分子标记技术的类型原理及应用

合集下载

分子标记辅助育种技术

分子标记辅助育种技术

分子标记辅助育种技术分子标记辅助育种技术第一节分子标记的类型和作用原理遗传标记是指可以明确反映遗传多态性的生物特征。

在经典遗传学中,遗传多态性是指等位基因的变异。

在现代遗传学中,遗传多态性是指基因组中任何座位上的相对差异。

在遗传学研究中,遗传标记主要应用于连锁分析、基因定位、遗传作图及基因转移等。

在作物育种中,通常将与育种目标性状紧密连锁的遗传标记用来对目标性状进行追踪选择。

在现代分子育种研究中,遗传标记主要用来进行基因定位和辅助选择。

1、形态标记形态标记是指那些能够明确显示遗传多态性的外观性状。

如、株高、穗型、粒色等的相对差异。

形态标记数量少,可鉴别标记基因有限,难以建立饱和的遗传图谱。

有些形态标记受环境的影响,使之在育种的应用中受到限制。

2、细胞学标记细胞学标记是指能够明确显示遗传多态性的细胞学特征。

如染色体的结构特征和数量特征。

核型:染色体的长度、着丝粒位置、随体有无。

可以反映染色体的缺失、重复、倒位、易位。

染色体结构特征带型:染色体经特殊染色显带后,带的颜色深浅、宽窄和位置顺序,可以反映染色体上常染色质和异染色质的分布差异。

染色体数量特征—是指细胞中染色体数目的多少。

染色体数量上的遗传多态性包括整倍体和非整倍体变异。

细胞学标记优点:克服了形态标记易受环境影响的缺点。

缺点:(1)培养这种标记材料需花费大量的人力物力;(2)有些物种对对染色体结构和数目变异的耐受性差,难以获得相应的标记材料;(3)这种标记常常伴有对生物有害的表型效应;(4)观察鉴定比较困难。

