制氢工艺的几种路线及转化工艺介绍

合集下载

制氢工艺流程

制氢工艺流程

制氢工艺流程制氢工艺是指将天然气、石油、煤等化石燃料中的碳氢化合物转化为氢气的过程。

制氢工艺流程通常包括原料净化、蒸汽重整、变换反应和气体净化等环节。

下面将详细介绍制氢工艺的流程及各环节的主要作用。

首先,原料净化是制氢工艺的第一步。

在这一环节中,天然气、石油或煤等化石燃料中的杂质和硫化物将被去除,以保证后续反应的高效进行。

原料净化通常采用吸附、脱硫和脱氮等技术,确保原料气的纯度和稳定性。

接下来是蒸汽重整环节。

在蒸汽重整反应器中,将原料气和水蒸汽进行催化反应,生成一氧化碳和氢气。

这一步骤是制氢工艺中最关键的环节之一,因为它直接影响到氢气的产量和质量。

蒸汽重整反应需要高温和催化剂的作用,以保证反应的高效进行。

随后是变换反应环节。

在变换反应中,一氧化碳和水蒸汽将继续进行反应,生成更多的氢气和二氧化碳。

这一步骤可以通过水煤气变换、甲醇变换或低温变换等不同的工艺来实现。

变换反应的目的是将一氧化碳和水蒸汽充分利用,提高氢气的产量和纯度。

最后是气体净化环节。

在气体净化中,通过吸附、凝析和膜分离等技术,将氢气中的杂质和残余的一氧化碳、二氧化碳等气体去除,以保证制得的氢气符合工业和化工用氢的要求。

气体净化是制氢工艺中至关重要的一环,直接关系到氢气的纯度和稳定性。

综上所述,制氢工艺流程包括原料净化、蒸汽重整、变换反应和气体净化等环节。

每个环节都有其独特的作用和重要性,只有各个环节协调配合,才能保证制氢工艺的高效、稳定和可持续进行。

希望本文的介绍能够对制氢工艺有所了解,为相关领域的研究和应用提供参考和指导。

工业制氢气的方法

工业制氢气的方法

工业制氢气的方法
工业制氢气的方法主要有以下几种:
1. 蒸汽重整法(Steam Methane Reforming,SMR):
•这是工业上最常用的制氢方法。

•首先,甲烷(天然气)与水蒸气反应产生一氧化碳和氢气。

•反应方程式:CH₄ + H₂O → CO + 3H₂
•然后,一氧化碳与水蒸气反应,生成二氧化碳和更多的氢气。

•反应方程式:CO + H₂O → CO₂ + H₂
•这个过程在高温下进行,通常需要使用催化剂。

2. 煤气化法(Gasification):
•煤、石油等碳质原料通过气化反应生成合成气,然后通过水煤气变换反应(Water Gas Shift,WGS)将一氧化碳转化为更多的氢气。

