【教育资料】初一数学名师辅导:学习平面直角坐标系学习专用

合集下载

七年级数学平面直角坐标系知识专讲

七年级数学平面直角坐标系知识专讲

七年级数学平面直角坐标系知识专讲【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征.3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.要点二、平面直角坐标系与点的坐标的概念1. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).4.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.【典型例题】类型一、有序数对1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.【答案】10,13.【解析】由条件可知:前面的数表示排数,后面的数表示号数.【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.举一反三:【变式】某地10:00时气温是6℃,表示为(10,6),那么(3,-7)表示________.【答案】3:00时该地气温是零下7℃.类型二、平面直角坐标系与点的坐标的概念2.如图,写出点A、B、C、D各点的坐标.【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.举一反三:【变式】在平面直角坐标系中,如果点A既在x轴的上方,又在y轴的左边,且距离x轴,y轴分别为5个单位长度和4个单位长度,那么点A的坐标为( ).A.(5,-4) B.(4,-5) C.(-5,4) D.(-4,5)【答案】D.3.在平面直角坐标系中,描出下列各点A(4,3),B(-2,3),C(-4,1),D(2,-2).【答案与解析】解:因为点A的坐标是(4,3),所以先在x轴上找到坐标是4的点M,再在y轴上找到坐标是3的点N.然后由点M作x轴的垂线,由点N作y轴的垂线,过两条垂线的交点就是点A,同理可描出点B、C、D.所以,点A、B、C、D在直角坐标系的位置如图所示.【总结升华】对于坐标平面内任意一点,都有唯一的一对有序数对和它对应;对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.【答案】5.类型三、坐标平面及点的特征4.(2014春•夏津县校级期中)根据要求解答下列问题:设M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意实数,且b<0时,点M位于何处?【思路点拨】(1)利用第四象限点的坐标性质得出答案;(2)利用第二、四象限点的坐标性质得出答案;(3)利用第三、四象限和纵轴点的坐标性质得出答案.【答案与解析】解:∵M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第四象限;(2)当ab>0时,即a,b同号,故点M位于第一、三象限;(3)当a为任意实数,且b<0时,点M位于第三、四象限和纵轴的负半轴.【总结升华】本题考查点的坐标的确定,正确掌握各象限对应坐标的符号是解题关键.举一反三:【变式1】(2015•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.【高清课堂:第一讲平面直角坐标系1 369934练习3 】【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.5.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【高清课堂:第一讲平面直角坐标系1 369934练习4(5)】【变式2】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).平面直角坐标系巩固练习【巩固练习】一、选择题1.为确定一个平面上点的位置,可用的数据个数为( ).A.1个 B.2个 C.3个 D.4个2.下列说法正确的是( ).A.(2,3)和(3,2)表示的位置相同B.(2,3)和(3,2)是表示不同位置的两个有序数对C.(2,2)和(2,2)表示两个不同的位置D.(m,n)和(n,m)表示的位置不同3. (江苏宿迁)在平面直角坐标系中,点M(-2,3)在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若点P(m,n)在第三象限,则点Q(-m,-n)在( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知点P(m+3,2m+4)在y轴上,那么点P的坐标是( ).A.(-2,0) B.(0,-2) C.(1,0) D.(0,1)6.(2015•博山区一模)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹.反弹时反射角等于入射角,当点P第2015次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)二、填空题7.已知有序数对(2x-1,5-3y)表示出的点为(5,2),则x=________,y=________.8.(2015春•德州校级期中)两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是.9.点P(-3,4)到x轴的距离是________,到y轴的距离是________.10.指出下列各点所在象限或坐标轴:点A(5,-3)在_______,点B(-2,-1)在_______,点C(0,-3)在_______,点D(4,0)在_______,点E(0,0)在_______.11.点A(1,-2)关于x轴对称的点的坐标是______;点A关于y轴对称的点坐标为______.12.若点P(a,b)在第二象限,则点Q(-a,b+1)在第________象限.三、解答题13.在图中建立适当的平面直角坐标系,使A、B两点的坐标分别为(-4,1)和(-1,4),写出点C、D的坐标,并指出它们所在的象限.14.(2014秋•楚州区校级月考)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向下、向右的方向一次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A1(,),A2(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.15. 已知A,B,C,D的坐标依次为(4,0),(0,3),(-4,0),(0,-3),在平面直角坐标系中描出各点,并求四边形ABCD的面积.【答案与解析】一、选择题1. 【答案】B.2. 【答案】B.3. 【答案】B;【解析】四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).4. 【答案】A;【解析】因为点P(m,n)在第三象限,所以m,n均为负,则它们的相反数均为正.5. 【答案】B;【解析】m+3=0,∴m=-3,将其代入得:2m+4=-2,∴P(0,-2).6. 【答案】A.【解析】解:如图,经过6次反弹后动点回到出发点(0,3),∵2015÷6=335…5,∴当点P第2015次碰到矩形的边时为第336个循环组的第5次反弹,点P的坐标为(1,4).故选:A.二、填空题7. 【答案】3,1;【解析】由2x-1=5,得x=3;由5-3y=2,得y=1.8. 【答案】4;【解析】解:∵到x轴的距离是2,y轴的距离是3的点每一个象限都有1个,∴距离坐标为(2,3)的点的个数是(2,3)(﹣2,3)(﹣2,﹣3)(2,﹣3)共4个.故答案为:4.9. 