支持向量机(SVM)原理及应用概述
支持向量机(SVM)、支持向量机回归(SVR):原理简述及其MATLAB实例

支持向量机(SVM)、支持向量机回归(SVR):原理简述及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法2)关于KKT条件2、范数1)向量的范数2)矩阵的范数3)L0、L1与L2范数、核范数二、SVM概述1、简介2、SVM算法原理1)线性支持向量机2)非线性支持向量机二、SVR:SVM的改进、解决回归拟合问题三、多分类的SVM1. one-against-all2. one-against-one四、QP(二次规划)求解五、SVM的MATLAB实现:Libsvm1、Libsvm工具箱使用说明2、重要函数:3、示例支持向量机(SVM):原理及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法首先来了解拉格朗日乘子法,为什么需要拉格朗日乘子法呢?记住,有需要拉格朗日乘子法的地方,必然是一个组合优化问题。
那么带约束的优化问题很好说,就比如说下面这个:这是一个带等式约束的优化问题,有目标值,有约束条件。
那么你可以想想,假设没有约束条件这个问题是怎么求解的呢?是不是直接 f 对各个 x 求导等于 0,解 x 就可以了,可以看到没有约束的话,求导为0,那么各个x均为0吧,这样f=0了,最小。
但是x都为0不满足约束条件呀,那么问题就来了。
有了约束不能直接求导,那么如果把约束去掉不就可以了吗?怎么去掉呢?这才需要拉格朗日方法。
既然是等式约束,那么我们把这个约束乘一个系数加到目标函数中去,这样就相当于既考虑了原目标函数,也考虑了约束条件。
现在这个优化目标函数就没有约束条件了吧,既然如此,求法就简单了,分别对x求导等于0,如下:把它在带到约束条件中去,可以看到,2个变量两个等式,可以求解,最终可以得到,这样再带回去求x就可以了。
那么一个带等式约束的优化问题就通过拉格朗日乘子法完美的解决了。
更高一层的,带有不等式的约束问题怎么办?那么就需要用更一般化的拉格朗日乘子法,即KKT条件,来解决这种问题了。
支持向量机简介与基本原理

支持向量机简介与基本原理支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,被广泛应用于模式识别、数据分类以及回归分析等领域。
其独特的优势在于可以有效地处理高维数据和非线性问题。
本文将介绍支持向量机的基本原理和应用。
一、支持向量机的基本原理支持向量机的基本思想是通过寻找一个最优超平面,将不同类别的数据点分隔开来。
这个超平面可以是线性的,也可以是非线性的。
在寻找最优超平面的过程中,支持向量机依赖于一些特殊的数据点,称为支持向量。
支持向量是离超平面最近的数据点,它们对于确定超平面的位置和方向起着决定性的作用。
支持向量机的目标是找到一个超平面,使得离它最近的支持向量到该超平面的距离最大化。
这个距离被称为间隔(margin),最大化间隔可以使得分类器更具鲁棒性,对新的未知数据具有更好的泛化能力。
支持向量机的求解过程可以转化为一个凸优化问题,通过求解对偶问题可以得到最优解。
二、支持向量机的核函数在实际应用中,很多问题并不是线性可分的,此时需要使用非线性的超平面进行分类。
为了解决这个问题,支持向量机引入了核函数的概念。
核函数可以将低维的非线性问题映射到高维空间中,使得原本线性不可分的问题变得线性可分。
常用的核函数有线性核函数、多项式核函数、高斯核函数等。
线性核函数适用于线性可分问题,多项式核函数可以处理一些简单的非线性问题,而高斯核函数则适用于复杂的非线性问题。
选择合适的核函数可以提高支持向量机的分类性能。
三、支持向量机的应用支持向量机在实际应用中有着广泛的应用。
在图像识别领域,支持向量机可以用于人脸识别、物体检测等任务。
在生物信息学领域,支持向量机可以用于蛋白质分类、基因识别等任务。
在金融领域,支持向量机可以用于股票市场预测、信用评估等任务。
此外,支持向量机还可以用于文本分类、情感分析、异常检测等领域。
由于其强大的分类性能和泛化能力,支持向量机成为了机器学习领域中的重要算法之一。
支持向量机的基本原理