•反应方程式:CO + H₂O → CO₂ + H₂
3. 电解法(Electrolysis):
•通过电解水来分解水分子,将氢气和氧气分离。

•反应方程式:2H₂O → 2H₂ + O₂
•电解法有水电解和碱性水溶液电解等不同的方法。

4. 部分氧化法(Partial Oxidation):
•部分氧化法是在有限氧气条件下,使甲烷或其他碳氢化合物与氧气反应,生成氢气和一氧化碳。

•这个方法一般在高温下进行,通常需要催化剂。

5. 溶液法:
1/ 2
•通过将金属与酸性溶液反应来产生氢气。

•反应方程式:Zn + 2HCl → ZnCl₂ + H₂
不同的制氢方法具有各自的优缺点,选择取决于原材料的可用性、经济性、能源效率和环境考虑等因素。

在工业上,常根据具体需求和条件采用不同的制氢方法。

2/ 2。

制氢工艺流程精选全文

制氢工艺流程精选全文

AV 12
AV 25 AV 17
φ8X1.5-SS
φ14X2-SS
φ14X2-SS φ14X2-SS
φ14X2-SS
φ14X2-SS
φ18X2-SS φ18X2-SS
干燥器工作过程
• 干燥部分设两台吸附干燥器(1-15、1-16)一台工作,另一台再生,互相切 换,交替工作,连续供气。
• 1)干燥器(1-15)吸附(1-16)加热再生过程。电解氢气经AV-24进入干燥 器(1-16)进行内部分子筛的加热再生,气体经氢气气体冷却器(1-18)通 过阀门AV-14、AV-13进入氢气气体冷却器1-17进入吸附干燥器1-15进行吸附 干燥再经气体过滤器1-14过滤进入下一环节。氢气中的水分在气体冷却器中 凝结经阀AV-16、AV-15定时通过排水水封(12)排凝。
A塔工作
B塔再生
上位机监控
切换 动作
冷却上水 冷却回水
排污
天津市大陆制氢设备有限公司氢气纯化流程图(产品气再生)
氮气 原料氢
用氢设备 氢储备系统
脱氧塔
A塔再生
B塔工作
上位机监控
切换 动作
冷却上水 冷却回水
排污
天津市大陆制氢设备有限公司氢气纯化流程图(产品气再生)
氮气 原料氢
用氢设备 氢储备系统
脱氧塔
补水系统
• 主要由补水箱,碱液箱,两台补水泵,一 台配碱泵组成。Ⅰ补水泵把水打入#1制氢 装置氢侧和氧侧分离器中,Ⅱ 补水泵把水 打入#2制氢装置氢侧和氧侧分离器中。配 碱泵把碱液打入电解槽中。
补水系统图
T
补水箱
碱液箱
Ⅰ补水泵 Ⅱ补水泵
配碱泵
冷却水系统
• 冷却设备有:氢(氧)分离器,碱液冷却器, 气体冷却器。