【答案】4, 3;【解析】到x轴的距离为:│4│=4,到y轴的距离为:│-3│=3.10.【答案】第四象限,第三象限,y轴的负半轴上,x轴的正半轴上,坐标原点.11.【答案】(1,2),(-1,-2) ;【解析】关于x轴对称的两点的坐标特征:横坐标相同,纵坐标互为相反数;关于y轴对称的两点的坐标特征:横坐标互为相反数,纵坐标相同.12.【答案】一;【解析】若点P(a,b)在第二象限,则a<0,b>0,所以-a>0,b+1>0,因此Q在第一象限.三、解答题13.【解析】解:建立平面直角坐标系如图:得C(-1,-2)、D(2,1).由图可知,点C在第三象限,点D在第一象限.14.【解析】解:(1)由图可知,A1(0,1),A2(1,1);故答案为:0,1;1,1;(2)根据(1)OA4n=4n÷2=2n,∴点A4n的坐标(2n,0);(3)∵100÷4=25,∴100是4的倍数,∴A 100 (50,0),∵101÷4=25…1,∴A 101与A 100横坐标相同,∴A 101 (50,1),∴从点A 100到点A 101的移动方向与从点O 到A 1的方向一致,为从下向上.15.【解析】解:描点如下:14443242ABCD AOB S S ==⨯⨯⨯=四边形三角形 .平面直角坐标系知识讲解【学习目标】1.理解平面直角坐标系概念,能正确画出平面直角坐标系.2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标特征.3.由数轴到平面直角坐标系,渗透类比的数学思想.【要点梳理】要点一、有序数对定义:把有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a ,b ).要点诠释:有序,即两个数的位置不能随意交换,(a ,b)与(b ,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.要点二、平面直角坐标系及点的坐标的概念1. 平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2. 点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b 分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2. 坐标平面的结构坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.要点四、点坐标的特征1.各个象限内和坐标轴上点的坐标符号规律要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).4.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.【典型例题】类型一、有序数对表示位置1.如图是小刚的一张笑脸,他对妹妹说:如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成().A.(1,0) B.(-1,0) C.(-1,1) D.(1,-1)【思路点拨】由(0,2)表示左眼,用(2,2)表示右眼,可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定嘴的位置.【答案】A.【解析】解:根据(0,2)表示左眼,用(2,2)表示右眼,可得嘴的坐标是(1,0),故答案为A.【总结升华】此题考查了坐标确定位置,由已知条件正确确定坐标轴的位置是解决本题的关键.举一反三:【变式】下列数据不能表示物体位置的是().A.5楼6号 B.北偏东30° C.希望路20号 D.东经118°,北纬36°【答案】B (提示A. 5楼6号,是有序数对,能确定物体的位置;B.北偏东30°,不是有序数对,不能确定物体的位置;C.希望路20号,“希望路”相当于一个数据,是有序数对,能确定物体的位置;D.东经118°北纬36°,是有序数对,能确定物体的位置.)类型二、平面直角坐标系与点的坐标的概念2.有一个长方形ABCD,长为5,宽为3,先建立一个平面直角坐标系,在此坐标系下求出A,B,C,D各点的坐标.【答案与解析】解:本题答案不唯一,现列举三种解法.解法一:以点A为坐标原点,边AB所在的直线为x轴,边AD所在直线为y轴,建立平面直角坐标系,如图(1):A(0,0),B(5,0),C(5,3), D (0,3).解法二:以边AB的中点为坐标原点,边AB所在的直线为x轴,AB的中点和CD的中点所在的直线为y轴,建立平面直角坐标系,如图(2):A(﹣2.5,0),B(2.5,0),C(2.5,3), D (-2.5,3).解法三:以两组对边中点所在直线为x轴、y轴,建立平面直角坐标系,如图(3):A(﹣2.5,-1.5),B(2.5,-1.5),C(2.5,1.5), D (-2.5,1.5).【总结升华】在不同平面直角坐标系中,长方形顶点坐标不同,说明位置的相对性与绝对性,即只要原点、x轴和y轴确定,每一个点的位置也确定,而一旦原点或x轴、y轴改变,每一个点的位置也相对应地改变.举一反三:【变式】点A(m,n)到x轴的距离为3,到y轴的距离为2,则点A的坐标为________.【答案】(2,3)或(-2,3)或(-2,-3)或(2,-3).3.平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3).求△ABC的面积.【思路点拨】三角形的三边都不与坐标轴平行,根据平面直角坐标系的特点,可以将三角形的面积转化为梯形或长方形的面积减去多余的直角三角形的面积,即可求得此三角形的面积.【答案与解析】 解:如图所示,过点A 、C 分别作平行于y 轴的直线与过B 点平行于x 轴的直线交于点D 、E ,则四边形ACED 为梯形,根据点A (-3,-1)、B (1,3)、C (2,-3)可求得AD =4,CE =6,DB =4,BE =1,DE =5,所以△ABC 的面积为:111()222ABC S AD CE DE AD DB CE BE =+--△111(46)5446114222=+⨯-⨯⨯-⨯⨯=. 【总结升华】点的坐标能体现点到坐标轴的距离,解决平面直角坐标系中的三角形面积问题,就是要充分利用这一点,将不规则图形转化为规则图形,再利用相关图形的面积计算公式求解.举一反三:【变式】如图所示,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),……,则点A 2008的坐标为________.【答案】(-502,-502). 类型三、坐标平面及点的特征4. (2015春•扶沟县期中)在平面直角坐标系中,点(﹣1,m 2+1)一定在第________象限.【思路点拨】根据点在第二象限的坐标特点解答即可. 【答案】二. 【解析】解:∵点(﹣1,m 2+1)的横坐标﹣1<0,纵坐标m 2+1>0,∴符合点在第二象限的条件,故点(﹣1,m2+1)一定在第二象限. 【总结升华】本题主要考查平面直角坐标系中各象限内点的坐标的符号. 举一反三:【高清课堂:第一讲 平面直角坐标系1 369934 练习4(4)】 【变式1】点P(-m,n)在第三象限,则m ,n 的取值范围是________. 【答案】0,0m n ><.【变式2】在平面直角坐标系中,横、纵坐标满足下面条件的点,分别在第几象限或哪条坐标轴上.(1)点P (x ,y )的坐标满足xy >0. (2)点P (x ,y )的坐标满足xy <0. (3)点P (x ,y )的坐标满足xy=0.【答案】(1)点P 在第一、三象限;(2)点P 在第二、四象限;(3)x 轴或y 轴. 【高清课堂:第一讲 平面直角坐标系1 369934练习4(1)】【变式3】若点C(x,y)满足x+y <0,xy >0,则点C 在第_____象限. 【答案】三.5.