分子标记技术
分子标记技术

多组学数据整合
采用降维技术对高维数据进行处理,如主成分分析、t-SNE等,以降低数据复杂度并提高可视化效果。
数据降维处理
结合多种分析方法对整合后的数据进行联合分析,如聚类分析、差异表达分析、功能注释等,以深入挖掘数据中的生物学意义。
02
CHAPTER
DNA分子标记方法
利用随机引物对基因组DNA进行PCR扩增,通过电泳等方法检测扩增产物多态性。
原理
特点
应用
实验操作简便、快速、成本低,但稳定性较差,重复性有待提高。
适用于遗传多样性分析、品种鉴定、基因定位等研究。
03
02
01
基于DNA单链在非变性条件下的构象多态性,通过电泳等方法检测不同构象的DNA单链。
前景展望
随着基因组学、转录组学等高通量测序技术的不断发展,未来分子标记技术将更加精准、高效和便捷。同时,随着人工智能和大数据技术的融合应用,分子标记技术将在更多领域发挥重要作用,如精准医疗、个性化治疗、生态环境监测等。此外,随着合成生物学和基因编辑技术的不断发展,利用分子标记技术进行基因定位和编辑将成为可能,这将为遗传性疾病的治疗和农作物遗传改良提供新的思路和方法。
原理
微小RNA(miRNA)和长非编码RNA(lncRNA)是两类重要的非编码RNA,它们在基因表达调控中发挥关键作用。miRNA通过靶向mRNA导致其降解或抑制其翻译来发挥作用,而lncRNA则通过多种机制调节基因表达。
原理
miRNA和lncRNA作为分子标记在疾病诊断、预后评估和治疗靶点筛选等方面具有潜在应用价值。例如,在癌症研究中,特定miRNA或lncRNA的表达水平与癌症的发生、发展和转移密切相关,可作为癌症诊断和治疗的生物标志物。此外,miRNA和lncRNA还可用于研究细胞分化、发育和逆境胁迫等生物学过程。
常用分子标记技术原理及应用

单链制备
通过加热或化学方法 将双链DNA变性为 单链。
凝胶电泳
将单链DNA在聚丙 烯酰胺凝胶上进行电 泳,并观察迁移率变 化。
结果分析
通过比较正常和突变 DNA的迁移率,确 定是否存在基因突变。
应用实例
遗传病诊断
SSCP技术可用于检测与遗传病相关的 基因突变,如囊性纤维化、镰状细胞 贫血等。
肿瘤研究
特点
高分辨率、高灵敏度、可重复性和可 靠性,能够检测出微小的基因组差异 ,广泛应用于遗传育种、生物多样性 保护、人类医学等领域。
分子标记技术的应用领域
遗传育种
通过分子标记技术对动植物进行遗传资源鉴定、品种纯度 鉴定、遗传连锁分析和基因定位等,提高育种效率和品质。
生物多样性保护
利用分子标记技术对物种进行遗传结构和亲缘关系分析, 评估物种的遗传多样性和濒危程度,为保护生物多样性提 供科学依据。
人类医学
分子标记技术在人类医学中用于疾病诊断、药物研发、个 体化医疗等方面,有助于提高疾病的预防、诊断和治疗水 平。
常用分子标记技术简介
RFLP(限制性片段长度多态性)
SSR(简单序列重复)
利用限制性内切酶对DNA进行切割,产生 不同长度的片段,通过电泳和染色检测多 态性。
利用串联重复的DNA序列多态性进行标记 ,通过PCR扩增和电泳检测多态性。
分子标记辅助育种
利用AFLP技术标记控制重要性状 的基因,辅助育种者快速筛选具 有优良性状的个体。
植物分子生态学研
究
利用AFLP技术分析植物种群遗传 结构、物种演化和生态适应性等 方面的研究。
04
SSR技术
原理
简单序列重复标记(SSR)是一种基于PCR的分子标记技 术,利用微卫星序列的重复单元进行扩增,通过检测等位 基因的长度多态性来识别基因组中的变异。
遗传学中的分子标记技术

遗传学中的分子标记技术遗传学是研究遗传现象的一门学科,而分子标记技术则是其中的一个重要领域。
它不仅可以帮助我们研究物种间的遗传联系,还可以应用于医学和农业领域,为人们的生活带来更多便利和进步。
