 学习问题的表示● 学习的目的就是,在联合概率分布函数F(x,y)未知、所有可用的信息都包含在训练集中的情况下,寻找函数f(x,w0),使它(在函数类f(x,w),(w W )上最小化风险泛函● 模式识别问题3.3 经验风险最小化原则(ERM )1、最小化经验风险(训练样本错误率 ) :函数集Fk={F(x,w);w ∈Wk}, k=1,2,…,n F1 F2 … Fn VC 维:h1≤h2≤…≤hn在使保证风险(风险的上界)最小的子集中选择使经验风险最小的函数 2、ERM 的缺点● 用ERM 准则代替期望风险最小化并没有经过充分的理论论证,只是直观上合理的想当然做法。
● 这种思想却在多年的机器学习方法研究中占据了主要地位。
人们多年来将大部分注意力集中到如何更好地最小化经验风险上。
● 实际上,即使可以假定当n 趋向于无穷大时经验风险也不一定趋近于期望风险,在很多问题中的样本数目也离无穷大相去甚远 ,如神经网络。
⎰=),()),(,()(y x dF w x f y L w R ⎩⎨⎧≠==w)f(x,y 1w)f(x,y ,0)),(,(,若若w x f y L ∑==Ni i i emp w x f d L n w R 1)),(,(1)(3.4 Vapnik-Chervonenkis(VC)维1、定义:VC 维是对由学习机器能够实现的分类函数族的容量或表达力的测度。
分类函数集={ f(x,w):w ∈W}的VC 维是能被机器对于分类函数的所有可能二分标志无错学习的训练样本的最大数量,描述了学习机器的复杂性2、学习机器实际风险的界其中n 样本数量,h 是VC 维,Φ是递减函数 两种方法:● 神经网络: 保持置信范围固定(通过选择一个适当构造的机器)并最小化经验风险。
● 支持向量机(SVM): 保持经验风险固定(比如等于零)并最小化置信范围。
结构风险最小化原则函数集Fk={F(x,w);w ∈Wk}, k=1,2,…,n F1 F2 … Fn VC 维:h1≤h2≤…≤hn3.5 支持向量回归机SVM 本身是针对经典的二分类问题提出的,支持向量回归机(Support Vector Regression ,SVR )是支持向量在函数回归领域的应用。
SVR 与SVM 分类有以下不同:SVM 回归的样本点只有一类,所寻求的最优超平面不是使两类样本点分得“最开”,而是使所有样本点离超平面的“总偏差”最小。
这时样本点都在两条边界线之间,求最优回归超平面同样等价于求最大间隔。
3.5.1 SVR 基本模型对于线性情况,支持向量机函数拟合首先考虑用线性回归函数b x x f +⋅=ω)(拟合n i y x i i ,...,2,1),,(=,n i R x ∈为输入量,R y i ∈为输出量,即需要确定ω和b 。
)()()(hnw R w R emp φ+≤图3-3a SVR 结构图 图3-3b ε不灵敏度函数惩罚函数是学习模型在学习过程中对误差的一种度量,一般在模型学习前己经选定,不同的学习问题对应的损失函数一般也不同,同一学习问题选取不同的损失函数得到的模型也不一样。
常用的惩罚函数形式及密度函数如表3-1。
表3-1 常用的损失函数和相应的密度函数损失函数名称损失函数表达式()i c ξ噪声密度()i p ξε-不敏感i εξ1exp()2(1)i εξε-+拉普拉斯iξ1exp()2i ξ- 高斯212i ξ 21exp()22i ξπ-鲁棒损失21(),if ;2,otherwise;2i i i ξξσσσξ⎧≤⎪⎪⎨⎪-⎪⎩ 2exp(),2exp(),2i i iif otherwiseξξσσσξ⎧-≤⎪⎪⎨⎪-⎪⎩ 多项式 1pi pξexp()2(1/)pi p p ξ-Γ分段多项式11,1,p i i p i if p p otherwise p ξξσσξσ-⎧≤⎪⎪⎨-⎪-⎪⎩ 1exp(),1exp(),pi i p iif p p otherwisep ξξσσσξ-⎧-≤⎪⎪⎨-⎪-⎪⎩标准支持向量机采用ε-不灵敏度函数,即假设所有训练数据在精度ε下用线性函数拟合如图(3-3a )所示,**()()1,2,...,,0i i i i i i i i y f x f x y i n εξεξξξ-≤+⎧⎪-≤+=⎨⎪≥⎩ (3.11)式中,*,i i ξξ是松弛因子,当划分有误差时,ξ,*i ξ都大于0,误差不存在取0。