第二章 烷烃和环烷烃
第二章 烷烃和环烷烃

四、烷烃的命名
主链的选择:选择最长的连续碳链为主链, 按此链所含的碳原子数称为“某烷”
5 CH3CH2CHCH2CH3
√ CH2CH2CH2CH3 7
庚烷
26
四、烷烃的命名
若有多个等长碳链时,选具有支链数目最多的为主链
8 8 8
3个支链
2个支链
√
4个支链
27
四、烷烃的命名
主链的编号:主链的碳原子编号从靠近支链的 一端开始,依次用阿拉伯数字标出,使支链位次最 小。(最低系列原则)
三、烷烃的同分异构现象
有机化合物普遍存在同分异构现象。
分子式相同而结构不同的化合物称为同分异构 体,这种现象称为同分异构现象。
在同分异构体中,因分子中原子间的连接次序 或连接方式不同而产生的异构称为构造异构。
CH3 CH3CH2CH2CH2CH3 CH3CHCH2CH3
CH3 CH3-C-CH3
CH3
烷烃分子中氢原子数与碳原子数的比值达到了最高值, 因此也称为饱和烃。
烷烃分子中所用碳原子均为sp3杂化,各原子之间都以单 键(σ键)相连。
甲烷是最简单的烷烃,以甲烷为例介绍一下烷烃的结构。
sp3杂化
2p
2s
基态
激发
2p
2s
激基发态态
sp3杂化
2p
2s 激sp3发杂态化
sp3杂化轨道的形成
四个sp3杂化轨道分别指向正 四面体的四个顶点,C位于正四面 题的中心,两轨道间的夹角为 109o28’。
有机化学
第二章 烷烃和环烷烃
知识要点及考核要求
知识要点及考核要求
知识要点及考核要求
第二章 烷烃和环烷烃
由碳氢两种元素组成的有机化合物称为碳氢化 合物,简称烃。其他有机化合物可视为烃的衍生物。
第二章烷烃和环烷烃

(1)乙烷的构象
H3C CH 3
当C-C键旋转时, 可产生无数个构象
有两种典型conformation:
乙烷的两种典型构象的表示方法
优势构象
交叉式 staggered
H
重叠式 eclipsed
作业:P130 /1, 6, 7 ,8; P105 / 8(3) (4) *C2-C3键旋转 阅读Section 1. Alkanes and Cycloalkanes 全文
翻译 1.1第一段,1.2.2第一段,1.2.3 第四段
CH3 CH3 CH C Br
CH3 CH3
四、环烷烃的异构现象
1. 顺反异构 cis-trans isomer (P84) 环烷烃环中C-C单键受环约束不能自由旋转,导致产生顺反异构
HH
H
CH 3
CH 3 CH 3
顺-1,2-二甲基环丙烷
CH 3 H
反-1,2-二甲基环丙烷
练习:写答出案: 1-甲基-3-乙H基环己烷的顺反异构体CH 3
伯碳(1°):一级碳原子,只与1个其他碳原子直接相连
仲碳(2°):二级碳原子,只与2个其他碳原子直接相连
叔碳(3°):三级碳原子,只与3个其他碳原子直接相连
季碳(4°):四级碳原子,只与4个其他碳原子直接相连
CH3
CH3
H3C
C CH2
3° 2°
H
伯氢(1°H):伯碳上的H
仲氢(2°H):仲碳上的H
练习:预测2-甲基丁烷在室温下进行氯代反应所得的一氯代物
Cl
答 案 : C3 C H H C2C H H 3 +C 2l 光 C3 C H C2 C H H 3
2-第二章饱和烃:烷烃和环烷烃

稳定
下 降
17 稳定
2、结构与环的稳定性 、
⑴ 环丙烷的结构与稳定性 成键分析: 成键分析: 环丙烷分子中的碳为SP3杂化 环丙烷分子中的碳为 但其键角却为105.50,偏离了正常键角109.50;其成键电子云也不在 但其键角却为 偏离了正常键角 碳碳连线上,所形成的键为香蕉键或叫弯曲键;该键的特点是:轨 碳碳连线上,所形成的键为香蕉键或叫弯曲键;该键的特点是: 道交叠少,能量高,键弱。 道交叠少,能量高,键弱。 不稳定的原因: 不稳定的原因: ①角张力:键角偏离正常键角而引起的张力。 角张力:键角偏离正常键角而引起的张力。 ②扭转张力:由于构象是重叠式而引起的张力。 扭转张力:由于构象是重叠式而引起的张力。 总张力能:环烷烃比相同碳数的开链烷烃高出的能量。 总张力能:环烷烃比相同碳数的开链烷烃高出的能量。总张力能 来源 于角张力和扭转张力等。总张力能越大,环烷烃 于角张力和扭转张力等。总张力能越大, 越不稳定,越易开环。 越不稳定,越易开环。
烷烃的通式: 环烷烃的通式: 烷烃的通式 CnH2n+2,环烷烃的通式 CnH2n。 具有同一通式,组成上相差CH2及其整倍数的一系列化合物, 具有同一通式,组成上相差 及其整倍数的一系列化合物, 称为同系列。同系列中的各个化合物互为同系物。 称为系差 系差。 称为同系列。同系列中的各个化合物互为同系物。 CH2称为系差。 同系列 同系物 同系物具有类似的化学性质。 同系物具有类似的化学性质。
CH 3 CH 3 CHCH 3
(b)从靠近支链的一端(或按“最低系列”规则)编号 从靠近支链的一端(或按“最低系列”规则) 从靠近支链的一端
1 2 3 4 5 6 7
1
2
3
4
5
6
第二章 烷烃和环烷烃