制氢工艺流程

制氢工艺流程

制氢工艺流程
《制氢工艺流程》
制氢是指利用各种化学或物理方法从化石燃料或其他原料中分离出氢气的过程。

在目前的经济环境下,能源和环保的重要性愈发凸显,因此制氢技术的研发和应用也日益受到重视。

下面将介绍一种常见的制氢工艺流程。

首先是蒸汽重整法。

这是目前最常用的工业制氢方法之一,其工艺流程如下:首先,通过水煤气变换法或者天然气蒸汽重整反应,将原料气中的一氧化碳转化为氢气和二氧化碳。

然后,利用冷凝等方法将产生的气体混合物冷却,将水和二氧化碳从中分离出来。

最后,通过加注其他气体来调整氢气的纯度。

第二种工艺即是甲醇蒸汽重整法。

这种方法主要使用甲醇作为原料,首先将甲醇和水分混合制成甲醇水蒸汽,然后将甲醇蒸汽与氧气在催化剂的作用下反应,生成氢气和二氧化碳。

在后续的纯化过程中,通过吸收剂吸附二氧化碳,再通过蒸馏将剩余的甲醇和水分离。

最终得到高纯度的氢气。

除此之外,还有许多其他制氢工艺流程,如电解水法、水煤气变换法等等,各自有其独特的优势和适用范围。

无论是哪种工艺流程,目的都是为了得到高纯度的氢气,以满足各种不同领域的需求,如石油化工、能源、电子等。

总的来说,制氢工艺流程是一个相对复杂的过程,需要经过多个步骤的反应和处理才能得到高纯度的氢气。

然而,随着技术
的不断进步和创新,相信未来将会有更多更高效的制氢工艺流程涌现,为人类社会的可持续发展提供更强有力的支撑。

制氢的技术路线

制氢的技术路线

制氢的技术路线随着全球能源需求的不断增长和可再生能源的推广应用,制氢作为一种清洁能源具有越来越重要的地位。

制氢的技术路线主要包括化石能源制氢、电解水制氢、光电催化制氢和生物制氢等几种途径。

1. 化石能源制氢化石能源制氢是目前应用最广泛的制氢技术路线之一。

该路线主要通过对天然气、煤炭等化石能源进行加热分解或者气体转化反应,产生氢气。

其中,最常用的方法是甲烷蒸汽重整法,即通过将甲烷与蒸汽反应,生成氢气和二氧化碳。

此外,还可以通过煤炭气化、煤炭燃烧等方式制备氢气。

化石能源制氢技术成熟,但存在着对环境的污染问题。

2. 电解水制氢电解水制氢是一种使用电能将水分解为氢气和氧气的技术路线。

该方法将水置于电解池中,通过加电解离水分子,生成氢气和氧气。

电解水制氢技术具有高纯度氢气产出、无污染排放等优点。

目前,常用的电解水制氢方法有碱性电解法、酸性电解法和固体氧化物电解法。

其中,碱性电解法是应用最广泛的方法,但电解水制氢过程能耗较高,需要大量电能。

3. 光电催化制氢光电催化制氢是一种利用半导体材料的光电化学性质将水分解为氢气和氧气的技术路线。

该方法通过将半导体材料暴露在阳光下,利用光能激发电子,从而促使水分子发生光催化反应,生成氢气。

光电催化制氢技术具有能源效率高、无污染排放等优点,但目前仍面临着催化剂活性低、光电转换效率有限等挑战。

4. 生物制氢生物制氢是一种利用微生物代谢产生氢气的技术路线。

该方法通过利用某些微生物的代谢特性,使其在特定环境下产生氢气。

生物制氢技术具有原料来源广泛、低能耗、无污染等优点。

目前,常用的生物制氢方法有暗发酵法、光合发酵法和光合非硫细菌法等。

生物制氢技术仍处于研究和开发阶段,需要进一步提高产氢效率和催化剂稳定性。

制氢的技术路线主要包括化石能源制氢、电解水制氢、光电催化制氢和生物制氢等几种途径。

每种技术路线都有其优缺点,需要根据实际应用需求和环境因素选择合适的制氢方法。

随着科技的进步和创新,制氢技术将逐渐向更高效、更环保的方向发展,为推动清洁能源产业发展发挥重要作用。

制氢主要工艺

制氢主要工艺

制氢主要工艺氢气是人类生活中不可或缺的能源之一,它可以作为燃料,也可以用于制造化学品。

制氢主要有三种工艺:热解法、电解法和化学反应法。

1. 热解法热解法是将天然气或其他烃类物质加热至高温,使其分解成氢气和碳。

这种方法可以通过两种不同的方式来实现:直接热解和间接热解。

直接热解是将天然气或烃类物质直接加热至高温,使其分解成氢气和碳。

这种方法需要高温和高压,通常在反应器内进行。

间接热解是通过热交换器将热能转移到反应器中,以实现分解反应。

这种方法可以减少反应器的磨损。

2. 电解法电解法是将水分解成氧气和氢气的方法,通常使用电解池来实现。

电解池由两个电极组成,分别是阴极和阳极。

在电解过程中,电子从阴极流入阳极,水分子被分解成氧气和氢气。