支持向量机的基本原理
支持向量机(Support Vector Machine, SVM)是一种二分类模型,其基本原理是找到一个最优的超平面来进行数据的划分。
其基本思想是将样本空间映射到高维特征空间,找到一个超平面使得正负样本之间的间隔最大化,从而实现分类。
具体来说,SVM的基本原理包括以下几个步骤:
1. 寻找最优超平面:将样本空间映射到高维特征空间,使得样本在特征空间中线性可分。
然后寻找一个超平面来最大化两个不同类别样本的间隔(也称为“分类间隔”)。
2. 构建优化问题:SVM通过解决一个凸二次规划问题来求解最优超平面。
该优化问题的目标是最大化分类间隔,同时限制样本的分类正确性。
3. 核函数技巧:在实际应用中,数据通常是非线性可分的。
通过引入核函数的技巧,可以将非线性问题转化为高维或无限维的线性问题。
常用的核函数有线性核、多项式核、高斯核等。
4. 寻找支持向量:在求解优化问题时,只有一部分样本点对于最优超平面的确定起到决定性作用,这些样本点被称为“支持向量”。
支持向量决定了超平面的位置。
5. 分类决策函数:在得到最优超平面后,可以通过计算样本点到超平面的距离来进行分类。
对于新的样本点,根据其距离超平面的远近来判断其所属类别。
支持向量机的基本原理可以简单概括为在高维特征空间中找到一个最优超平面,使得样本的分类间隔最大化。
通过引入核函数的技巧,SVM也可以处理非线性可分的问题。
支持向量机具有理论基础牢固、分类效果好等优点,在实际应用中得到了广泛的应用。
支持向量机算法的原理和应用

支持向量机算法的原理和应用支持向量机(Support Vector Machine, SVM)是一种基于统计学习理论的机器学习算法,它可以在数据集中找到一个最优超平面,将不同类别的样本分割开来。
在分类问题中,SVM通过构建一个超平面来对不同类别的样本进行分类;在回归问题中,SVM可以用来拟合非线性关系的数据。
SVM的核心思想是最大化间隔,即找到一个能够将不同类别的样本分隔开的超平面,使得两侧最近的样本点到超平面的距离最大。
这些最近的样本点被称为支持向量,它们决定了最终划分超平面的位置。
SVM的基本原理可以分为以下几个步骤:1.数据准备:首先需要对数据进行预处理,包括数据清洗、归一化、特征提取等。
2.特征选择:选择与分类问题相关的特征。
3.模型构建:构建SVM模型,选择适当的核函数、设置参数。
4.模型训练:使用已标记的训练样本进行模型训练,找到最佳的超平面。
5.模型预测:用训练好的模型对新样本进行预测,即将新样本进行分类。
SVM算法的应用非常广泛,主要包括以下几个方面:1.二分类问题:SVM在二分类问题中表现出色,特别适用于具有较大类别间距离且样本数目较少的情况。
例如,在垃圾邮件分类中,SVM可以将垃圾邮件和正常邮件进行有效地区分。
2.多分类问题:通过将多个二分类器组合起来,SVM可以用于解决多分类问题。
例如,在手写数字识别中,可以使用SVM对不同的数字进行分类。
3.异常检测:SVM可以用于异常检测,通过将异常样本与正常样本分开。
例如,在网络入侵检测中,SVM可以帮助识别潜在的入侵行为。
4.文本分类:SVM在文本分类问题中也有广泛的应用。
例如,在垃圾短信识别中,可以使用SVM对短信进行分类。
5.图像识别:SVM在图像识别问题中有很好的表现。
例如,在人脸识别中,可以使用SVM对不同人脸进行分类。
除了以上几个应用领域,SVM还可以应用于生物信息学、计算机视觉、自然语言处理等问题的解决。
尽管SVM算法在许多问题中都表现出色,但也存在一些限制。
SVM算法原理及应用

SVM算法原理及应用支持向量机(Support Vector Machine,SVM)是一种监督学习算法,属于分类算法的一种。
SVM的主要思想是找到一个可以将不同类别的数据集分开的最优超平面(Optimal Hyperplane)。
本文将从SVM的基本原理、优缺点以及应用案例等方面进行讲解。
一、SVM的基本原理SVN算法的基本原理是基于统计学习理论和结构风险最小化思想所产生的。
它的基本思想是通过求解最优化问题,构造一个能够正确划分样本并且泛化能力强的分离超平面,使得该分离超平面与支持向量之间的间隔最大,最大间隔超平面。