第二节 同系列和同分异构现象
一、同系列和同系物 • 烷 烃 的 分 子 通 式 为 CnH2n+2 , 环 烷 烃 的 分 子 通 式 为 CnH2n。 • 凡是具有同一分子通式和相同结构特征的一系列化合 物称为同系列(homologous series)。 • 同系列中的化合物互称同系物(homolog)。 • 同系物具有相似的化学性质,物理性质也随着碳链的 增长而表现出有规律的变化。
第 二 章 烷烃 环烷烃
exit
烃(hydrocarbons):
只含有C、H 两种元素的化合物 —— 碳氢化合物
碳原子之间均以C-C单键相连,其 余的价键均为H原子所饱和。 (saturated 烷烃 (alkanes) :甲烷、乙烷等; hydrocarbons) 环烷烃(cycloalkanes):
三级戊基 (Tert or t )
三级丁基 叔丁基
新戊基 (neo)
*3 有机化合物系统命名的基本格式
构型 +
R, S; D, L; Z, E; 顺,反
取代基
+
母体
官能团位置号 +名称
取代基位置号 + 个数 + 名称
(有多个取代基时,中文按顺 (没有官能团时 序规则确定次序,较优的在后。 不涉及位置号) 英文按英文字母顺序排列)
(1) 直链烷烃的命名: 含10个碳原子以内的直链烷烃, 从1-10依次用 天干名称甲、乙、丙、丁、戊、己、庚、辛、壬、 癸加上烷来命名; 而含碳原子10个以上的直链烷烃, 用数目加上烷来命名(P27) 。
(2) 支链烷烃的命名 *1 碳原子的级
CH3 H3C C CH3 CH2 CH3 CH
1oH 2oH 3oH
有机化学课件第-二-章烷烃和环烷烃_图文

烷烃熔点的特点 (1) 随相对分子质量增大
而增大。 (2) 偶数碳烷烃比奇数碳
烷烃的熔点升高值 大 (如右图)。 (3)相对分子质量相同的烷 烃,叉链增多,熔点 下降。
偶数碳 奇数碳
(二) 沸点
沸点大小取决于分子间的作用力
烷烃沸点的特点
(1)沸点一般很低。 (非极性,只有色散力)
H2O2 + Fe2+
RCOO-
-e-
电解
HO• + HO- + Fe3+ RCOO •
自由基的稳定性
均裂 H=359.8kJ/mol (88kcal/mol) 共价键均裂时所需的能量称为键解离能。 键解离能越小,形成的自由基越稳定。
苯甲基自由基
稀丙基自由基 三级丁基自由基 异丙基自由基
乙基自由基 甲基自由基 苯基自由基
Hammond假设:过渡态总是与能量相近 的分子的结构相近似。
甲烷氯代反应势能图
甲烷氯代反应势能图的分析
1、第一步反应的活化能比较大,是速控步骤。 2、第二步反应利于平衡的移动。 3、反应 1 吸热,反应 2 放热,总反应放热,所以反应 只需开始时供热。 4、过渡态的结构与中间体(中间体是自由基)相似, 所以过渡态的稳定性顺序与自由基稳定性顺序一致。 推论:3oH最易被取代,2oH次之,1oH最难被取代。
甲烷氯代反应的适用范围
1、 该反应只适宜工业生产而不适宜实验室制备。 2 、该反应可以用来制备一氯甲烷或四氯化碳,不适 宜制备二氯甲烷和三氯甲烷。 3、无取代基的环烷烃的一氯代反应也可以用相应方法 制备,C(CH3)4的一氯代反应也能用此方法制备。
(2) 甲烷卤代反应活性的比较
第二章 饱和烃:烷烃和环烷烃