本文将介绍遗传学中的分子标记技术,探讨其在实践中的应用以及未来的发展方向。
一、分子标记技术简介分子标记技术是利用分子水平的遗传标记对个体、品系或群体进行鉴别、分类、分子配对等分析的一种技术。
目前常用的几种分子标记技术包括限制性片段长度多态性(RFLP)、随机扩增多态性(RAPD)、序列标记位点(SSR)和单核苷酸多态性(SNP)等。
RFLP技术是一种基于DNA序列限制性切割位点的分析方法。
通过将基因组DNA切成不同的长度片段,然后对这些片段进行电泳分离,最后通过DNA探针的帮助确定特定位点的DNA序列。
RAPD技术则是一种无需事先知道DNA序列的技术,通过使用随机序列的寡核苷酸为引物进行PCR扩增,经过电泳分离后可以得到特定长度的DNA条带。
SSR技术则是利用序列中重复核苷酸序列的多态性,选取特定的序列扩增后进行电泳分离,得到条带后可以确定所研究物种基因组的遗传变异情况。
SNP技术则是一种最新的分子标记技术,它是基于单核苷酸变异位点的方法,通过测量单个碱基的点突变来分析遗传多样性。
二、分子标记技术的应用1.遗传分析分子标记技术在遗传学研究中可以用于基因型鉴定、亲缘关系分析、遗传多样性评估等方面。
例如,利用SSR技术可以分析豆科作物的遗传多样性,帮助育种学家定位有用的基因,并加速豆科作物的育种进程。
另外,RFLP技术还可以用于协助医学领域的DNA指纹分析,对于识别罪犯身份、证明亲子关系等方面都有巨大贡献。
2.病理学研究在病理学研究中,分子标记技术可以用于检测各种疾病的基因突变、表达谱的差异、重要调节基因的变化等。
例如,SNP技术可以用于筛查患有代谢性疾病的患者,SSR技术可以用于评价肿瘤的恶性程度。
3.农业领域分子标记技术在农业领域中的应用越来越普遍,可以用于作物品种鉴别、繁殖方式分析、作物改良等方面。
分子标记的特点

分子标记的特点分子标记是一种通过分子化合物内部的特定结构部位进行标记的分析方法。
这种标记技术可以用于分子识别、药物筛选、生化分析等领域。
分子标记具有以下特点:1.特异性:分子标记能够选择性地与特定的分子结构部位发生反应,从而实现对目标分子的特异识别。
这种特异性使得分子标记在分子识别和定量分析等方面具有重要的应用价值。
2.灵敏性:分子标记技术能够实现对目标分子的高灵敏检测。
分子标记通常利用一些高度灵敏的分析方法,如光谱法、质谱法等来检测分子标记的信号,并通过信号强度的变化来判断目标分子的存在与否。
3.多样性:分子标记技术可以使用不同的标记物和标记方法,从而实现对不同类型分子的标记。
常用的分子标记方法包括荧光标记、辐射标记、放射性标记等。
这些不同的标记方法可以选择性地用于不同的分子分析需求,提高了分子标记的适用性和灵活性。
4.易操作性:分子标记技术一般具有较简单的实验操作步骤和条件。
通常只需在反应体系中添加适量的标记物,经过一定的反应时间,即可完成对目标分子的标记。
这种操作简便性使得分子标记技术适用于大规模实验和高通量分析。
5.实时性:分子标记技术可以实现对目标分子的实时监测和分析。
通过使用具有实时检测功能的分子标记物,可以实时观察目标分子的动态变化过程,获得更为准确和全面的分析结果。
6.生物相容性:分子标记技术在生命科学领域具有重要的应用价值。
许多分子标记物具有良好的生物相容性,可以应用于细胞和组织的标记,用于生物学和医学研究。
综上所述,分子标记具有特异性、灵敏性、多样性、易操作性、实时性和生物相容性等特点。
这些特点使得分子标记技术在分子识别、药物筛选、生化分析等领域具有广泛的应用前景。
分子标记种类及概述

分子标记种类及概述分子标记是一种在生物学和化学研究中广泛应用的技术,用于标记和追踪特定分子或化合物。
这些标记物能够提供关于分子的定位、数量、运动和相互作用的信息,从而帮助研究人员理解生物过程和化学反应的机制。