这种方法的优点是不需要使用化石燃料,因此不会产生二氧化碳等有害气体。

但是,电解法的缺点是成本较高,因为需要大量的电能。

3. 化学反应法化学反应法是将化学反应用于制氢的方法,通常使用天然气、煤或其他烃类物质作为原料。

这种方法通常需要使用催化剂来促进反应的进行。

化学反应法中最常用的是煤气化法。

这种方法将煤转化为合成气,然后使用催化剂将合成气转化为氢气和一些其他化学品。

这种方法的优点是可以利用廉价的煤作为原料,但缺点是会产生大量的二氧化碳等有害气体。

总结以上三种制氢主要工艺各有优缺点,具体应用要根据实际情况而定。

热解法和化学反应法适用于大规模的工业生产,而电解法则适用于小规模和分散的生产。

未来,随着技术的不断发展和能源环境的改变,制氢的工艺也将不断创新和改进。

制氢工艺流程

制氢工艺流程

制氢工艺流程制氢工艺是指通过化学反应将水分解成氢气和氧气的过程。

制氢工艺可以分为热化学法、电化学法和生物法三种主要方法。

其中,热化学法是目前应用最为广泛的制氢方法之一,下面将介绍热化学法制氢的工艺流程。

首先,热化学法制氢的工艺流程包括蒸汽重整、部分氧化和水煤气变换三个主要步骤。

在蒸汽重整过程中,通过高温和催化剂的作用,将天然气或其他碳氢化合物与水蒸气反应,生成一氧化碳和氢气。

接下来,部分氧化将一氧化碳和水蒸气在高温下反应,生成二氧化碳和再生氢气。

最后,水煤气变换是将一氧化碳和水蒸气在催化剂的作用下转化为二氧化碳和再生氢气的过程。

其次,制氢工艺流程中需要考虑的关键技术包括催化剂的选择、反应温度和压力的控制以及产物气体的净化和分离等方面。

选择合适的催化剂对于提高反应速率、降低反应温度和提高产氢效率至关重要。

此外,控制反应温度和压力可以影响反应的平衡和产氢速率,需要根据具体工艺条件进行合理的调节。

在产物气体的净化和分离过程中,需要去除杂质气体,提高氢气的纯度,以满足不同工业领域对氢气纯度的要求。

最后,现代制氢工艺流程还需要考虑能源消耗和环境保护等方面。

随着能源需求的增长和环境污染的加剧,制氢工艺需要朝着低能耗、高效率和清洁生产的方向发展。

因此,开发新型高效催化剂、优化反应条件、提高氢气纯度和降低能源消耗是当前制氢工艺研究的热点和难点。

综上所述,制氢工艺流程是一个复杂的系统工程,涉及多个领域的知识和技术。

通过不断的研究和创新,相信制氢工艺会在未来发挥更加重要的作用,为人类社会的可持续发展做出贡献。

天然气制氢工艺流程图

天然气制氢工艺流程图

天然气制氢工艺流程图
天然气制氢是一种通过天然气催化蒸汽重整法制取氢气的工艺。

本文将简要介绍天然气制氢的工艺流程。

天然气制氢的工艺流程主要包括前处理、重整、变换、纯化和压缩等几个关键步骤。

首先是前处理,即对原料天然气进行除尘、除水、除硫等处理,以保证进入重整阶段的天然气质量合格。

前处理阶段还可以通过洗涤来去除一部分CO2。

接下来是重整阶段。

在重整炉中,通过添加催化剂,将天然气中的甲烷和水蒸汽在高温和高压的条件下发生气相催化反应,产生氢气和一氧化碳。

反应的化学方程式如下:
CH4 + H2O → CO + 3H2
然后是变换阶段。

在这一阶段,将重整产生的气体通过变换反应器,使一氧化碳与水蒸汽发生变换反应,生成二氧化碳和氢气。

变换后的反应气体中的一氧化碳含量将大大降低,达到了制氢的纯化要求。

变换反应的化学方程式如下:
CO + H2O → CO2 + H2
继而是纯化阶段。

在这一步骤中,变换后的气体需要通过一系列的纯化设备进行处理。

首先通过压缩冷却的方式,将气体中的水和二氧化碳等杂质分离出去,得到较为纯净的氢气。

最后一个步骤是压缩。

由于制氢过程中得到的氢气通常为低压气体,需要通过压缩设备将氢气压缩到需要的压力,以满足使用的需要。

需要注意的是,天然气制氢工艺中的每个步骤都是复杂而关键的,需要使用高科技设备和高效催化剂来保证反应的效果和气体的纯化度。

综上所述,天然气制氢的工艺流程包括前处理、重整、变换、纯化和压缩等步骤。

通过以上的流程,天然气中的甲烷可以被转化为高纯度的氢气,具有广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制氢工艺技术路线前言:在制氢工艺路线选择上,采用不同原料和工艺有多种选择,但长时间以来以天然气为原料制氢的工艺路线一直占有重要的地位,尽管能源危机以来,天然气一直在涨价,煤炭制氢工艺路线受到了较大的重视。