一个正方形的一边上的两个顶点O 、A 的坐标为O (0,0),A (4,0),则另外两个顶点的坐标是什么.【思路点拨】有点的坐标说明已有确定的平面直角坐标系,但正方形的另两个顶点位置不确定,所以应按不同位置分类去求.【答案与解析】解:不妨设另外两个顶点为B 、C ,因为OABC 是正方形,所以OC =BA =BC =OA =4.且OC ∥AB ,OA ∥BC ,则:(1)当顶点B 在第一象限时,如图所示,显然 B 点坐标为(4,4),C 点坐标为(0,4).(2)当顶点B在第四象限时,如图所示,显然B点坐标为(4,-4),C点坐标为(0,-4).【总结升华】在解答这类问题时,我们千万不要忽略了分类讨论而导致错误.举一反三:【变式】(2015•济南)在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0)B.(0,2)C.(2,﹣4)D.(﹣4,2)【答案】A.平面直角坐标系巩固练习【巩固练习】一、选择题1.A地在地球上的位置如图,则A地的位置是().A.东经130°,北纬50°B.东经130°,北纬60°C.东经140°,北纬50°D.东经40°,北纬50°2.点A(a,-2)在二、四象限的角平分线上,则a的值是().A.2 B.-2 C.12D.123.已知点M到x轴、y轴的距离分别为4和6,且点M在x轴的上方、y轴的左侧,则点M 的坐标为( ) .A.(4,-6) B.(-4,6) C.(6,-4) D.(-6,4)4.已知A(a,b)、B(b,a)表示同一个点,那么这个点一定在( ) .A.第二、四象限的角平分线上 B.第一、三象限的角平分线上C .平行于x 轴的直线上D .平行于y 轴的直线上5. 已知点(M a ,)b ,过M 作MH x ⊥轴于H ,并延长到N ,使NH MH =, 且N 点坐标为(2-,3)-,则()a b += . A.0B.1C.—1D.—56. (2015春•鄂州校级期中)如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为( )A .(14,44) B.(15,44)C.(44,14)D.(44,15)二、填空题7.已知点P (2-a ,3a -2)到两坐标轴的距离相等,则P 点的坐标为___________. 8.线段AB 的长度为3且平行x 轴,已知点A 的坐标为(2,-5),则点B 的坐标为 . 9.如果点(0A ,1),(3B ,1),点C 在y 轴上,且ABC △的面积是5,则C 点坐标____. 10.设x 、y 为有理数,若|x +2y -2|+|2x -y +6|=0,则点(x ,y )在第______象限. 11.(2015•华师一附中自主招生)如图,在一个单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,﹣1),A 3(0,0),则依图中所示规律,A 2013的坐标为 .12.在平面直角坐标系中,点A 、B 、C 的坐标分别为:A(-2,1)、B(-3,-1),C(-1,-1),且D 在x 轴上方. 顺次连接这4个点得到的四边形是平行四边形, 则D 点的坐标为_______.13.已知平面直角坐标系内两点M(5,a),N(b ,-2). (1)若直线MN ∥x 轴,则a________,b________; (2)若直线MN ∥y ,轴,则a________,b________.14.(台州)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”,请写出一个“和谐点”的坐标,如________.三、解答题15.如图,棋子“马”所处的位置为(2,3).(1)你能表示图中“象”的位置吗?(2)写出“马”的下一步可以到达的位置(象棋中“马”走“日”字或“”字)16.如图,若B(x1,y1)、C(x2,y2)均为第一象限的点,O、B、C三点不在同一条直线上.(1) 求△OBC的面积(用含x1、x2、y1、y2的代数式表示);(2) 如图,若三个点的坐标分别为A(2,5),B(7,7),C(9,1),求四边形OABC的面积.17.(2014春•西城区校级期中)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1﹣y2|;(1)已知点A(﹣1,0),B为y轴上的动点,①若点A与B的“识别距离为”2,写出满足条件的B点的坐标.②直接写出点A与点B的“识别距离”的最小值.(2)已知C点坐标为C(m,34m+3),D(0,1),求点C与D的“识别距离”的最小值及相应的C点坐标.【答案与解析】一、选择题 1. 【答案】C. 2. 【答案】A ;【解析】因为(a ,-2)在二、四象限的角平分线上,所以a+(-2)=0,即a=2. 3. 【答案】D ;【解析】根据题意,画出下图,由图可知M (-6,4).4. 【答案】B ;【解析】由题意可得:a b =,横坐标等于纵坐标的点在一三象限的角平分线上. 5. 【答案】B ;【解析】由题意知: 点M (a ,b )与点N (-2,-3)关于x 轴对称,所以M(-2,3) . 6. 【答案】A. 【解析】解:设粒子运动到A 1,A 2,…A n 时所用的间分别为a 1,a 2,…,a n ,a n ﹣a 1=2×n+…+2×3+2×2=2 (2+3+4+…+n ), a n =n (n+1),44×45=1980,故运动了1980秒时它到点A 44(44,44); 则运动了2010秒时,粒子所处的位置为(14,44). 故选A .二、填空题7. 【答案】P (1,1)或P (2,-2); 【解析】232a a -=-,得01a a ==或,分别代入即可. 8. 【答案】B (5,-5)或(-1,-5); 【解析】235-1B x =±=或,而5B y =-. 9. 【答案】(0,73-)或(0,133); 【解析】3AB =,由ABC △的面积是5,可得ABC △的边AB 上的高为103,又点 C 在y 轴上,所以0C x =,101371-333C y =±=或. 10.【答案】二;【解析】由绝对值的非负性,可得x ,y 的值,从而可得(x ,y )所在的象限. 11.【答案】(1008,0). 【解析】解:∵A 3是第一与第二个等腰直角三角形的公共点,A 5是第二与第三个等腰直角三角形的公共点, A 7是第三与第四个等腰直角三角形的公共点, A 9是第四与第五个等腰直角三角形的公共点,…, ∵2013=1006×2+1,∴A 2013是第1006个与第1007个等腰直角三角形的公共点,∴A2013在x轴正半轴,∵OA5=4,OA9=6,OA13=8,…,∴OA2013=(2013+3)÷2=1008,∴点A2013的坐标为(1008,0).故答案为:(1008,0).12.【答案】(0,1)或(-4,1);【解析】2204Dx=-±=或-,1Dy=.13.【答案】(1)=-2,≠5; (2)≠-2,=5;14.【答案】(2,2)或(0,0)(答案不唯一).三、解答题15.【解析】解: (1)(5,3) ; (2)(1,1)、(3,1)、(4,2)、(1,5)、(4,4)、(3,5) .16.【解析】解: (1) 如图:AOB MOB CONBMNCS S S S∆∆∆=+-梯形111221222112111()()2221()2AOB MOB CONBMNCS S S Sx y y y x x x yx y x y∆∆∆=+-=++--=-梯形(2)连接OB,则:四边形OABC的面积为:1177(75-27)(97-71)38.5222AOB BOCS S∆∆+=⨯⨯+⨯⨯==.17.【解析】解:(1)①(0,2)或(0,﹣2);②“识别距离”的最小值是1;(2)|m﹣0|=|34m+3|,解得m=8或87,当m=8时,“识别距离”为8,当m=87时,“识别距离”为87,所以,当m=87时,“识别距离”最小值为87,相应C(﹣87,157).。