在本文中,将介绍几种常见的分子标记技术及其应用。
1.荧光标记:荧光标记是一种将荧光染料与目标分子结合的技术。
这些染料能够吸收特定波长的光并发射出不同波长的荧光。
通过在显微镜下观察荧光信号的强度和位置,研究人员可以了解分子在细胞或组织中的分布和动态变化。
荧光标记在细胞成像、蛋白质定位和分子交互作用研究等领域得到广泛应用。
2.放射性标记:放射性标记利用放射性同位素将目标分子标记。
这些同位素会发射出放射性粒子,可以通过放射性探测器进行检测和定量。
放射性标记在生物体内的追踪和代谢研究中具有重要作用。
例如,放射性同位素碘-125可以用于标记核酸和蛋白质,用于核酸杂交实验和蛋白质免疫沉淀等研究。
3.酶标记:酶标记是一种将酶与目标分子结合的技术。
酶可以催化底物的转化并产生可测量的信号。
常用的酶标记方法包括辣根过氧化物酶(HRP)标记和碱性磷酸酶(AP)标记。
这些标记在免疫学实验、分子诊断和酶联免疫吸附实验(ELISA)等领域得到广泛应用。
4.金属标记:金属标记利用金属离子将目标分子标记。
这些金属离子可以与特定配体结合形成稳定的络合物。
常用的金属标记包括铁、铑、镉等。
金属标记在蛋白质结构研究、药物输送和分子成像等领域具有重要应用价值。
5.生物素标记:生物素标记是一种将生物素与目标分子结合的技术。
生物素是一种小分子,能够与亲和力很高的亲生素结合。
通过将亲生素标记上荧光染料或酶等探针,可以实现对目标分子的标记和检测。
生物素标记在免疫组织化学、核酸杂交和蛋白质亲和纯化等领域得到广泛应用。
总之,分子标记技术是现代生物学和化学研究中不可或缺的工具。
通过将特定的标记物与目标分子结合,研究人员可以追踪和定量目标分子在生物体内的分布、运动和相互作用,从而深入了解生物过程和化学反应的机制。
分子标记技术

CAPACITY
RFLPs
HiSpeed sequ
DArT SNPs Multi-SSRs SRAP, TRAP SSRsAFLPs RAPDs
1985
1990
1995
2000
2 分子标记来源于DNA水平的突变
突变(Mutation)是指DNA水平的可遗传的变异,不
管这种DNA变异能不能导致可检测的表型或生化改 变,突变产生的变异是自然选择的基础,可遗传 的突变在群体中扩散从而产生多态性。
7. 近10年来,在人类基因组研究计划的 推动下,分子标记的研究与应用得到迅 速的发展。
分子标记的历史
第一代分子标记技术
RFLP (Restriction Fragment Length Polymorphism,限制性片段长度多态性)
第二代分子标记技术
RAPD(Random Amplified Polymorphic DNA,
RFLP
原理:
DNA
限制性内切酶酶切
电泳
转移到硝酸纤维素滤膜
同位素或非放射标记(如地高辛等)的探针杂交
胶片放射自显影,显示酶切片段大小
RFLP的应用
1.遗传学图的构建 结合RFLP连锁图, 任何能用RFLP探针检测出的基因及其 DNA片段都可以通过回交,快速有效地 进行转移。
2.基因定位 利用RFLP技术能够准确地 标记定位种质中的目标基因,结合杂交, 回交及组织培养等技术就可以快速有效的 将所需目标基因的DNA片段引入栽培品 种中,实现品种改良。
都有害; ✓ 探针的制备、保存和发放也很不方便; ✓ 分析程序复杂、技术难度大、费时、成本高。
2.随意扩增多态性DNA标记—RAPD
Random Amplified Polymorphismic DNA
分子标记技术

分子标记技术分子标记技术是一种在物理学、生物学和化学领域具有重要应用的技术,它可以被用来检测和追踪细胞、组织和器官内的少量物质。
此外,它还可以用于分析和组织多种小分子的表征和探索。
与传统的分析技术相比,分子标记技术具有更高的灵敏度,可以快速进行大批量的分析,而不影响样本细节。