国外在进行了利用太阳能、水能、风能及海洋能等制氢实验性研究后,预测电解水用于制氢的前景不可估量,但规模化生产还需要一定时间。

天然气制氢由于其工艺流程较短,建设投资少,天然气的主要成分——甲烷转化为氢气的效率极高,具有生产率高,总能耗低等优点,它在目前和今后一段时间内仍有很大的竞争力。

摘要:本文主要介绍了各种制氢工艺路线,详细介绍了应用较广的烃类蒸汽转化制氢工艺及反应机理。

一、制氢工艺简况国外制氢的主要工艺方法有以烃类(天然气等)为原料的自热转化法、蒸汽转化法和以石油、重油为原料的部分氧化法等制氢工艺,还有利用氨厂弛放气、甲烷化尾气、甲醇尾气、催化重整尾气等富氢气体用变压吸附、低温法或薄膜渗透等方法精制得到一定纯度的氢气。

在众多的制氢工艺路线中以烃类(天然气)为原料的蒸汽转化等工艺在制氢工业上占有较大的优势。

蒸气-烃类转化制氢法这种工艺技术起源较早,最初是在1913~1927年研究发展起来的。

当时,最初包括的主要工艺有Foster、Topsoe,Technip(KT1)、Uhde、Linde等等。

近二十年来,随着科学技术的发展,变压吸附(PSA)技术逐渐得到成熟和完善,在制氢工艺中用能耗较低的PSA净化分离系统。

该系统在简化流程和操作,实现节能等方面效果明显。

近年来,由于炼油行业需要更多的氢气用于加氢处理原油,氢气用量快速增长,制氢装置的规模越来越大。

据统计,采用Technip(KT1)、Uhde、Linde三家工艺技术建设的大型制氢装置业绩最多。

目前,在加拿大建设的最大的单系列甲烷蒸汽转化法制氢装置中便采用了Technip(KT1)工艺,能力达23.6万标准立方米/小时。

甲烷蒸汽转化法制氢工艺的技术核心是蒸汽转化部分,蒸汽转化工序关键设备是转化炉,它包括辐射段和对流段,多年来改进的重点是辐射段转化系统的设计和优化对流段热回收工艺。

不断改进和优化节能设计使整个转化炉的总热效率可提高到9l一93%。

CO变换技术包括高温变换、高温变换串低温变换或中温变换工艺。

采用高串低变换工艺可提高CO变换率,从而节省原料天然气的消耗。

但PSA尾气的热值降低,燃烧气用量增加,整个热效率提高不多,同时低变催化剂价格高、增加低变设备,开车还需要催化剂升温还原设备,使工艺流程变得复杂,装置的投资也增加。

因此只有当燃烧气的价格比原料天然气的价格低得多时,选择高串低变换工艺才有意义,一般情况下制氢装置的变换系统都不设低变。

氢气分离系统采用PSA工艺技术,可满足高纯度的氢气产品,同时工艺操作简单,自动化程度高,操作弹性大,成本低,是天然气转化制氢工艺中的最佳搭配选择。

二、制氢工艺路线2.1水电解制氢原理及工艺流程2.1.1水电解制氢工艺流程工业软水经纯水装置制取纯水,并送入原料水箱,经补水泵输入碱液系统,补充被电解消耗的水。

电解槽中的水,在直流电的作用下被分解成H2与O2,并与循环电解液一起分别进入框架中的氢、氧分离洗涤器后进行气液分离、洗涤、冷却。

分离后的电解液与补充的纯水混合后,经碱液冷却器、碱液循环泵、过滤器送回电解槽循环,电解。

调节碱液冷却器冷却水流量,控制回流碱液的温度,来控制电解槽的工作温度,使系统安全运行。

分离后的氢气由调节阀控制输出,送入氢气储罐,再经缓冲减压后,供用户使用。

2.1.2水电解制氢原理水电解制氢是一种较为方便的方法。

在充满氢氧化钾或氢氧化钠的在电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。

其化学反应式如下:阴极:2H2O+2e=H2↑+2OH阳极:2OH—2e=H2O+1/2O2↑总反应式:2H2O=2H2↑+O2↑根据库仑定律,气体产量与电流成正比,与其它因素无关。