具体而言,SVM将样本映射到高维特征空间中,在该空间中构造一个超平面。
SVM分类器的目标就是在高维特征空间中找到一个最优的超平面,使得训练数据集的所有样本都被正确分类,并且在新数据上具有良好的泛化能力。
二、SVM的优缺点1. 优点(1)处理高维数据的能力。
可以应对高维数据的分类问题;(2)泛化能力强。
通过控制间隔的大小,可以使得该超平面更加鲁棒,从而避免过拟合;(3)准确度高。
相较于其他分类器如KNN和决策树,其准确度更高;(4)可处理非线性问题。
通过核函数的使用,可以将数据映射到高维空间,从而可以线性可分。
2. 缺点(1)数据量较大时,其训练时间会较长,需要较高的计算资源;(2)对噪声敏感。
如果训练数据中存在噪声,很容易出现过拟合现象。
三、SVM的应用案例SVM由于其准确度高、泛化能力强等特点,在许多领域都有广泛的应用。
1. 文本分类SVM可以将文本映射到高维空间中,从而可以使用SVM对文本进行分类。
如在智能客服领域,可以使用SVM将用户的问题自动分类,从而提高客户服务的效率。
2. 图像识别SVM也可以被用于图像分类和识别。
由于SVM的鲁棒性强,可以应对样本数较小、数据呈现不平衡的情况。
3. 生物信息学SVM也被广泛用于生物信息学领域中,如预测蛋白质二级结构、酶的功能分类等。
四、总结SVM算法是一种用于分类和回归的强有力工具。
如何使用支持向量机进行回归分析

支持向量机(Support Vector Machine,SVM)是一种强大的机器学习算法,主要用于分类问题。
然而,SVM也可以应用于回归分析。
在本文中,我们将介绍如何使用支持向量机进行回归分析,包括SVM的原理、优势和应用。
SVM是一种监督学习算法,它的主要思想是找到一个最优的超平面,来将数据分为不同的类别。
在分类问题中,这个超平面可以将数据分为两个类别;而在回归问题中,这个超平面可以用来拟合数据点,从而预测连续性的输出变量。
换句话说,SVM可以用来寻找输入和输出之间的非线性关系,并用这个关系来进行回归分析。
SVM的优势在于它可以处理高维数据和非线性关系,而且在小样本数据上表现出色。
这使得SVM在回归分析中有着很大的潜力,尤其是当数据集包含大量的特征和复杂的关系时。
与传统的线性回归方法相比,SVM可以更好地适应复杂的数据模式,得到更准确的预测结果。
在使用SVM进行回归分析时,有一些重要的参数需要考虑。
首先是核函数的选择,核函数可以将数据映射到高维空间,从而使得数据在原始空间中变得线性可分。
常用的核函数包括线性核、多项式核和高斯核,不同的核函数对于不同的数据集有不同的适用性。
其次是惩罚参数C和核函数的参数,这些参数可以影响SVM的拟合效果,需要通过交叉验证等方法来选择最优的参数组合。
除了参数调优外,在应用SVM进行回归分析时,还需要注意数据预处理和模型评估。
数据预处理包括特征缩放、异常值处理和特征选择等步骤,这些步骤可以提高SVM的拟合效果和泛化能力。
而模型评估则可以通过交叉验证、学习曲线和误差分析等方法来评估模型的性能,从而选择最优的模型和参数。
在实际应用中,SVM可以用于多种回归问题,如股票价格预测、房价预测和销量预测等。
以房价预测为例,我们可以使用SVM来拟合房屋的特征(如面积、位置、年龄等),从而预测房屋的价格。
通过合适的数据预处理和参数调优,SVM可以得到比传统方法更准确的预测结果。
需要指出的是,虽然SVM在回归分析中有着很大的潜力,但它并不是万能的。
SVM支持向量机原理
SVM⽀持向量机原理(⼀)SVM的简介⽀持向量机(Support Vector Machine)是Cortes和Vapnik于1995年⾸先提出的,它在解决⼩样本、⾮线性及⾼维模式识别中表现出许多特有的优势,并能够推⼴应⽤到函数拟合等其他机器学习问题中[10]。
⽀持向量机⽅法是建⽴在统计学习理论的VC 维理论和结构风险最⼩原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能⼒(即⽆错误地识别任意样本的能⼒)之间寻求最佳折衷,以期获得最好的推⼴能⼒[14](或称泛化能⼒)。
以上是经常被有关SVM 的学术⽂献引⽤的介绍,我来逐⼀分解并解释⼀下。