3、蛋白质标记用作遗传标记的蛋白质分为酶蛋白质和非酶蛋白质两种。

非酶蛋白质:用种子储藏蛋白质经一维或二维聚丙烯酰胺凝胶电泳,根据显示的蛋白质谱带或点,确定其分子结构和组成的差异。

酶蛋白质:利用非变性淀粉凝胶或聚丙烯酰胺凝胶电泳及特异性染色检测,根据电泳谱带的不同来显示酶蛋白在遗传上的多态性。

蛋白质标记的不足之处:(1)每一种同工酶标记都需特殊的显色方法和技术;(2)某些酶的活性具有发育和组织特异性;(3)标记的数量有限。

分子标记技术的原理和应用

分子标记技术的原理和应用

分子标记技术的原理和应用1. 简介分子标记技术是一种用于标记和检测生物分子的方法。

通过在目标分子上引入特定标记物,可以实现对这些分子进行定量、定位及特异性检测。

本文将介绍分子标记技术的原理和应用。

2. 原理分子标记技术主要通过以下步骤来实现对目标分子的标记和检测:•选择标记物:标记物通常是具有特异性的分子或结构,如荧光染料、酶、金纳米颗粒等。

根据标记物的特性和应用需求,选择合适的标记物。

•引入标记物:将选定的标记物与目标分子进行结合。

这可以通过化学反应、酶促反应或物理吸附等方法实现。

•检测标记物:使用适当的检测方法,如光谱分析、电化学方法等,对标记物进行定量或定性检测。

这些方法可以根据标记物的特性和需求选择。

3. 应用分子标记技术在许多领域都有广泛的应用。

以下是一些主要的应用领域:3.1 生物医学研究•免疫组织化学:通过标记特定抗体来检测组织中的蛋白质,用于研究疾病诊断、治疗反应和组织学研究。

•分子诊断:使用分子标记技术检测体液中的特定生物分子,如DNA、RNA和蛋白质,用于早期疾病诊断和个体化治疗。

•药物研发:利用分子标记技术对药物与靶标的相互作用进行研究,加速药物研发过程。

3.2 食品安全检测•农药残留检测:使用分子标记技术检测食品中的农药残留物,保证食品安全。

•食品成分分析:通过标记特定分子,检测食品中的成分和添加物。

3.3 环境监测•水质检测:使用分子标记技术检测水中的有害物质和污染物,保护环境和人类健康。

•大气污染监测:通过标记特定分子,检测大气中的污染物,评估空气质量。

3.4 基因组学研究•基因定位:使用分子标记技术对基因组中特定序列进行定位和研究。

•基因表达分析:通过标记RNA或蛋白质,研究基因在各个组织中的表达情况。

4. 总结分子标记技术以其高灵敏度、高特异性和高可视性等优势,在生物医学研究、食品安全检测、环境监测和基因组学研究等领域具有广泛的应用前景。

随着技术的不断发展和创新,相信分子标记技术将在未来发挥更大的作用,并为各个领域的研究和应用带来更多的突破。

第五章分子标记技术原理与应用

第五章分子标记技术原理与应用



AFLP标记的基本原理是基于PCR技术扩增基因 组DNA限制性片段,基因组 DNA先用限制性内切酶切割,然后将双链接头 连接到DNA片段的末端,接 头序列和相邻的限制性位点序列,作为引物结 合位点。限制性片段用两种 酶切割产生,一种是罕见切割酶,一种是常用 切割酶。
分子标记的应用

获得与目标性状连锁的分子标记
分子标记辅助育种的经典例子
美国科学家将分子选择应用在玉米杂种优势遗传改良上,经过改良的B73 改良的Mo17的组合比原始的B73 Mo17组合和一个高产推广组合 Pioneer hybrid 3165皆增产10%以上(Stuber and Sisco 1991; Stuber et al. 1995)。 通过分子标记技术将3个抗稻瘟病基因(Pi-2、Pi-1和Pi-4)在水稻第6、 11和12号染色体上进行定位,然后利用连锁标记将这3个抗性基因聚合起 来。基因聚合试验从3个分别带有Pi-2、Pi-1和Pi-4基因的近等基因系 C101LAC、C101A51和C101PKT出发,已成功地获得聚合了这3个抗稻瘟病 基因的植株,它们可以作为供体亲本在育种中加以利用,可同时提供数 个抗性基因。 (Zheng et al. 1995)
一、限制性片段长度多态性技 术(RFLP)



限制性片段长度多态性技术(RFLP)是用已知的 限制性内切酶消化目标 DNA,电泳印迹,再用DNA探针杂交并放射自 显影,从而得到与探针同源 的DNA序列酶切后在长度上的差异。 RFLP标记在正常的分离群体中都呈典型的孟德 尔式遗传。PFLP的结果稳 定,在作物基因图谱构建和QTL基因定位分析 上使用较多。
三、简单重复序列SSR

3-分子标记技术原理、方法及应用

3-分子标记技术原理、方法及应用

细胞学标记
植物细胞染色体的变异:包括染色体核型(染 色体数目、结构、随体有无、着丝粒位置等) 和带型(C带、N带、G带等)的变化。
优点: 能进行一些重要基因的染色体或染色 体区域定位
缺点: (1)材料需要花费较大的人力和较长 时间来培育,难度很大; (2) 有些变异难以用细 胞学方法进行检测
生化标记
主要包括同工酶和等位酶标记。分析方法是从 组织蛋白粗提物中通过电泳和组织化学染色法 将酶的多种形式转变成肉眼可辩的酶谱带型。
优点: 直接反映了基因产物差异,受环境影 响较小
缺点: (1)目前可使用的生化标记数量还相 当有限; (2)有些酶的染色方法和电泳技术有一 定难度
分子标记
主要指能反映生物个体或种群间基因组中某种 差异特征的DNA片段,它直接反映基因组DNA 间的差异,也叫DNA标记。
2/片段迁移率的变化要反映分子量的差异 ————DNA在聚丙烯酰胺凝胶上迁移率也受构象 变化影响
RFLP 基 本 步 骤