七年级第六章平面直角坐标系复习课件

七年级第六章平面直角坐标系复习课件

总结词
掌握点的对称作图方法
详细描述
根据对称性质,我们可以作 出对称点的位置。例如,已 知点A的坐标为(3,4),关于 x轴对称的点B的坐标为(3,4),关于y轴对称的点C的坐 标为(-3,4),关于原点对称 的点D的坐标为(-3,-4)。
03 图形在平面直角坐标系中 的表示
直线在坐标系中的表示
直线方程的基本形式
圆的性质
理解圆的对称性、相交、 相切等基本性质,掌握判 断两圆的位置关系的方法。
函数图像在坐标系中的表示
正比例函数图像
了解正比例函数图像的特 点和性质,掌握图像的平 移和伸缩变换。
一次函数图像
掌握一次函数图像的特点 和性质,理解斜率对图像 的影响。
二次函数图像
了解二次函数图像的开口 方向、顶点和对称轴,掌 握判别式在解题中的应用。
上点的坐标。
参数方程的建立
参数方程可以通过已知的点或几 何关系来建立,通常需要选择合
适的参数来简化问题。
参数方程的应用
参数方程在解析几何、物理和工 程等领域有着广泛的应用,例如 在研究行星运动轨迹、解决振动
问题等。
向量表示
向量表示的概念
向量表示是一种描述平面或空间中点或物体运动的方法,通过向 量来表示点的坐标或物体的运动轨迹。
向量表示的建立
向量表示可以通过已知的点或几何关系来建立,通常需要选择合适 的基底来表示向量。
向量表示的应用
向量表示在解析几何、物理和工程等领域有着广泛的应用,例如在 研究速度和加速度、解决力学问题等。
THANKS FOR WATCHING
感谢您的观看
面积与体积的计算
总结词
在平面直角坐标系中,可以通过坐标值计算多边形的面积和 立体的体积。

初一数学平面直角坐标系知识点

初一数学平面直角坐标系知识点

初一数学平面直角坐标系知识点初一数学平面直角坐标系的知识点包括:1. 平面直角坐标系的构建:通过选择一个原点和两个互相垂直的坐标轴(通常为x轴和y轴),可以构建一个平面直角坐标系。

2. 坐标的表示:在平面直角坐标系中,每个点P都可以用一个有序数对(x,y)来表示,其中x表示点P在x轴上的坐标,y表示点P在y轴上的坐标。

3. 坐标的正负:原点为(0,0),x轴向右为正方向,y轴向上为正方向。

在x轴上,右侧的点的x坐标是正数,左侧的点的x坐标是负数。

在y轴上,上方的点的y坐标是正数,下方的点的y坐标是负数。

4. 轴与坐标轴的关系:x轴与y轴的交点是原点O。

x轴上的点的y坐标都为0,y轴上的点的x坐标都为0。

坐标轴划分了整个平面直角坐标系成为四个象限,分别为第一象限、第二象限、第三象限和第四象限。

5. 点的位置关系:对于两个点P(x1,y1)和Q(x2,y2),如果x1>x2且y1>y2,则点P在点Q的右上方;如果x1<x2且y1<y2,则点P在点Q的左下方;如果x1>x2且y1<y2,则点P在点Q的右下方;如果x1<x2且y1>y2,则点P在点Q的左上方;如果x1=x2,则点P和点Q在同一垂直线上;如果y1=y2,则点P和点Q在同一水平线上。