Vapnik是统计机器学习的⼤⽜,这想必都不⽤说,他出版的《Statistical Learning Theory》是⼀本完整阐述统计机器学习思想的名著。
在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等⼀系列问题。
与统计机器学习的精密思维相⽐,传统的机器学习基本上属于摸着⽯头过河,⽤传统的机器学习⽅法构造分类系统完全成了⼀种技巧,⼀个⼈做的结果可能很好,另⼀个⼈差不多的⽅法做出来却很差,缺乏指导和原则。
所谓VC维是对函数类的⼀种度量,可以简单的理解为问题的复杂程度,VC维越⾼,⼀个问题就越复杂。
正是因为SVM关注的是VC维,后⾯我们可以看到,SVM解决问题的时候,和样本的维数是⽆关的(甚⾄样本是上万维的都可以,这使得SVM很适合⽤来解决⽂本分类的问题,当然,有这样的能⼒也因为引⼊了核函数)。
结构风险最⼩听上去⽂绉绉,其实说的也⽆⾮是下⾯这回事。
机器学习本质上就是⼀种对问题真实模型的逼近(我们选择⼀个我们认为⽐较好的近似模型,这个近似模型就叫做⼀个假设),但毫⽆疑问,真实模型⼀定是不知道的(如果知道了,我们⼲吗还要机器学习?直接⽤真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多⼤差距,我们就没法得知。
svm 实验报告
svm 实验报告SVM实验报告引言支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,广泛应用于模式识别、图像分类、文本分类等领域。
本篇实验报告将介绍SVM的原理、实验设计和结果分析。
一、SVM原理SVM是一种监督学习算法,其基本思想是通过寻找一个最优的超平面来将不同类别的样本分开。
在二维空间中,这个超平面就是一条直线,而在多维空间中,这个超平面则是一个超平面。
SVM的目标是使得两个不同类别的样本点离超平面的距离最大化,从而提高分类的准确性。
二、实验设计本次实验使用了一个开源的数据集,该数据集包含了一些花朵的特征数据,共分为三个类别。
首先,我们将数据集划分为训练集和测试集,其中70%的数据用于训练,30%的数据用于测试。
然后,我们使用Python编程语言中的scikit-learn库来实现SVM算法,并将训练集输入模型进行训练。
最后,使用测试集对模型进行评估,并计算分类的准确率。
三、实验结果分析经过训练和测试,我们得到了如下结果:SVM在测试集上的准确率为90%。
这意味着模型能够正确分类90%的花朵样本。
通过观察分类结果,我们发现SVM对于不同类别的花朵具有较好的区分能力,分类边界清晰。
然而,也存在一些分类错误的情况,可能是由于样本之间的重叠或噪声数据的干扰所导致。
四、结果讨论在本次实验中,我们成功地应用了SVM算法进行花朵分类,并取得了较好的分类准确率。
然而,我们也发现了一些问题。
首先,SVM对于噪声数据和重叠样本的处理能力相对较弱,这可能导致一些错误分类的情况。
其次,SVM的计算复杂度较高,在处理大规模数据时可能会面临一些挑战。
因此,在实际应用中需要对数据进行预处理,如特征选择和降维等,以提高算法的效率和准确性。
五、结论本次实验通过实现SVM算法对花朵数据集进行分类,取得了较好的结果。
SVM 作为一种常用的机器学习算法,在模式识别和分类问题中具有广泛的应用前景。
支持向量机(SVM)简述
第1 2章12.1 案例背景12.1.1 SVM概述支持向量机(Support Vector Machine,SVM)由Vapnik首先提出,像多层感知器网络和径向基函数网络一样,支持向量机可用于模式分类和非线性回归。
支持向量机的主要思想是建立一个分类超平面作为决策曲面,使得正例和反例之间的隔离边缘被最大化;支持向量机的理论基础是统计学习理论,更精确地说,支持向量机是结构风险最小化的近似实现。
这个原理基于这样的事实:学习机器在测试数据上的误差率(即泛化误差率)以训练误差率和一个依赖于VC维数(Vapnik - Chervonenkis dimension)的项的和为界,在可分模式情况下,支持向量机对于前一项的值为零,并且使第二项最小化。
因此,尽管它不利用问题的领域内部问题,但在模式分类问题上支持向量机能提供好的泛化性能,这个属性是支持向量机特有的。