3
5
CH
3
HC CH
4
CH
烷烃:饱和开链烃。 特征:C与C以单键相连,其余价键都为氢原子饱和。 通式为:CnH2n+2
环烷烃:饱和环烃。 特征:C与C以单键相连成环,其余价键都为氢 原子饱和。 通式为:CnH2n (单环烷烃)
烷烃和环烷烃统称为饱和烃
烷烃和环烷烃主要存在于石油和天然气中, 天然气主要由甲烷以及少量的乙烷、丙烷和丁烷 组成。石油是一种复杂混和物,主要是含1到40个 碳原子的烃,通过精馏可以将石油分离成沸点不 同的有用馏分。 天然气: 汽油: 煤油: 柴油: 沥青: CH4~C4H10 C5H12~C12H26 C12H26~16H34 C15H32~C18H38 C20以上
烷基自由基
伯
仲
叔
烷基自由基的类型
烷基自由基的结构
烷基自由基的稳定性:叔〉仲〉伯
烷基自由基的稳定性与C-H的均裂能有关:
CH3CH2CH2-H
离解能 (kJ/mol) 410
(CH3)2CH-H (CH3)3C-H
397 381
在烷烃氯化反应中,产生烷基自由基的步骤 是整个反应中最困难的一步。是控制反应速度的 步骤。生成的烷基自由基越稳定,所需的活化能 越小,反应越容易。
CH3CH2CH2CH2CH2CH3
正己烷
(CH3)2CHCH2CH2CH3
异己烷
(CH3)3CCH2CH3
新己烷
• 系统命名法:
采用IUPAC(International Union of Pure and Applied Chenistry)国际纯粹与应用化学联合会的命 名原则,结合我国文字特点制定的。
键旋转引起的位能变化曲线
第二章 烷烃和环烷烃

C H3C H2C H2 C H3C H2C H2C H2 C H3C HC H 2 C H3
(正)丁基 Bu 异丁基 i -Bu
C H3C HC H C H3 仲丁基 2 s-Bu C H3 C H3 C C H3 叔丁基 t-Bu
在生理状况下,机体自由基一方面不断产 生,另一方面又不断清除,活性氧处于产生与清 除平衡状态。一旦活性氧的产生和清除失去平衡 ,过多的自由基就会造成对机体的损害,从而引 起多种疾病,并可诱发癌症和导致衰老。 天然抗氧化酶系统:超氧化物歧化酶(SOD) 、 过 氧 化 氢 酶 ( CAT)、 谷 胱 甘 肽 过 氧 化 物 酶 (GSH-Px)
构象异构
(一) 烷烃的构造异构(constitutional isomerism)
戊烷有3种碳链异构体
CH3 CH3CH2CH2CH2CH3 CH3CHCH2CH3
正戊烷 异戊烷
CH3 CH3-C-CH3 CH3
新戊烷
碳原子数 异构体数 4 5 6 7 2 3 5 9
碳原子数 8 9 10 20
异构体数 18 35 75 366 319
天然抗氧剂(自由基清除剂):VE、 Vc、 2巯基乙胺、谷胱甘肽、辅酶Qn(泛醌)、-硫辛酸 等
第二节 环 烷 烃
一、脂环烃的分类和命名
(一) 分类 C3-C4
根 据 环 数 多 少 分
小环 普通环
单脂环烃
C5-C6
C7-C12
中环
C13以上 大环 多脂环烃 桥环 螺环
(二) 命名
1. 单脂环烃: 在相应的烃名前加“环”字;英文名加词头cyclo
2第二章烷烃和环烷烃