氢氧化钾的作用在于增加水的电导,本身不参加电解反应,理论上是不消耗的。

电解液中加入五氧化二矾的作用是在于降低电解电压。

单位气体产量的电耗,取决于电解电压,电解槽的工作温度越高,电解电压越低,同时也增加了对电解槽材料,主要是隔膜材料的腐蚀。

石棉在碱液中长期使用温度不能超过100℃,因此操作温度选择在80~85℃为宜。

电解压力的选择主要根据用氢的需要。

气体纯度决定于制氢机结构和操作情况。

在设备完好(主要是电解槽隔膜无损坏)操作压力正常(主要是压差控制正常)的条件下,纯度是稳定的。

2.2氨分解制氢设备工艺流程2.2.1氨分解制氢流程简述利用液氨为原料,氨经裂解后,每公斤液氨裂解可制得2.64Nm3混合气体,其中含75%的氢气和25%的氮气。

所得的气体含杂质较少(杂质中含水汽约2克/立方米,残余氨约1000ppm),再通过分子筛(美国UOP)吸附纯化器,气体的露点可降至-600C以下,残余氨可降至3PPM以下.氨裂解制氢炉可用于有色金属,硅钢、铬钢和不锈钢等金属材料和零件的光亮退火、硅钢片的脱碳处理、铜基、铁基粉末冶金烧结、电真空器件的金属零件烧氢处理、半导体器件的保护烧结和封结、钯合金膜扩散纯化氢气的原料气等。

原料氨容易得到,价格低廉,原料消耗较少。

氨裂解来制取保护气体具有投资少,体积小,效率高等优点2.2.2氨分解制氢工作原理氨(气态)在一定温度下,经催化剂(西南院Z204)作用下裂解为75%的氢气和25%的氮气,并吸收21.9千卡热量,其主要反应为:2NH3—3H2+N2整个过程因是吸热膨胀反应,提高温度有利于氨裂解,同时它又是体积扩大的反应,降低压力有利于氨的分解,氨分解制氢设备为使用最佳状态。

2.2.3氢气纯化工作原理当氨分解制氢设备所产生的氢气合格时再进入氢气纯化作进一步提纯处理,裂解氢气的纯度很高,其中挥发性杂质只有微量的残氨和水份,可见只须除去微量残氨和水份即可获得高纯度气体.气体提纯采用变温吸附技术。

变温吸附(TSA)技术是以吸附剂(多孔固体物质)内部表面对气体分子在不同温度下吸附性能不同为基础的一种气体分离纯化工艺.常温时吸附杂质气,加温时脱附杂质气,分子筛表面全是微孔,在常温常压下可吸附相当于自重20%(静态吸附时的水份和杂质,而在350℃左右的温度下,可以再生完全,每24小时切换一次,以得到纯度和杂质含量均合格的产品气体。

2.3催化干气制氢2.3.1催化干气制氢工艺原理以催化干气为原料(轻石脑油为临时备用原料),采用加氢技术将原料中的烯烃饱和为烷烃,并将有机硫、有机氯等杂质转化为无机硫、无机氯,再通过脱氯、脱硫反应器脱除HCl和H2S,使精制后的气体硫含量小于0.5ppm,氯含量小于1ppm,烯烃含量小于0.1%(v)。

精制后的原料采用水蒸汽转化工艺将烃类转化为H2、CO、CO2,转化气中的CO采用中温变换,使其反应生成H2和CO2,变换气中的残余CO、CO2和CH4等杂质,采用变压吸附(PSA)的净化技术进行清除,从而得到纯度为99.9%(v)、CO+CO2<20ppm的产品氢气。

干气(轻烃)蒸汽转化法制氢过程分为原料的净化,烃蒸汽转化,CO中温变换等工艺。

(1)原料净化时原料气在一定的温度、氢气压力和空速条件下,借助加氢催化剂作用,把原料气中硫化物、氯化物脱出,使原料气含硫流量降至0.2ppm,含氯量降直1ppm,以保护好后续催化剂的正常运行。