6. 距离的计算:在平面直角坐标系中,点P(x1,y1)与点Q(x2,y2)之间的距离可以用欧氏距离公式来计算:d = √[(x2-x1)²+(y2-y1)²]。

7. 中点的计算:对于线段AB上的点A(x1,y1)和B(x2,y2),点M(x,y)是线段AB的中点,可以通过求x坐标和y坐标的平均值来计算:x = (x1+x2)/2,y = (y1+y2)/2。

8. 坐标变换:平面直角坐标系中可以进行一些坐标变换,例如平移、旋转和缩放。

平移是通过增加或减少x轴和y轴上的值来改变点的位置。

旋转是围绕原点进行的,可以将点绕原点旋转一定角度。

人教版数学七年级复习课件平面直角坐标系(41张ppt)

人教版数学七年级复习课件平面直角坐标系(41张ppt)

知识点及时练
例1:写出图中各点的坐标
( -5,4 ) ( -4,0 ) ( -2,-2 )
( 2,5 )
( 5,2 )
( 0,-3 )
( 5,-4 )
例2.在直角坐标系中,描出下列各点: A(4,2), B(-2,3), C(-4,-1), D(2.5,-2),E(-4,0),F(1,0)
B
E C F
小敏家 (300,-175)
4.用坐标表示地理位置
教材知识点梳理
1.利用平面直角坐标系绘制区域内一些地点 分布情况的平面图的过程如下: (1)建立坐标系,选择一个适当的参照点为原 点,确定x轴、y轴的正方向; (2)根据具体问题确定适当的比例尺,在坐标 轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标 和各个地点的名称。
取学校所 在位置为 原点,并 以正东、 正北方向 为x轴、y 轴正方向 建立平面 直角坐标 系,并取 比例尺为 1:10000
小强家 y
比例尺:1:10000
(-150,350) 小刚家
(150,20 0)
200 150 100 50 -200-150-100 -50 -50 -100
学校
50 100 150 X
教材知识点梳理
1.有序数对:
教材知识点梳理
1、 如果我们约定“列数在前,排数在后”, 请每个同学写出自己的座位号。
2、请找出如下数对所表示的位置的同学。
数 对
(1,3) (3,1) (4,5) (5,4)
3、观察上面这四组数对及它们表示的位置, 你能从中得出什么结论?
数对是有顺序的!
1.有序数对:
.
本讲之后你应该学会

3.掌握图形平移与坐标变化的关系,能利用 点的平移规律将平面图形进行平移.

(家教培优专用)人教版数学七年级下册--《平面直角坐标系》全章复习与巩固(基础)知识讲解

(家教培优专用)人教版数学七年级下册--《平面直角坐标系》全章复习与巩固(基础)知识讲解

《平面直角坐标系》全章复习与巩固(基础)知识讲解【学习目标】1. 理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标;2. 掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化;3. 通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想.【知识网络】【要点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.要点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:要点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化. (3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1 - x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1 - y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1 - x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1 - y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.要点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.要点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x ,y+b)(或(x ,y-b)).要点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”.【典型例题】类型一、有序数对1.数学家发明了一个魔术盒,当任意数对(a ,b)进入其中时,会得到一个新的数:21a b ++.例如把(3,-2)放入其中,就会有32+(-2)+1=8,现将数对(-2,3)放入其中得到数m ,再将数对(m ,1)放入其中,得到的数是________.【思路点拨】解答本题的关键是正确理解如何由数对得到新的数,只要按照新定义的数的运算,把数对代入21a b ++求值即可.【答案】66 .【解析】解:将(-2,3)代入,21a b ++,得(-2)2+3+1=8,再将(8,1)代入,得82 +1+1=66,故填:66.【总结升华】解答此题的关键是把实数对(-2,3)放入其中得到实数m ,解出m 的值,即可求出把(m ,1)放入其中得到的数. 举一反三:【变式】我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作(4,6),则向西走5米,再向北走3米,记作________;数对(-2,-6)表示________.【答案】 (-5,3);向西走2米,向南走6米.类型二、平面直角坐标系2. (滨州)第三象限内的点P(x ,y),满足|x|=5,y 2=9,则点P 的坐标为________.【思路点拨】点在第三象限,横坐标<0,纵坐标<0.再根据所给条件即可得到x ,y 的具体值.【答案】(-5,-3).【解析】因为|x|=5,y 2=9.所以x =±5,y =±3,又点P(x ,y)在第三象限,所以x <0,y <0,故点P 的坐标为(-5,-3).【总结升华】解决本题的关键是记住各象限内点的坐标的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).举一反三:【变式1】 (乐山)在平面直角坐标系中,点P(-3,4)到x 轴的距离为( ) .A.3 B.-3 C.4 D.-4【答案】C.【变式2】 (长春)如图所示,小手盖住的点的坐标可能为( ) .A.(5,2) B.(-6,3) C.(-4,-6) D.(3,-4)【答案】D.类型三、坐标方法的简单应用3.如图所示,建立适当的直角坐标系,写出图中的各顶点的坐标.【思路点拨】建立平面直角坐标系的关键是先确定原点,再确定x轴、y轴,建立不同的直角坐标系,各顶点的坐标也不同.【答案与解析】解:建立直角坐标系如图所示,则各点的坐标为(-4,0),(-3,0),(-3,-4),(3,-4),(3,0),(4,0),(0,3),再建立不同的平面直角坐标系,写出各顶点的坐标.(读者自己试试看)【总结升华】选择适当的直角坐标系可方便解题,一般尽可能使大多数的点的坐标为整数且易表示出来.【高清课堂:平面直角坐标系单元复习 8(1)】4.(2015春•荣昌县期末)如图,四边形OABC各个顶点的坐标分别是O(0,0),A(3,0),B(5,2),C(2,3).求这个四边形的面积.【思路点拨】分别过C点和B点作x轴和y轴的平行线,如图,然后利用S四边形ABCO=S矩形OHEF ﹣S△ABH﹣S△CBE﹣S△OCF进行计算.【答案与解析】解:分别过C点和B点作x轴和y轴的平行线,如图,则E(5,3),所以S四边形ABCO=S矩形OHEF﹣S△ABH﹣S△CBE﹣S△OCF=5×3﹣×2×2﹣×1×3﹣×3×2=.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.5.△ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将△ABC向右平移1个单位,再向下平移2个单位,所得△A1B1C1的三个顶点坐标分别是什么?(2)将△ABC三个顶点的横坐标都减去5,纵坐标不变,分别得到A2、B2、C2,依次连接A2、B2、C2各点,所得△A2B2C2与△ABC的大小、形状和位置上有什么关系?(3)将△ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到A3、B3、C3,依次连接A3、B3、C3各点,所得△A3B3C3与△ABC的大小、形状和位置上有什么关系?【答案与解析】解:(1)A1(5,1),B1(4,-1),C1(2,0).(2)△A2B2C2与△ABC的大小、形状完全相同,在位置上是把△ABC向左平移5个单位得到.(3)△A3B3C3与△ABC的大小、形状完全相同,在位置上是把△ABC向下移5个单位得到.【总结升华】此题揭示了平移的整体性,以及平移前后的坐标关系是一一对应的,在平移中,横坐标减小等价于向左平移;横坐标增大等价于向右平移;纵坐标减小等价于向下平移;纵坐标增大等价于向上平移.举一反三:【变式】(2015•钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【答案】D.解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.类型四、综合应用6.三角形ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C(4,-3.5).(1)在直角坐标系中画出三角形ABC;(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;(3)求出三角形A1B1C1的面积.【思路点拨】(1)建立平面直角坐标系,从中描出A、B、C三点,顺次连接即可.(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,即三角形ABC向上平移3个单位,向左平移4个单位,得到三角形A1B1C1,按照平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.写出三角形A1B1C1三个顶点的坐标,从坐标系中画出图形.(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积.【答案与解析】解:(1)如图1,(2)如图2,A1(-2,2),B1(-3,0),C1(0,-0.5);(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积=3×2.5-1-2.5-0.75=3.25.∴△A1B1C1的面积=3.25.【总结升华】本题综合考查了平面直角坐标系,及平移变换.注意平移时,要找到三角形各顶点的对应点是关键,然后割补法求出三角形ABC的面积。