RFLP patterns in Pinus densata
RFLP
优点: 无表型效应,不受环境条件和发育阶段的影响
共显性,非常稳定 起源于基因组DNA自身变异,数量上几乎不受限制
分子标记技术原理、方法 及应用
黄健子 2011.10
一、遗传标记的类型及发展 二、几种常见分子标记的原理及方法 三、分子标记技术的应用
一、遗传标记的类型及发展
遗传标记(genetic marker):指可追踪染色体、染
色体某一节段、某个基因座在家系中传递的任何一 种遗传特性。它具有两个基本特征,即可遗传性和 可识别性;因此生物的任何有差异表型的基因突变 型均可作为遗传标记。包括形态学标记、细胞学标 记、生化标记和分子标记四种类型。

常用分子标记技术原理及应用

常用分子标记技术原理及应用

单链制备
通过加热或化学方法 将双链DNA变性为 单链。
凝胶电泳
将单链DNA在聚丙 烯酰胺凝胶上进行电 泳,并观察迁移率变 化。
结果分析
通过比较正常和突变 DNA的迁移率,确 定是否存在基因突变。
应用实例
遗传病诊断
SSCP技术可用于检测与遗传病相关的 基因突变,如囊性纤维化、镰状细胞 贫血等。
肿瘤研究
特点
高分辨率、高灵敏度、可重复性和可 靠性,能够检测出微小的基因组差异 ,广泛应用于遗传育种、生物多样性 保护、人类医学等领域。
分子标记技术的应用领域
遗传育种
通过分子标记技术对动植物进行遗传资源鉴定、品种纯度 鉴定、遗传连锁分析和基因定位等,提高育种效率和品质。
生物多样性保护
利用分子标记技术对物种进行遗传结构和亲缘关系分析, 评估物种的遗传多样性和濒危程度,为保护生物多样性提 供科学依据。
人类医学
分子标记技术在人类医学中用于疾病诊断、药物研发、个 体化医疗等方面,有助于提高疾病的预防、诊断和治疗水 平。
常用分子标记技术简介
RFLP(限制性片段长度多态性)
SSR(简单序列重复)
利用限制性内切酶对DNA进行切割,产生 不同长度的片段,通过电泳和染色检测多 态性。
利用串联重复的DNA序列多态性进行标记 ,通过PCR扩增和电泳检测多态性。
分子标记辅助育种
利用AFLP技术标记控制重要性状 的基因,辅助育种者快速筛选具 有优良性状的个体。
植物分子生态学研

利用AFLP技术分析植物种群遗传 结构、物种演化和生态适应性等 方面的研究。
04
SSR技术
原理
简单序列重复标记(SSR)是一种基于PCR的分子标记技 术,利用微卫星序列的重复单元进行扩增,通过检测等位 基因的长度多态性来识别基因组中的变异。