(2)转化的精制原料气在一定压力、温度、空速、水碳比和催化剂作用下,烃和蒸汽进行反应,转化成气体氢和一氧化碳,同时伴生CO2和少量的残余CH4。

(3)进行中温变换在一定的温、压力、空速、水气比和催化剂作用下,将CO与水反应生成氢气和CO2。

2.3.2催化干气制氢制氢的化学反应机理(1)原料烃中的硫化物以多种形态存在,一般分为无机硫化物和有机硫化物,有机硫化物不能在氧化锌脱硫剂上直接反应被脱除,必须经加氢生成无机硫化物方可被氧化锌脱硫及吸附脱除,有机硫化物在原料中一般由硫醇、硫醚、二硫化物和环状硫化物等,原料气中的硫化物绝大部分是有机硫化物。

加氢过程同样是有机氯转变为无机氯,采用高活性的金属氧化物为活性组分,脱氯剂与氯化氢反应,被固定载体上,达到脱出氯化物目的。

硫醇加氢:R-SH+H2=RH+H2S硫醚加氢:R-S-R’+H2=RH+R’H+H2S噻吩加氢:C4H4S+4H2=C4H10+H2S二硫化碳加氢:CS2+H2=CH4+H2S氧化锌脱硫:H2S+ZnS+H2O(2)烃类的蒸汽转化是将烃类与蒸汽转化为H2和CO少量残余CH4CH4+H2O=CO+H2CO+H2O=CO2+H2(3)CO中温变换是将转化气中的CO与水蒸气继续反应生成CO2和H2。

2.3.3变压吸附(PSA)变压吸附是对气体混合物进行分离提纯的工艺过程,该工艺是多孔性固体物质内部表面对气体分子的物理吸附。

混合气体中的杂质组分在高压具有较大的吸附能力,低压下具有较小的吸附能力,就是利用这种原理吸附剂吸附,解析达到循环吸附解析过程分子筛对一般气体分子的媳妇顺序:H2<N2<CH4<CO<CO2活性炭对一般气体吸附顺序:H2<N2<CO<CH4<CO22.4甲醇裂解工艺2.4.1甲醇裂解工艺介绍为减少化工生产中的能耗和降低成本,以替代被称为“电老虎”的“电解水制氢”的工艺,利用先进的甲醇蒸气重整──变压吸附技术制取纯氢和富含CO2的混合气体,经过进一步的后处理,可同时得到氢气和二氧化碳气。

2.4.2甲醇裂解工艺基本概述甲醇与水蒸气在一定的温度、压力条件下通过催化剂,在催化剂的作用下,发生甲醇裂解反应和一氧化碳的变换反应,生成氢和二氧化碳,这是一个多组份、多反应的气固催化反应系统。

反应方程如下::CH3OH→CO+2H2(1)H2O+CO→CO2+H2(2)CH3OH+H2O→CO2+3H2(3)重整反应生成的H2和CO2,再经过变压吸附法(PSA)将H2和CO2分离,得到高纯氢气。

2.4.3甲醇裂解工艺制取途径工业上利用甲醇制氢有二种途径:甲醇分解、甲醇部分氧化和甲醇蒸汽重整。

甲醇蒸汽重整制氢由于氢收率高(由反应式可以看出其产物的氢气组成可接近75%),能量利用合理,过程控制简单,便于工业操作而更多地被采用。

2.4.4甲醇裂解工艺工艺流程甲醇蒸汽重整是吸热反应,可以认为是甲醇分解和一氧化碳变换反应的综合结果。

我公司蓝博净化科技的甲醇蒸汽重整制氢工艺,经历了多次技术改进,已相当成熟。

该过程的典型工艺流程见图1。

图1.甲醇裂解制氢工艺流程甲醇蒸汽重整反应通常在250-300℃,1-5MPa,H20与CH30H摩尔比为1.0-5.0的条件下进行,重整产物气经过变压吸附等净化过程,可得不同规格的氢气产品。

甲醇蒸汽重整过程既可以使用等温反应系统,也可以使用绝热反应系统。

相关文档
最新文档