H
109°28′
1.09×10 –10m
415 kJ/mol
2 乙烷的结构
H H
H H
H H C C H H H
H
H
C C
H
H
H H
H
乙烷的分子轨道示意图
烷烃碳链的锯齿状
伯碳原子(1 ):与一个碳原子相连 仲碳原子(2 ):与两个碳原子相连
。
。
仲(20)
碳 原 子 类 型
CH3 CH3 季(40)
b
d
二 环烷烃的结构与稳定性
电子云偏向
环平面外侧, 容易受等亲
共价键的形成是由于原子轨道相互交叠的结果, 交叠程度越大,键越稳定。sp3杂化轨道沿轨道 对称轴(两个成键原子连线)方向实现最大交盖, 形成109028′的键角。
弯曲键(香蕉键)
SP3杂化轨道扭 偏了一定角度
电试剂进攻,
故似烯烃进 行加成反应。
辛、壬、癸;10个碳以上,用数字十一、十二等表示。
如:C6H14 己烷 C8H18 辛烷 C12H26 十二烷
2 烷烃的命名 区别异构体用“正”、“异”、“新”。
直链烷烃——叫“正” CH3 具有 CH3-CH- 结构(端位第二个碳原子有2个CH3)——叫“异”
CH3 具有 CH3-C- 结构,即(端位第二个碳原子有3个CH3)——叫“新” CH3
(C-C 键能为345.6 KJ/mol;C-H 键能为415.3 KJ/mol)
烷烃的稳定性不是绝对的,在一定条件下 (如光、高温或催化剂的影响下)也可以 发生某些反应。
一 氧化反应
C n H 2n+2
3 n +1 + ( ) O2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章烷烃和环烷烃
1.写出只有伯氢原子,分子式为C8H18烷烃的结构式。
2.为什么没有季氢原子?
3.命名下列化合物。
4.写出下列烷烃或环烷烃的结构式
⑴不含有仲碳原子的4碳烷烃。
⑵具有12个等性氢原子、分子式为C5H12的烷烃。
⑶分子中各类氢原子数之比为:1°H:2°H:3°H = 6:1:1,分子式为C7H16的烷烃。
⑷只有1个伯碳原子、分子式为C7H14的环烷烃。
写出所有可能的环烷烃的结构式并加以命名。
5.化合物2,2,4-三甲基己烷分子中的碳原子,各属于哪一类型(伯、仲、叔、季)碳原子?
6.元素分析得知含碳84.2%、含氢15.8%,相对分子质量为114的烷烃分子中,所有的氢原子都是等性的。
写出该烷烃的分子式和结构式,并用系统命名法命名。
7.将下列化合物按沸点降低的顺序排列
⑴丁烷⑵己烷 3
⑶-甲基戊烷
⑸-二甲基丁烷⑹环己烷
⑷-甲基丁烷 2,3
2
8.按稳定性从大到小的次序,用Newman投影式表示丁烷以C2—C3键为轴旋转的4种典型构象式。
9.化合物A的分子式为C6H12,室温下能使溴的四氯化碳溶液褪色,但不能使高锰酸钾溶液褪色。
A氢化得2,3-二甲基丁烷,与HBr反应得化合物B(C6H13Br)。
写出化合物A 和B的结构式。
10.写出下列化合物的构象异构体,并指出较稳定的构象。
(1)异丙基环己烷(2)1-氯环己烷
11.将下列自由基按稳定性从大到小的次序排列。
12.为什么凡士林在医药上可用作软膏的基质?
13.完成下列反应式
14.写出下列药物的构象。
(1)镇痛药哌替啶(杜冷丁,Dolantin)的主要代谢产物哌替啶酸的结构为:
写出哌替啶酸的构象(—COOH在e键的构象)。
(2)促动力新药西沙必利(Cisapride)的结构为:
写出西沙必利的优势构象。
15.体内的抗坏血酸可使α-生育酚自由基还原再生为α-生育酚,同时抗坏血酸转变为抗坏血酸自由基。
完成上述体内的自由基反应。
16.环己烷与氯在光或热的条件下,可生成一氯环己烷的反应是自由基的链反应。
写出链引发、链增长、链终止的各步反应式。
17.在C6H14的构造异构体中,哪几种异构体不能用普通命名法命名。
18.试写出下列烷基的名称。
(1)CH3CH2 CH2 CH2― (2)(CH3)2CH―CH2―CH2―
19.试比较(1)丁烷、丙醇和丙胺的沸点;(2)丁烷、甲基乙基醚CH3―O―CH2CH3和丙醇在水中的溶解度。
20.试推测(1)辛烷(2)2,2―二甲基己烷(3)新辛烷和(4)2,2,3,3―四甲基丁烷燃烧热的大小。
21.(1)写出的反应机理。
(2)对于上式反应1940年前人们曾设想过下列机理,但没有被人们普遍认可,试说明可能的原因。
(3)为什么在引发阶段不一定先由乙烷产生CH3·,而是由Cl2产生Cl·?
22.等摩尔的新戊烷和乙烷的混合物进行氯代反应,一氯代反应产生氯代新戊烷[(CH3)3CCH2Cl]和氯乙烷的比例为2.3:1,比较新戊烷和乙烷中1°H的活性。
23.写出均裂(CH3)3CCH2C(CH3)3分子中每个C―C键所形成烷基自由基的结构式并比较它们的相对稳定性。
24.写出下列烷烃和烷基的构造式。
(1) 3-甲基戊烷(2) 2,3,4-三甲基癸烷(3) 异己烷(4) 4-异丙基十一烷
(5) 新戊基(6) 反-1-甲基-4-叔丁基环己烷(7) 环戊基甲基(8) 二环[3.3.0]辛烷
25.化合物A(C6H12),在室温下不能使高锰酸钾水溶液褪色,与氢碘酸反应得B(C6H13I)。
A氢化后得3-甲基戊烷,推测A和B的结构。