《平面直角坐标系》数学教学PPT课件(5篇)

《平面直角坐标系》数学教学PPT课件(5篇)

新知讲解
练习:
如图,在平面直角坐标系中,你能分别写出点A,B,
C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原
点的坐标是什么?
新知讲解
解:
A(4,0),B(-2,0),
C(0,5),D(0,-3)
① x轴上的点的纵坐标为0,一般记为(x,0);
② y轴上的点的横坐标为0,一般记为(0,y);
横轴,一般取向右方向为正方向;竖直的数轴称为y轴或纵轴,
一般取向上方向为正方向。
3.坐标原点:在平面直角坐标系中,两坐标轴的交点为平面
直角坐标系的原点,一般用O来表示。
再 见
第七章 平面直角坐标系
平面直角坐标系
学习目标
1
了解平面直角坐标系及相关概念.
2
用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐
为象限.

-2

第三象限
-1
-2
-3
-4
O
1
4
2
3
x

第四象限
5
第二象限
4

3
y
第一象限
点的位置 横坐标符号 纵坐标符号

第一象限
2
1
-4
-1
-3
-2

第三象限
-1
-2
-3
-4
第二象限
O
1
4
2
3
x

第四象限
第三象限
第四象限
x轴
y轴








纵坐标为0
横坐标为0
例2

七年级数学平面直角坐标系重点考点知识点讲解

平面直角坐标系是数学中的一种坐标系,它由两个相互垂直的直线形成,构成了一个平面。

通过这两条直线的交点,我们可以确定平面上任意一点的位置。

平面直角坐标系的建立通常需要选择一个基准点O(原点)和两个相互垂直的直线(称为坐标轴)。

其中一条直线叫做x轴,另一条直线叫做y轴。

坐标轴将平面分成四个区域,称为象限。

在平面直角坐标系中,我们可以使用一对有序的数(x,y)来表示平面上的一个点P。

其中x是点P在x轴上的投影长度,y是点P在y轴上的投影长度。

通常我们将横坐标x称之为点的横坐标,纵坐标y称之为点的纵坐标。

下面是几个关键知识点的讲解:1.坐标轴和象限:x轴是水平的,正方向向右,负方向向左。

y轴是垂直的,正方向向上,负方向向下。

因此,第一象限的点具有正的横纵坐标;第二、三象限的点具有一个正的,一个负的横纵坐标;第四象限的点具有负的横纵坐标。

2.相关术语:原点O是坐标轴交点的位置,它的坐标是(0,0)。

横坐标轴上的点,其纵坐标为0,称之为x轴上的一点。

纵坐标轴上的点,其横坐标为0,称之为y轴上的一点。

3.距离公式:对于平面上的两个点P(x1,y1)和Q(x2,y2),我们可以使用距离公式来计算它们之间的距离,即d=√((x2-x1)²+(y2-y1)²)。

4.点在线上的判定:若给定一点P(x0, y0)和一直线y = kx + b,则点P在直线上的充要条件是P满足方程y = kx + b。

另外,如果一个点P(x,y)在坐标轴上,则有特殊的性质:当点在x轴上时,纵坐标y等于0;当点在y轴上时,横坐标x等于0。

5.点的对称性:若点P(x,y)关于x轴对称的点为P',那么P'的坐标为(x,-y)。

若点P(x,y)关于y轴对称的点为P'',那么P''的坐标为(-x,y)。

若点P(x,y)关于原点对称的点为P''',那么P'''的坐标为(-x,-y)。

七年级数学下册 第七章 平面直角坐标系7.1 平面直角坐标系7.1.2 平面直角坐标系课件 新版新

( -3 , -4 )
y
5
4
3
2
1O
-
1
-1
-2
-3
-4
纵坐标
(3 ,4 )
横坐标
2 3 4x 原点的坐 标是?
你发现什么
y
5
特点了吗?
4
3
( 0 , 2 )2
(3 ,4 )
. . . ( -4 , 0
)-4
1
-3
-2
1O( 2 , 0 )
-
12
-1 ( 0 ,
3
0
4
)
x
-2
( -3 , -4 )
1O
-1 1 2 3 4 5
-
1
. D(2.5,-2)
-
2 . E(0,-4)
-
x
3
y
5
第二象限 4 第一象限
Ⅱ3

2
1O
-4 -3 -2 -
1Ⅲ
-1 -2
x 1 2 3 4 Ⅳ
第三象限 -3 第四象限
-4
点的位置 第一象限 第二象限 第三象限 第四象限
x轴 y轴
横坐标符号 纵坐标符号






直角坐标系7.1.2 平面直角坐标系课件 (新版) 新人教版-七年级数学下册第七章平面直角坐标系 7.1平面直角坐标系7.1.2平面直角坐标系课件新版 新人教版
-2
x 1 2 3 4 x轴
-3
-4
平面直角坐标系中两坐标轴的特征: ①互相垂直; ②原点重合; ③通常取向上、向右为正方向; ④单位长度一般取相同的,在有些实际问 题中,两坐标轴上的单位长度可以不同.

初一数学:平面直角坐标系课堂讲义