分子标记技术原理方法及应用

分子标记技术原理方法及应用

分子标记技术原理方法及应用分子标记技术是一种用于检测和定位特定分子的方法。

其原理是通过将一种特殊的化学物质(标记物)与目标分子结合,然后利用标记物的性质来对目标分子进行分析和检测。

分子标记技术被广泛应用于生物医学研究、生物学检测和药物研发等领域。

常用的分子标记技术有荧光标记、酶标记和放射性标记等。

荧光标记是一种将目标分子与荧光染料结合的技术。

荧光标记的原理是通过荧光染料的特性,使得目标分子在荧光显微镜下显示出特定的荧光信号,从而对其进行定位和分析。

荧光标记可以在细胞、组织和体内进行,具有灵敏度高、分辨率高和实时监测的优点。

常见的荧光标记方法有间接免疫荧光标记、原位杂交荧光标记和荧光蛋白标记等。

荧光标记技术广泛应用于细胞定位、蛋白质相互作用研究、细胞分析和分子诊断等领域。

酶标记是一种利用酶与底物反应的方法进行分子标记。

通常,酶标记将目标分子与特定的酶(如辣根过氧化酶、碱性磷酸酶等)结合,然后通过对底物的催化作用产生显色或荧光信号。

酶标记在生物学检测中得到广泛应用,特别是在酶联免疫吸附试验(ELISA)中。

酶标记具有灵敏度高、稳定性好的特点,可以用于检测蛋白质、核酸和小分子等生物分子。

放射性标记是利用放射性同位素与目标分子结合的技术。

放射性同位素具有高灵敏度和长时间半衰期的特点,可以用于追踪和测定目标分子的存在和分布。

放射性标记技术广泛应用于细胞和分子影像学、放射性定位和药物代谢等领域。

分子标记技术在生物医学研究、生物学检测和药物研发等领域有着广泛的应用。

在生物医学研究中,分子标记技术可以用于研究细胞和分子的结构和功能,探索疾病的发生机制和药物的作用机理。

在生物学检测中,分子标记技术可以用于检测和定位特定的生物分子,如蛋白质、核酸和小分子等,从而实现对生物过程的观察和分析。

在药物研发中,分子标记技术可以用于筛选和评价药物的活性和毒性,以及研究药物的代谢和药理学特性。

总之,分子标记技术的发展和应用为生物医学研究和生物学检测提供了强大的工具,有助于我们深入理解生命的奥秘和开发有效的治疗手段。

dna分子标记技术概述

dna分子标记技术概述

dna分子标记技术概述DNA分子标记技术是一种基于DNA序列的分析方法,可以用来研究生物体的遗传变异和基因表达。

它是现代分子生物学和遗传学研究的重要工具之一,被广泛应用于农业、医学、生态学等领域。

DNA分子标记技术的基本原理是利用DNA序列的差异性,通过特定的方法将其转化为可检测的标记,然后利用这些标记来分析不同生物体之间的遗传关系和基因表达差异。

常用的DNA分子标记技术包括PCR-RFLP、RAPD、AFLP、SSR、SNP等。

PCR-RFLP是一种利用PCR扩增DNA片段后,通过酶切鉴定其长度差异的方法。

RAPD是一种利用随机引物扩增DNA片段后,通过其长度和数量的差异来分析不同生物体之间的遗传关系的方法。

AFLP是一种利用限制性内切酶和连接酶对DNA片段进行特异性扩增的方法。

SSR是一种利用特定的引物扩增含有重复序列的DNA片段的方法。

SNP是一种利用单核苷酸多态性来分析不同生物体之间的遗传关系和基因表达差异的方法。

DNA分子标记技术具有高度的灵敏性、准确性和可重复性,可以用来研究不同生物体之间的遗传关系、基因表达差异、基因型鉴定等问题。

它在农业领域的应用主要包括品种鉴定、遗传多样性分析、杂交种育种等方面。

在医学领域,DNA分子标记技术可以用来研究遗传疾病的发生机制、基因诊断、药物反应等问题。

在生态学领域,DNA分子标记技术可以用来研究物种多样性、种群遗传结构、生态系统功能等问题。

总之,DNA分子标记技术是一种重要的分子生物学和遗传学研究工具,具有广泛的应用前景。

随着技术的不断发展和完善,它将在更多领域发挥重要作用,为人类的生产和生活带来更多的福利。

dna分子标记技术

dna分子标记技术

dna分子标记技术DNA分子标记技术是一种重要的生物技术手段,它在现代生命科学研究和医学诊断中扮演着至关重要的角色。

本文将全面介绍DNA分子标记技术,包括其原理、应用和未来的发展方向。

首先,我们来了解一下DNA分子标记技术的原理。

DNA分子标记技术是利用特定的标记物将DNA序列与其他分子或材料相结合,以实现对DNA的检测、分离和定位等操作。

常见的DNA分子标记技术包括荧光标记、放射性标记和酶标记等。