分子标记技术主要分为三大类:基于分子探针的标记技术,基于蛋白质和细胞表面抗原的标记技术以及基于偶联反应的标记技术。
基于分子探针的标记技术是一种最常用的分子标记技术,它利用一些特定的化合物来检测特定的物质,如DNA和RNA等。
通常,这些探针化合物是染料或荧光素等有色物质,当它们与特定的分子结合时,会发出特定的荧光信号。
基于蛋白质和细胞表面抗原的标记技术包括各种免疫技术,比如免疫组化,抗原-抗体免疫印迹,以及免疫荧光技术等。
这些技术通过抗原-抗体结合的方式,利用特异的抗体识别特定的蛋白质和细胞表面抗原,并通过染料或荧光素的发光表示检测出的信息。
偶联反应标记技术是一种重要的分子标记技术,它通过一种偶联的反应,将一种可以发出特定荧光或染色信号的化合物连接到另一种特定部位的分子上。
这种技术可以应用于检测例如DNA和RNA等特定类型的分子,从而对细胞内各种活动进行检测。
此外,分子标记技术也是分子生物学和化学研究领域中非常重要的技术,它可以帮助研究者们更好地了解结构、功能和调控机制等相关课题。
它还可以应用于药物开发、重大疾病的研究与治疗、医学诊断等多个领域,对生命科学的研究和发展具有重要的意义。
总而言之,分子标记技术是细胞和分子研究中重要的技术,其结果具有高精确度,可以快速、准确地检测细胞及其内部物质和活动物质,为细胞和分子生物学研究打开了新的大门,也为疾病的诊断和治疗提供了强有力的支持。
分子标记原理和技术

分子标记原理和技术分子标记原理和技术是一种用于研究和检测生物分子的方法。
分子标记是通过给生物分子附上一种特定的标记物,使其能够被观察和测量。
分子标记技术在生物医学研究、临床诊断、药物研发和环境监测等领域都有广泛的应用。
分子标记的原理是利用化学反应将标记物与待检测的生物分子结合起来,然后通过适当的方法观察或检测标记物。
常见的标记物有荧光染料、放射性同位素、酶和金纳米粒子等。
标记物的选择要考虑其化学性质、稳定性、检测灵敏度和特异性等因素。
分子标记技术有很多种,下面列举几种常见的技术:1.荧光标记:荧光标记是最常用的分子标记技术之一、通过给生物分子附加荧光染料,可以通过荧光显微镜观察其分布和表达水平。
荧光标记还可以用于流式细胞术、酶联免疫吸附实验等。
荧光标记可以选择多种不同的荧光染料,如草莓红、FITC和PE等。
2.放射性标记:放射性标记是利用放射性同位素将标记物与生物分子结合起来。
这种标记方法可以通过放射性计数器或放射影像技术来检测,具有极高的灵敏度。
常用的放射性同位素有3H(氚)、14C(碳14)和32P(磷32)等。
3.酶标记:酶标记是利用酶与底物之间的反应来检测生物分子。
常用的酶有辣根过氧化物酶(HRP)和碱性磷酸酶(AP)。
酶标记技术可以通过底物的颜色变化或荧光信号来观察酶的活性和分布。
4. 化学标记:化学标记是利用特定化学反应将标记物与生物分子结合起来。
常见的化学标记方法有SNAP标记、CLIP标记和Biotin-avidin 标记等。
化学标记的优点是反应选择性高,标记物的稳定性和特异性好。
5.金纳米粒子标记:金纳米粒子标记是一种新兴的分子标记技术。
金纳米粒子可以通过调节粒子大小和表面修饰来实现对生物分子的特异性识别。
金纳米粒子标记可以通过紫外-可见吸收光谱或扫描电镜观察。
分子标记技术在生物学研究中扮演着重要角色,能够帮助科学家观察和分析生物分子的功能和相互作用。
此外,分子标记技术还被广泛应用于临床诊断和药物研发领域,例如用于检测肿瘤标记物、鉴定药物靶点和筛选药物库。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SSR标记技术和ISSR 标记技术雷世勇 2.1 SSR 标记技术。
在真核生物基因组中存在许多非编码的重复序列,如重复单位长度在15~65 个核苷酸的小卫星DNA ,重复单位长度在2~6 个核苷酸的微卫星DNA。