第二章平面直角坐标系第一节有序数对与平面直角坐标系1.重、难点:(1)理解有序数对中的“序”;(2)会在已知平面直角坐标系中确定点的坐标,会建立平面直角坐标系画出已知点; (3)理解点与有序数对的对应关系,体会数形结合的思想。

2.概念:(1)有序数对(2)平面直角坐标系(3)原点、坐标轴、坐标(4)象限3.要落实的有:(1)有序数对的有序性(2)建立平面直角坐标系:①用铅笔、直尺(建议用方格纸)②画好坐标系坐标轴是互相垂直的两条坐标轴都要标明正方向、单位长度标记“x”、“y”标明原点O③根据作图内容确定需要标明单位长度的范围,其中的每个单位长度都要标出④画好要表示的点在坐标系中同时注明字母和坐标4.例题例1.写出图中A、B、C、D点的坐标。

[答疑编号500200020101]【答案】A(2,3) B(3,2) C(-2,1) D(-1,-2)例2.在平面直角坐标系中描出下列各点。

A.(3,4)B.(-1,2)C.(-3,-2)D.(2,-2)[答疑编号500200020102]例3.如图,建立平面直角坐标系,使点A的坐标为(-1,3),并写出点B、点C、点D的坐标.[答疑编号500200020103]第二节平面直角坐标系1.重点、难点:探索特殊点的坐标的特征2.要落实的有:(1)点的(,)的坐标特征(2)对称点:关于x轴对称:(x,y)&(x,-y)关于y轴对称:(x,y)&(-x,y)关于原点对称:(x,y)&(-x,-y)(3)若AB//x轴(或AB⊥y轴),则y A=y B且x A≠x B若AB//y轴(或AB⊥x轴),则x A=x B且y A≠y B(4)两条坐标轴夹角平分线上点的特征:一、三象限两条坐标轴夹角平分线上点:y=x二、四象限两条坐标轴夹角平分线上点:y=-x*(5)中点坐标:两点(x1,y1)和(x2,y2)的中点坐标是(,)3例题例4.已知点P在第四象限,它的横坐标与纵坐标的和为1,则P点的坐标可以是________ (只要求写出符合条件的一个点坐标即可).[答疑编号500200020104]【答案】(3,-2)例5.已知点P(3a-8,a-1).(1)点P在y轴上,则P点坐标为;(2)点P在第二象限,并且a为整数,则P点坐标为;(3)Q点坐标为(3,-6),并且直线PQ∥x轴,则P点坐标为 .[答疑编号500200020105]【答案】(1)(0,5/3)(2)(-2,1)(3)P(-23,-6)例6.线段AB的长度为3且平行与x轴,已知点A的坐标为(2,-5),则(1)点B的坐标为.(2)若P(a+b,ab)在第二象限,那么点Q(a,-b)在第几象限?(3)如果点A(ab)在第三象限,则点(-a+1,3b-5)关于原点的对称点在第几象限?[答疑编号500200020106]【答案】(1)B(-1,-5)或(5,-5)(2)第二象限(3)第二象限例7.正方形的两边与x,y轴的负方向重合,其中正方形的一个顶点坐标为C(a-2,2a-3),则点C的坐标为____________________.[答疑编号500200020107]【答案】(-1/2,0)或(-1,-1)例8.已知点A(a+2,5)、B(-4,1-2a),若直线AB平行于x轴,求a的值;[答疑编号500200020108]【答案】a=-2例9.已知点A(m-5,1),点B(4,m+1),且直线AB∥y轴,则m的值为多少?[答疑编号500200020109]『正确答案』m=9例10.已知点A(3a-4,4a+7)在第一、三象限的角平分线上,求a的值. 若A在第二、四象限的角平分线上,a的值又是多少?[答疑编号500200020110]『正确答案』a=-11 a=-3/7例11.已知点M(a,0),N(b,0),线段MN的中点P的坐标是_________________.[答疑编号500200020111]【答案】(a+b/2,0)(6)距离①坐标平面内点P(x,y)到x轴的距离为,到y轴的距离为.②x轴上两点A(X1,0)、B(X2,0)的距离为AB=;y轴上两点C(0,y1)、D(0,y2)的距离为CD=.③平行于x轴的直线上两点A(X1,y)、B(X2,y)的距离为AB=;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=.例12.已知点P在第四象限,且到x轴距离为,到y轴距离为3,则点P的坐标为.[答疑编号500200020112]【答案】(3,-3/2)例13.已知点P到x轴距离为,到y轴距离为3,则点P的坐标为.[答疑编号500200020113]【答案】(3,3/2)或(-3,3/2)或(-3,-3/2)或(3,-3/2)例14.若N(x,y)在第三象限内,点N到x轴距离为2,到y轴距离为1,则点N关于y轴对称点的坐标是多少?[答疑编号500200020114]【答案】(1,-2)例15.点P(2-a,3a+6)到两坐标轴的距离相等,求点P的坐标。