其中,荧光标记是最常用的方法之一,它通过将DNA与荧光染料结合,使DNA在荧光显微镜下呈现出明亮的荧光信号。

接下来,让我们来看一下DNA分子标记技术的应用领域。

DNA分子标记技术在生命科学研究中广泛应用于基因测序、基因组学、蛋白质组学等领域。

通过将DNA标记物与待研究的生物样品进行反应,可以快速准确地检测出目标基因的存在和表达水平。

此外,DNA分子标记技术在医学诊断中也有重要的应用价值。

例如,在肿瘤学中,可以利用DNA分子标记技术检测肿瘤相关基因的突变情况,为肿瘤的早期诊断和治疗提供重要依据。

然而,DNA分子标记技术仍存在一些挑战和限制。

首先,由于DNA 的序列多样性和长度差异,选择适合的标记物对不同的研究目的来说是一个复杂的过程。

此外,在分析复杂样品时,如组织和血液等,需要克服背景干扰和检测灵敏度的问题。

因此,在开发更加灵敏、快速、准确的DNA分子标记技术方面,仍需要进一步的研究。

对未来的展望来说,DNA分子标记技术具有巨大的发展潜力。

随着生物学和医药研究的不断深入,对DNA的分析和检测需求将不断增加。

因此,我们可以预见,随着技术的进一步创新和改进,DNA分子标记技术将发展成为更加成熟和可靠的工具,为生命科学研究和医学诊断提供更多的可能性。

综上所述,DNA分子标记技术是一项既生动又充满潜力的生物技术。

通过荧光标记、放射性标记和酶标记等方法,可以实现对DNA的快速、准确的检测和定位。

当前,DNA分子标记技术已经广泛应用于基因测序、基因组学和医学诊断等领域,但仍面临一些挑战和限制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子标记1.分子标记技术及其定义1974年,Grozdicker等人在鉴定温度敏感表型的腺病毒DNA突变体时, 利用限制性内切酶酶解后得到的DNA片段的差异, 首创了DNA分子标记。

所谓分子标记是根据基因组DNA存在丰富的多态性而发展起来的可直接反映生物个体在DNA水平上的差异的一类新型的遗传标记,它是继形态学标记、细胞学标记、生化标记之后最为可靠的遗传标记技术。

广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质分子。

通常所说的分子标记是指以DNA多态性为基础的遗传标记。

分子标记技术本质上都是以检测生物个体在基因或基因型上所产生的变异来反映基因组之间差异。

2.分子标记技术的类型分子标记从它诞生之日起, 就引起了生物科学家极大的兴趣,在经历了短短几十年的迅猛发展后, 分子标记技术日趋成熟, 现已出现的分子标记技术有几十种, 部分分子标记技术所属类型如下。

2.1 建立在Southern杂交基础上的分子标记技术(1) RFLP ( Rest rict ion Fragment Length Polymorphism)限制性内切酶片段长度多态性标记;(2) CISH ( Chromosome In Situ Hybridization) 染色体原位杂交。

2.2 以重复序列为基础的分子标记技术(1) ( Satellite DNA ) 卫星DNA;(2) ( Minisatellite DNA ) 小卫星DNA;(3) SSR( Simple Sequence Repeat ) 简单序列重复, 即微卫星DNA。

2.3 以PCR为基础的分子标记技术(1) RAPD ( Randomly Amplif ied Polymorphic DNA ) 随机扩增多态性DNA;(2) AFLP( Amplif ied Fragment Length Polymorphism) 扩增片段长度多态性;(3) SSCP( Single Strand Conformation Polymorphism) 单链构象多态性;(4) cDNA-AFLP( cDNA- AmplifiedFragment Length Polymorphism) cDNA -扩增片段长度多态性;(5) TRAP( Target Region Amplified Polymorphism) 靶位区域扩增多态性;(6) SCAR ( Sequence Char acterized Amplified Region) 序列特征化扩增区域;(7) SRAP ( Sequencerelated Amplified Polymorphism) 相关序列扩增多态性。