小卫星和微卫星DNA 分布于整个基因组的不同位点。
由于重复单位的大小和序列不同以及拷贝数不同,从而构成丰富的长度多态性。
定义:SSR (全称为简单序列长度多态性标记)也称微卫星DNA ,是一类由几个多为1~5 个碱基组成的基序串联重复而成的DNA 序列,其中最常见的是双核苷酸重复,即 CA n和 TG n ,每个微卫星DNA 的核心序列结构相同,重复单位数目10~60 个,其高度多态性主要来源于串联数目的不同。
根据微卫星重复序列两端的特定短序列设计引物,通过PCR 反应扩增微卫星片段。
由于核心序列重复数目不同,因而扩增出不同长度的PCR 产物,这是检测DNA 多态性的一种有效方法。
微卫星序列在群体中通常具有很高的多态性,而且一般为共显性,因此是一类很好的分子标记。
SSR分子标记的应用举例――鹅掌楸种属及杂种的分子标记北美鹅掌楸EST序列中开发的EST-SSR引物引物筛选物种特异性扩增引物特异性验证 SSR 标记技术的特点有:(1)数量丰富,广泛分布于整个基因组;(2)具有较多的等位性变异;(3)共显性标记,可鉴别出杂合子和纯合子;(4)实验重复性好,结果可靠;(5)由于创建新的标记时需知道重复序列两端的序列信息,因此其开发有一定困难,费用也较高。
SSR 标记的应用目前已利用微卫星标记构建了人类、小鼠、大鼠、水稻、小麦、玉米等物种的染色体遗传图谱。
这些微卫星标记已被广泛应用于基因定位及克隆、疾病诊断、亲缘分析或品种鉴定、农作物育种、进化研究等领域。
2.2 ISSR 标记技术 ISSR 即(内部简单重复序列),是一种新兴的分子标记技术。
它是建立在1994年发展的一种微卫星基础上的分子标记。
已经广泛应用于各种动植物的品种鉴定、遗传图谱建立、遗传多样性的研究等方面。
几个重要的名词: ISSR:他们用加锚定的微卫星寡核苷酸作引物,即在SSR 的5′端或3′端加上2~ 4 个随机选择的核苷酸,这可引起特定位点退火,从而导致与锚定引物互补的间隔不太大的重复序列间的基因组节段进行PCR 扩增。
这类标记又被称为 ASSR或AMP-PCR。
RAMP: 在所用的两翼引物中,可以一个是ASSR 引物,另一个是随机引物。
如果一个是5′端加锚的ASSR 引物,另一个是随机引物,则被称为RAMP 技术。
ISSR分子标记的优点 2实验成本低; 3操作简单;4实验稳定性高; 5物种间通用; 6多态性较高; 1记录方便; 7精确度高; 8检测方便; 9开发费用低。
ISSR 标记技术原理:用于ISSR-PCR 扩增的引物通常为16~18 个碱基序列,由1~4 个碱基组成的串联重复和几个非重复的锚定碱基组成,从而保证了引物与基因组DNA 中SSR 的5′或3′末端结合,通过PCR 反应扩增SSR 之间的DNA 片段。
SSR 在真核生物中的分布是非常普遍的,并且进化变异速度非常快,因而锚定引物的ISSR-PCR 可以检测基因组许多位点的差异。
ISSR的应用举例――攀枝花苏铁遗传多样性的ISSR分析 PCR扩增及产物检测:从所有引物中筛选出扩增条带晰、稳定性好、特异性强的引物对48个DNA 样品进行PCR扩增。
引物筛选:从100个ISSR引物中筛选出扩增产物条带清晰的13条引物。
遗传多样性分析:筛选出的13条引物共产生104条清晰条带,其中多态性条带94条,多态百分率为90.38% ,平均每个引物扩增条带数为8条。
结果显示,ISSR 分子标记对攀枝花苏铁多样性的研究效果很好。
第三代分子标记技术章丽 SNP的检测方法测序法酶切法荧光PCR法 DNA芯片法质谱法分子标记技术的应用张文青丛峰遗传多样性(genetic diversity)一般指品种间及品种内个体在DNA水平上的差异。
通过对遗传多样性的评估,可以了解品种的遗传结构及遗传关系。