七年级数学下册第六章平面直角坐标系复习课示范课ppt课件


y
2 1
记作A( 2,1 ) A
-3 -2 -1 O 1 2 3 x
-1
方法:先在x轴和y轴上 分别找到表示横坐标与 纵坐标的点,然后过这 两点分别作x轴与y轴的 垂线,两条垂线的交点 就是该坐标对应的点。
-2
B
-3
找点B( 3,-2 )表 示的点?
3、坐标平面内,一般位置的点的的坐标的符号特征:
(2). 已知点A(m,-2)、点B(3,m-1),且直 线AB∥y轴,则m的值为 3 。
4. 特殊位置的点的坐标特点:
对称点的坐标
(1)关于x轴对称的点:
横坐标 相同 , 纵坐标 互为相反数。
y
B(-a,b)
P(a,b)
(2)关于y轴对称的点: 纵坐标 相同 、
横坐标 互为相反数 。
1
(3)关于原点对称的点 : 横坐标互为相反数 , 纵坐标互为相反数 。
-1 0 1 -1
x
C(-a,-b)
A(a,-b)
(1). 点( x, y )到 x 轴的距离是 y
(2). 点( x, y )到 y 轴的距离是 x
巩固练习:
(1).若点A的坐标是(- 3, 5),则它到x轴的距离 是 5 ,到y轴的距离是 3 .
(2).点P到x轴、y轴的距离分别是2,1,则点P的 坐标可能为 (1,2)、 (-1,2)、(-1,-2) 、(1,-2). .
6、利用平面直角坐标系绘制某一区域的各点分布情况的 平面图包括以下过程:
(1)建立适当的坐标系,即选择一个 适当的为参原照点点,确定
x轴、y轴的
; (注重正寻方找向最佳位置)
(2)根据具体问题确定 单位,长选度择适当的位置标出比 例尺和在数轴上标出单位长度;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学名师辅导:学习平面直角坐标系
?平面直角坐标系
从学习平面直角坐标系开始,就进入到初中代数很重要的一个大的领域—函数这部分了。

初中代数分为三大块:数与式、方程与不等式、函数。

前两部分内容,学生在小学阶段都接触过相关的一些内容,所以学起来不会太陌生,上手比较快。

但是对于函数的相关知识,学生很少接触过,所以刚开始学会速度慢一些,有时会感觉不太顺手,这些都是很正常的现象,学生和家长也不必过于担心。

这其实也是一个好机会,因为大家都没太接触过,基本处于同一条起跑线,只要认真去学,其实是一次重新塑造自己的机会。

函数这一大块又可以分为2大部分,一是平面直角坐标系,二是4大类具体的函数(一次函数、正比例函数、反比例函数、二次函数)。

中考的重点在第二块内容,但是平面直角坐标系的内容,是学习整个函数的基础,它是我们研究具体函数的工具,再从长远一点说,它是学生高中学习平面解析几何和空间坐标系的基础,所以是很重要的,这一点大家一定要重视。

下面谈一下具体学这部分应该注意的问题。

这一部分主要有
3个必须要掌握的内容:1.平面直角坐标系的一系列基本概念,比如坐标轴、象限、点的坐标等等。

内容不难,但希望刚开始学习时一定打下一个好的基础,学扎实了。

2.坐标的对称。

这个内容中有一个难点,就是某个点关于另一个点的对称点的求法,是需要学生下一点功夫研究一下的。

3.坐标的平移。

这部分希望在学习时真正理解平移的内涵,灵活运用。

比如说如果点不变,坐标轴平移了,怎么办?像这些问题都是需要灵活处理的。

除了这三部分课本规定的必学内容外,还有2个需要额外学习的,一是特殊直线的表示方法,二是距离。

可能一些有经验的老师就会在课上直接给大家补充,如果不补充大家可以找一些课外辅导资料自己学习一下。

因为这两部分虽然稍微难一些,但是对于深入理解平面直角坐标系的内容和为后续的一次函数打下基础都是很有好处的,所以希望大家学习一下。

特殊直线的表示主要掌握6条特殊直线的表示:x轴、y 轴、平行于x轴的直线、平行于y轴的直线、第一和第三象限的角平分线、第二和第四象限的角平分线。

距离这部分掌握“点到特殊直线的距离”和“两点之间的距离”这两个
内容即可。

相关文档
最新文档