2.4以mRNA为基础的分子标记技术(1) ESTs( Expressed Sequence Tags) 表达序列标签;(2) DD( Differential Dislay ) 差异显示;(3) RT-PCR( Reverse T ranscription PCR)逆转录PCR;(4) DDRT-PCR ( Differential Display Reverse Transcription PCR) 差异显示逆转录PCR;(5) RAD( Representative Difference Analysis) 特征性差异分析;(6) SAGE( Serial analysis of gene expression) 基因表达系列分析。

2.5以单个核甘酸的变异为核心的分子标记技术SNP( Single Nucleotide Polymorphism) 单核苷酸多态性标记。

2.6 以特定序列为核心的分子标记技术mtDNA ( Mitochondrial DNA) 线粒体DNA分子标记。

3.代表性分子标记技术3.1RFLP限制性片段长度多态性RFLP( Rest rict ion Fragment Length Po ly mor phism ) 作为最早的分子标记技术由Grozdicker创立, 并于1980年由Bostein再次提出[ 3] 。

其原理是限制性内切酶能识别并切割基因组DN A分子中特定的位点, 如果因碱基的突变、插入或缺失, 或者染色体结构的变化而导致生物个体或种群间该酶切位点的消失或新的酶切位点的产生。

那么利用特定的限制性内切酶切割不同个体的基因组DNA, 就可以得到长短、数量、种类不同的限制性DNA片段, 通过电泳和So uthern杂交转移到硝酸纤维素膜或尼龙膜上, 选用一定的DNA标记探针与之杂交, 放射自显影后就可得到反映个体特异性的DNA限制性片段多态性图谱。

RFLP分析中所使用的探针通常是随机克隆的与被检测物具有一定同源性的单拷贝或低拷贝基因组片段或cDNA片段。

其中cDNA探针保守性较强, 许多同科物种cDNA 探针都可以作为通用探针。

RFLP 标记技术的优点是: (1) 标记广泛存在于生物体内, 不受组织、环境和发育阶段的影响。

(2) RFLP标记的等位基因是共显性的, 不受杂交的影响, 可区分纯合基因与杂合基因。

( 3) 可产生的标记数目很多, 可覆盖整个基因组。

但是RFLP标记技术需要酶切, 对DNA质量要求高;由于编码基因具有相当高的保守性, RFLP的多态性程度偏低;分子杂交时会用到放射性同位素,对人体和环境都有害; 探针的制备、保存和发放也很不方便。

此外, 分析程序复杂、技术难度大、费时、成本高。

所以, RFLP标记技术的应用受到一定限制。

目前RFLP 标记技术已经在基因突变分析、基因定位、基因诊断、个体识别、亲缘鉴定、物种分类和进化关系研究, 以及组建高密度的遗传图谱和育种操作等方面都有一定的应用和重要的实用价值。

3.2CISH(Chromosome In Situ Hybridizatio n) 染色体原位杂交原位杂交技术最早是由Gall和Pardue利用标记的rDNA探针与非洲爪蟾细胞核杂交建立起来的。

其中染色体原位杂交在原位杂交技术中应用最广泛, 它是一种基于Southern杂交的分子标记技术。

该技术利用特异性核酸片段作探针, 直接同染色体DNA片段杂交, 在染色体上显示特异DNA。

可采用同位素标记探针, 杂交后通过放射自显影显示杂交信号, 也可以采用非放射性大分子如生物素、地高辛等标记特异核酸片段,杂交信号经酶联显色或荧光显色得以显示原位杂交的优点是准确、直观, 缺点是技术非常复杂。

3.3SSR( Simple Sequence Repeat ) 简单序列重复, 即微卫星DNA微卫星是指以少数几个核苷酸( 1~ 6 个) 为单位多次串联重复的DNA序列, 亦称简单序列重复( SSR) 。