支持向量机具有以下的优点:①通用性:能够在很广的各种函数集中构造函数;②鲁棒性:不需要微调;③有效性:在解决实际问题中总是属于最好的方法之一;④计算简单:方法的实现只需要利用简单的优化技术;⑤理论上完善:基于VC推广性理论的框架。
在“支持向量”x(i)和输入空间抽取的向量x之间的内积核这一概念是构造支持向量机学习算法的关键。
支持向量机是由算法从训练数据中抽取的小的子集构成。
支持向量机的体系结构如图12 -1所示。
图12-1 支持向量机的体系结构其中K为核函数,其种类主要有:线性核函数:K(x,x i)=x T x i;多项式核函数:K(x,x i)=(γx T x i+r)p,γ>0;径向基核函数:K(x,x i )=exp(-γ∥x −x i ∥2), γ>0;两层感知器核函数:K(x,x i )=tanh(γx T x i+r )。
1.二分类支持向量机C - SVC 模型是比较常见的二分类支持向量机模型,其具体形式如下:1)设已知训练集:T ={(x 1,y 1),…,(x i ,y i )}∈(X ×Y )ι其中,x i ∈X =R n ,y i ∈Y ={1,-1}( i =1,2,…,ι);x i 为特征向量。
支持向量机在工业故障诊断中的应用
支持向量机在工业故障诊断中的应用支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,它在工业故障诊断中的应用越来越受到关注。
本文将探讨SVM在工业故障诊断中的应用,并介绍其原理、优势和限制。
一、SVM的原理SVM是一种监督学习算法,其基本原理是通过找到一个最优超平面来将不同类别的样本分开。
这个最优超平面使得两个不同类别的样本点到超平面的距离最大化,从而实现分类。
SVM的核心思想是通过将低维空间中的样本映射到高维空间,将线性不可分的问题转化为线性可分的问题。
二、SVM在工业故障诊断中的应用1. 特征提取在工业故障诊断中,提取有效的特征是十分关键的一步。
SVM可以通过核函数的映射将原始特征空间映射到高维空间,从而使得原本线性不可分的特征变得线性可分。
这样一来,我们可以更好地区分不同类别的故障样本,提高故障诊断的准确性。
2. 故障分类SVM在工业故障诊断中可以用于进行故障分类。
通过训练样本集,SVM可以学习到一个最优的分类超平面,然后将新的故障样本映射到该超平面,从而实现对故障的分类。
相比于其他分类算法,SVM具有较好的泛化能力和鲁棒性,可以有效地应对不同类型的故障。
3. 故障预测除了故障分类,SVM还可以用于故障预测。
通过对历史故障数据的训练和学习,SVM可以建立一个预测模型,用于预测未来可能出现的故障。
这对于工业生产中的故障预防和维护具有重要意义,可以大大减少故障带来的生产损失。
三、SVM的优势1. 高维空间映射:SVM通过核函数的映射将原始特征空间映射到高维空间,从而使得原本线性不可分的问题变得线性可分,提高了分类的准确性。
2. 泛化能力强:SVM在处理小样本和非线性问题时表现出较好的泛化能力,可以有效地应对不同类型的故障。
3. 可解释性强:SVM可以通过支持向量的分析,找出对分类决策起关键作用的样本点,从而帮助工程师理解故障的原因和机理。
四、SVM的限制1. 计算复杂度高:SVM在处理大规模数据集时,需要耗费大量的计算资源和时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
支持向量机(SVM )原理及应用一、SVM 的产生与发展自1995年Vapnik(瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。
同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。
SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。
),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。
例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。