在经济动物育种过程中,可以准确地鉴定和筛选具有优良遗传变异的个体,这是育种工作的前提。
在水产动物中,由于海洋生物生活环境的特殊性,要弄清海洋生物的遗传结构及遗传边界相对来说比较困难。
但随着具有高多态性、分析过程快、位点丰富的DNA分子标记技术的出现,水产动物群体遗传学的分析变得简单快捷。
应用举例 AFLP分析大黄鱼野生种群和养殖群体养殖群体的多态片段比例和个体间的遗传差异度均低于野生种群,其遗传多样性水平较低,遗传变异贫乏。
2.RAPD技术对3个中国花鲈群体4个日本鲈鱼群体进行了遗传分化研究,结果进一步从分子水平上支持将中国产花鲈和日本的鲈鱼划分为2个种的观点,并且RAPD数据表明花鲈和鲈鱼群体内都出现了明显的遗传分化。
3. 微卫星技术对东南亚海区鲈鱼进行分析,推翻了东亚地区只有1种鲈鱼的说法。
在现代动物育种中,由于要利用各种亲属的表型信息,准确地系谱记录是十分重要的。
在海洋生物育种中必须搞清楚亲子关系,这样才能利于根据亲属信息准确选留个体并能防止群体近交的发生。
利用DNA分子标记位点的多态性,以多个标记位点在一定群体中各等位基因的频率为基础,计算父子关系相对机会 RCP 来进行血缘鉴定和血缘控制。
应用举例 1.微卫星标记分析表明4个微卫星标记可以鉴定95%的后裔,5个微卫星座位的累积排除率可以达到96%以上,所以微卫星标记可以应用于中国对虾的家系鉴定。
连锁图谱(linkage map),又称遗传图谱(genetic map)或遗传连锁图谱(genetic linkage map),是指基因或DNA分子标记在染色体上的相对位置。
构建遗传图谱的意义:确定不同分子标记在染色体上的相对位置或排列情况,为作物种质资源收集、目标基因定位、基因克隆、育种规模大小及相应育种方法的确定等提供理论依据。
绘制遗传连锁图的方法有很多,但是 DNA多态性技术未开发时,鉴定的连锁图很少,随着DNA多态性的开发,使得可利用的遗传标志数目迅速扩增。
早期使用的多态性标志有RFLP 限制性酶切片段长度多态性、RAPD 随机引物扩增多态性DNA 、AFLP 扩增片段长度多态性;80年代后出现的有STR 短串联重复序列,又称微卫星 DNA遗传多态性分析和90年代发展的SNP 单个核苷酸的多态性分析。
绘制遗传连锁图谱的目的是要揭示动物所携带遗传信息的内容,准确确定控制数量性状座位(QTL)在基因组中的位置。
借助与QTL连锁的分子标记,在育种中人们就能够对有关QTL的遗传进行追踪,提高对数量性状优良基因型选择的准确性和预见性。
大量的QTL 已经被绘制出来并表现出了水产养殖种类的特性。
在虹鳟的研究中,高温耐受力、产卵时间以及胚胎发育的速度等这些QTL已经成功被绘制出来。
在罗非鱼中,以色列和美国的一个合作团队的科学家已经培育出了杂交罗非鱼亲本,以便研究其连锁图谱和进行QTL分析。
另外,一些有害等位基因和被破坏的性别比例、控制特色和性别决定的QTL,已经控制大量与先天免疫有关的生物化学参数的QTL也已经在罗非鱼中得到了确定。
这些都是分子标记技术在绘制遗传图谱及QTL 定位中的运用。
分子标记辅助选择(Marker Assisted Selection,缩写为MAS)是将分子标记应用于生物品种改良过程中进行选择的一种辅助手段。
长期以来,植物育种都是依植株的表型性状进行选择的。
DNA标记的出现使植物育种从表型选择过渡到分子育种的新阶段。
其基本原理是利用与目标基因紧密连锁或表现共分离关系的分子标记对选择个体进行目标区域以及全基因组筛选,从而减少连锁累赘,获得期望的个体,达到提高育种效率的目的。
常规育种过程中需通过大量的基因重组、筛选过程,还掺杂有筛选遗漏问题。
其周期长,工作量大。
而利用分子标记辅助选择技术大大减少了其连锁累赘现象,增加了目标性,在回交低世代即可找到其目标材料。
目前看来,分子标记辅助育种技术还不成熟、不完善。