这种序列存在于几乎所有真核生物的基因组中, 含量丰富, 且呈随机均匀分布。

微卫星由核心序列和两侧的保守侧翼序列构成。

保守的侧翼序列使微卫星特异地定位于染色体某一区域, 核心序列重复数的差异则形成微卫星的高度多态性, 这种多态性的信息量是比较丰富的。

该技术即是基于基因组DNA重复序列的差异进行检测, 不受组织, 器官种类、环境条件等因素影响。

近年来, 微卫星作为一种分子标记, 已成为种群研究和进化生物学最常用的分子标记之一, 广泛地应用于生物杂交育种、遗传连锁图谱、种群遗传多样性、系统发生等研究领域。

对于大多数物种, 在第一次开展微卫星研究时首先需要分离微卫星序列, 开发特异性扩增引物。

目前,关于微卫星分离方法的研究报道很多,概括起来基本上分为经典法、富集法、省略筛库法、ISSR片段扩增法和数据库检索法5种。

微卫星具有分布广泛、多态性丰富、杂合度高、通用性好以及扩增反应所需模板量少、重复性好的优点,而且呈共显性遗传、检测方便、结果稳定。

但是,微卫星标记的诸多优点同时也增大了基因型错误判别的可能性。

无效等位基因( null allele)、“结巴”带( stutter bands)、短等位基因显性( short allele dominance)和等位基因的“扩增丢失”( allelicdropout ) 现象的发生都可能导致微卫星基因型的鉴定错误。

3.4 RAPD随机扩增多态性DNARAPD ( Randomly Amplif ied Po lymo rphicDNA ) 是由Williams和Welsh两个研究小组于1990年分别研究提出的一种分子标记, 是建立在PCR基础上的一种可对整个未知序列的基因组进行多态性分析的DNA分子标记技术。

基本原理是利用一个随机引物( 一般为10个碱基) 通过PCR反应非定点地扩增DNA片段, 然后扩增片段经琼脂糖凝胶电泳或聚丙烯酰胺电泳分离后配合溴化乙锭染色或银染等专一性染色技术即可记录RAPD指纹, 进行DNA多态性分析。

RAPD所用的一系列随机引物其序列各不相同,但对于每个特定的引物来讲。

它同目标基因组的DNA序列都有其特定的结合位点、扩增DNA特定的区域片断,如果基因组的这些区域发生DNA片断或碱基的插入、缺失等突变, 就可能导致这些特定结合位点、扩增片断发生相应的变化。

而使RAPD扩增产物在电泳图谱中DNA带数增加、减少或片断长度发生相应变化。

从而可以检测出基因组DNA在这些区域的多态性。

与RFLP相比, RAPD技术优点有:( 1)技术简单,实验周期短, 信息量大, 检测速度快;( 2)DNA用量少;( 3)实验设备简单,不需DNA探针, 设计引物也不需要预先克隆标记或进行序列分析;( 4)不依赖于种属特异性和基因组的结构,合成一套引物可以用于不同生物基因组分析;( 5)用一个引物就可扩增出许多片段, 几乎覆盖整个基因组, 而且不需要同位素, 安全性好。

因此,RAPD技术广泛应用于天然居群内及居群间的遗传变异、种质资源搜集、品种鉴定、种间或属间遗传关系、遗传图谱构建、基因定位与分离等方面的研究。

但是,RAPD技术受许多因素影响, 实验的稳定性和重复性差。

首先是显性遗传,不能识别杂合子位点, 这使得遗传分析相对复杂, 在基因定位、作连锁遗传图时,会因显性遮盖作用而使计算位点间遗传距离的准确性下降; 其次,RAPD对反应条件相当敏感, 包括模板浓度、Mg2+浓度,所以实验的重复性差。

2. 5 SRAP相关序列扩增多态性SRAP ( Sequence-related Amplified Polymorphism)标记是基于PCR技术的新型分子标记技术,由美国加州大学蔬菜作物系Li与Quiros博士于2001年提出,主要检测基因的开放读码框( ORFs)区域,其原理是利用基因外显子里G、C含量丰富,而启动子和内含子里A、T含量丰富的特点设计两套引物,对开放读码框架进行扩增。

相关文档
最新文档