此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。
LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。
二、支持向量机原理SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。
支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。
在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输入空间的样本映射到高维属性空间使其变为线性情况,从而使得在高维属性空间采用线性算法对样本的非线性进行分析成为可能,并在该特征空间中寻找最优分类超平面。
其次,它通过使用结构风险最小化原理在属性空间构建最优分类超平面,使得分类器得到全局最优,并在整个样本空间的期望风险以某个概率满足一定上界。
其突出的优点表现在:(1)基于统计学习理论中结构风险最小化原则(注:所谓的结构风险最小化就是在保证分类精度(经验风险)的同时,降低学习机器的VC 维,可以使学习机器在整个样本集上的期望风险得到控制。
)和VC维理论(注:VC维(Vapnik-Chervonenkis Dimension)的概念是为了研究学习过程一致收敛的速度和推广性,由统计学理论定义的有关函数集学习性能的一个重要指标。
),具有良好的泛化能力,即由有限的训练样本得到的小的误差能够保证使独立的测试集仍保持小的误差。
(2)支持向量机的求解问题对应的是一个凸优化问题,因此局部最优解一定是全局最优解。
(3)核函数的成功应用,将非线性问题转化为线性问题求解。
(4)分类间隔的最大化,使得支持向量机算法具有较好的鲁棒性。
由于SVM自身的突出优势,因此被越来越多的研究人员作为强有力的学习工具,以解决模式识别、回归估计等领域的难题。
1.最优分类面和广义最优分类面SVM是从线性可分情况下的最优分类面发展而来的,基本思想可用图1来说明。
对于一维空间中的点,二维空间中的直线,三维空间中的平面,以及高维空间中的超平面,图中实心点和空心点代表两类样本,H为它们之间的分类超平面,H1,H2分别为过各类中离分类面最近的样本且平行于分类面的超平面,它们之间的距离△叫做分类间隔(margin)。
图1 最优分类面示意图W所谓最优分类面要求分类面不但能将两类正确分开,而且使分类间隔最大。
将两类正确分开是为了保证训练错误率为0,也就是经验风险最小(为O)。
使分类空隙最大实际上就是使推广性的界中的置信范围最小?,从而使真实风险最小。
推广到高维空间,最优分类线就成为最优分类面。
设线性可分样本集为}1,1{,,,...,1),,(x _-+∈∈=y R x n i y d i i 是类别符号。
d 维空间中线性判别函数的一般形式为是类别符号。
d 维空间中线性判别函数的一般形式为b x w x g +⋅=)((主:w 代表Hilbert 空间中权向量;b 代表阈值。
),分类线方程为0=+⋅b x w ?。
将判别函数进行归一化,使两类所有样本都满足1|)(|=x g ,也就是使离分类面最近的样本的1|)(|=x g ,此时分类间隔等于||||/2w ?,因此使间隔最大等价于使||||w (或2||||w )最小。
要求分类线对所有样本正确分类,就是要求它满足n i b x w y i ,...,2,1,01])[(=≥-+⋅ (1-1)满足上述条件(1-1),并且使2||||w 最小的分类面就叫做最优分类面,过两类样本中离分类面最近的点且平行于最优分类面的超平面H 1,H 2上的训练样本点就称作支持向量(supportvector),因为它们“支持”了最优分类面。
利用Lagrange (拉格朗日)优化方法可以把上述最优分类面问题转化为如下这种较简单的对偶问题,即:在约束条件,01=∑=i n i iy α (1-2a )n i i ,...,2,1,0=≥α (1-2b)下面对i α(主:对偶变量即拉格朗日乘子)求解下列函数的最大值:∑∑==-=nj i j i j i j i ni x x y y 1,1i )(21Q αααα)( ?(1-3) 若*α为最优解,则∑==n i i y w 1**αα(1-4) 即最优分类面的权系数向量是训练样本向量的线性组合。