利用分子标记辅助选择技术能作为一种快速、准确、有效的选择手段。
但是,分子标记辅助育种技术只有与常规育种相结合,才能更快地并且定向地同步改良农作物的产量、品质、抗逆性。
因此,利用分子标记辅助选择技术得到的优异种质仍要通过常规育种方法选择培育,才可真正用到育种中去,尽快在生产上产生经济效益。
总之,分子标记辅助育种的优越性只有通过常规育种才可表现出来。
基因组DNA 的提取引物筛选遗传多样性分析引物最新的分子标记技术 1. RGAs 标记 Resistance Gene Analogs ,抗病基因类似物 2. 3. 4. 1.什么是SNP? 2.SNP的分类 3. SNP的检测方法 SNP SNP: Single nucleotide polymorphism 个体间基因组DNA序列同一位置单个核苷酸变异替换、插入或缺失所引起的多态性。
SNP 基因编码区SNPs(cSNPs)基因周边SNPs (pSNPs)基因间SNPs(iSNPs)同义cSNP synonymous cSNP 非同义cSNP non-synonymous cSNP 2.SNP的分类针对目标SNP位点,直接设计合适引物扩增得到含突变位点的PCR产物,经序列测定得到位点信息,属SNP分析的金标准。
SNP-HRM(High Resolution Melt)熔解曲线分析技术检测技术原理:在一定的温度范围内将PCR扩增的产物进行变性,期间实时检测体系内荧光信号。
荧光值随着温度变化,可绘制溶解曲线。
纯合子的扩增曲线杂合子的扩增曲线 EST 1.什么是EST 2. EST的技术路线 3. EST的应用 4. EST的测序及分析过程EST EST 表达序列标签,Expressed Squence tags 是从一个随机选择的cDNA 克隆进行5’端和3’端单一次测序获得的短的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360 ±120bp 。
EST 来源于一定环境下一个组织总mRNA 所构建的cDNA 文库,因此EST也能说明该组织中各基因的表达水平。
上个世界90年代Graig Venter提出了EST的概念,并进行了609条人脑组织的EST,宣布了cDNA大规模测序的时代的开始(Adams et al..1991) AAAAAA AAAAAA mRNA Primer/Reverse transcriptase 获取EST的技术路线 5’ staggered length cDNAs due to polymerase processivity Cloning and sequencing cDNAs 3’ EST 5’EST An overview of how ESTs are generated ESTs are generated by sequencing cDNA, which itself is synthesized from the mRNA molecules in a cell. The mRNAs in a cell are copies of the genes that are being expressed. mRNA does not contain sequences from the regions between genes, nor from the non-coding introns that are present within many interesting parts of the genome. ◆基因表达系列分析 Serial Analysis of Gene Expression, SAGE?基因表达系列分析是一种用于定量,高通量基因表达分析的实验方法 Velculescu et al., 1995 。