注释(1-3)式由来:利用Lagrange 函数计算如下,实例计算:图略,可参见PPTx1 =(0, 0), y1 = +1x2 =(1, 0), y2 = +1x3 =(2, 0), y3 = -1x4 =(0, 2), y4 = -1 2121(,,)((())1)li i i i L w b w y x w b αα==-⋅⋅+-∑(,,)0(,,)0L w b L w b b w αα∂∂==∂∂110l li i i i i i i a y w y x α====∑∑121,111()()0,1,...,,0()sgn(())l li i j i j i j i i j li i i i li i i i W y y x x i l and y f x y x x b ααααααα=====-⋅≥===⋅⋅+∑∑∑∑可调用Matlab 中的二次规划程序,求得α1, α2, α3, α4的值,进而求得w 和b 的值。
这是一个不等式约束下的二次函数极值问题,存在唯一解。
根据k ühn-Tucker 条件,解中将只有一部分(通常是很少一部分)i α不为零,这些不为0解所对应的样本就是支持向量。
求解上述问题后得到的最优分类函数是:})(sgn{})sgn{()(1****∑=+⋅=+⋅=ni i i i b x x y b x w x f α (1-5) 根据前面的分析,非支持向量对应的i α均为0,因此上式中的求和实际上只对支持向量进行。
*b 是分类阈值,可以由任意一个支持向量通过式(1-1)求得(只有支持向量才满足其中的等号条件),或通过两类中任意一对支持向量取中值求得。
从前面的分析可以看出,最优分类面是在线性可分的前提下讨论的,在线性不可分的情况下,就是某些训练样本不能满足式(1-1)的条件,因此可以在条件中增加一个松弛项参数0i ≥ε,变成:n i b x w y i i i ,...,2,1,01])[(=≥+-+⋅ε (1-6)对于足够小的s>0,只要使∑==ni i F 1)(σσεε (1-7) 最小就可以使错分样本数最小。
对应线性可分情况下的使分类间隔最大,在线性不可分2221234223341()()(444)2Q αααααααααα=+++--++123412013/41/41120312002144231113,02224()3220w b g x x x αααα=⎧⎪=⎪⎨=⎪⎪=⎩⎡⎤-⎢⎥⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦⎡⎤⎡⎤=---=⎢⎥⎢⎥⎣⎦⎣⎦=--=情况下可引入约束:k c ≤2||w || (1-8)在约束条件(1-6)幂1(1-8)下对式(1-7)求极小,就得到了线性不可分情况下的最优分类面,称作广义最优分类面。
为方便计算,取s=1。
为使计算进一步简化,广义最优分类面问题可以迸一步演化成在条件(1-6)的约束条件下求下列函数的极小值:)(),(21,1∑=+=n i i C w w w εεφ)( (1-9) 其中C 为某个指定的常数,它实际上起控制对锩分样本惩罚的程度的作用,实现在错分样本的比例与算法复杂度之间的折衷。
求解这一优化问题的方法与求解最优分类面时的方法相同,都是转化为一个二次函数极值问题,其结果与可分情况下得到的(1-2)到(1-5)几乎完全相同,但是条件(1-2b)变为:n i C ,...,1,0i =≤≤α (1-10)2.SVM 的非线性映射对于非线性问题,可以通过非线性交换转化为某个高维空间中的线性问题,在变换空间求最优分类超平面。
这种变换可能比较复杂,因此这种思路在一般情况下不易实现。
但是我们可以看到,在上面对偶问题中,不论是寻优目标函数(1-3)还是分类函数(1-5)都只涉及训练样本之间的内积运算)(i x x ⋅。
设有非线性映射H R d →Φ:将输入空间的样本映射到高维(可能是无穷维)的特征空间H 中,当在特征空间H 中构造最优超平面时,训练算法仅使用空间中的点积,即)()(j i x x φφ⋅,而没有单独的)(i x φ出现。