第二章 色谱法原理
合集下载
天然药物化学第二章,第三节,色谱分离

薄层色谱的操作技术流程
铺
板
点
样
展
开
计算比移值
显色与定位
二、吸附色谱法
(五)操作技术 1.薄层色谱法 步骤:制板→点样→展开→显色→Rf值计算
43
操作步骤
(1)软板的制备
软板:直接将吸附剂(我们有哪些吸咐剂)铺在玻璃板上制 成,不加粘合剂 要求:厚度→随分离要求而定,一般0.25~0.5mm 玻璃棒推动速度不宜过快、也不应停顿→影响厚度均一性
5
植物色素分离图示
一、分离原理和基本概念:
色谱法: 是利用混合物中各成分在 流动相和固定相之间的 作用力和亲和力(吸附, 分配,离子交换、分子 筛)的不同,在两相中 作相对移动时,混合物 中各种成分随流动相运 动速度不同,从而达到 相互分离的方法。
7
8
色谱分离
慢 中等 快
淋洗液
Temporal course
适用范围
酸性成分:氨基酸、有机酸; 对酸稳定的中性成分 生物碱、甾体、强心苷
备注
不适用:醛、 酮、酯、内酯 类成分
中性成分:醛、酮、皂苷、萜 中性 6.5~7.5 类
★
27
常用吸附剂
2.硅胶(应用最多★) 吸附能力决定于硅羟基数,吸附活性取决于含水量。
OH Si O O Si O O O O O OH Si O Si O O Si O O O OH Si O Si O O Si O O O OH Si O Si O O O OH Si O Si O O O
炭。
二、吸附色谱法
(二)吸附剂(固定相) 选择合适的吸附剂是吸附色谱法成功的关键。★ 良好的吸附剂应具备: ①不与样品及流动相发生化学反应 ②不溶于流动相 ③具有较大的表面积和一定的吸附能力。 ④具有一定的细度,颗粒要均匀。
第二章 气相色谱法(2)

二、塔板理论
最早由Martin等人提出塔板理 论,把色谱柱比作一个精馏塔, 沿用精馏塔中塔板的概念来描述 组分在两相间的分配行为,同时
引入理论塔板数作为衡量柱效率
的指标。
该理论假定:
(i)在柱内一小段长度H内,组分可以在两相间迅速达到平
衡。这一小段柱长称为理论塔板高度H。 (ii)以气相色谱为例,载气进入色谱柱不是连续进行的, 而是脉动式,每次进气为一个塔板体积(ΔVm)。 (iii)所有组分开始时存在于第0号塔板上,而且试样沿轴 (纵)向扩散可忽略。
m为组分质量,Vr为保留体积,n为理论塔板数。 当V=Vr 时,C值最大,即
Cmax
n m 2 Vr
由流出曲线方程可推出:
tr 2 tr 2 n 5.54( ) 16( ) W1/2 W
而理论塔板高度(H)即:
L H n
从上两式可以看出,色谱峰W越小,n就越大,而H就越
小,柱效能越高。因此,n和H是描述柱效能的指标。
分加到第0号塔板上,分配平衡后,由于k=1,即ns=nm故
nm=ns=0.5。当一个板体积(lΔV)的载气以脉动形式进入0 号板时,就将气相中含有nm部分组分的载气顶到1号板上, 此时0号板液相(或固相)中ns部分组分及1号板气相中的nm 部分组分,将各自在两相间重新分配。故0号板上所含组分总 量为0.5,其中气液(或气固)两相各为0.25而1号板上所 含总量同样为0.5.气液(或气固)相亦各为0.25。以后每
三、速率理论
1956年荷兰学者van Deemter等在研究气液色谱时,提出
了色谱过程动力学理论——速率理论。他们吸收了塔板理 论中板高的概念,并充分考虑了组分在两相间的扩散和传 质过程,从而在动力学基础上较好地解释了影响板高的 各种因素。该理论模型对气相、液相色谱都适用。 van Deemter方程的数学简化式为
第二章 色谱法概论-速率理论讲解

三、速率理论
色谱1时95,6年提荷出兰了学色者谱v过an程D动ee力m学ter理等论在—研—究速气率液 理论。他们吸收了塔板理论中板高的概念,并 充分考虑了组分在两相间的扩散和传质过程, 从而在动力学基础上较好地解释了影响板高的 各种因素。该理论模型对气相、液相色谱都适 用。 van Deemter方程的数学简化式为
C=Cg+Cl
气相传质过程是指试样组分从气相移动到固定相表面
的过程。这一过程中试样组分将在两相间进行质量交换, 即进行浓度分配。有的分子还来不及进入两相界面,就 被气相带走;有的则进人两相界面又来不及返回气相。 这样,使得试样在两相界面上不能瞬间达到分配平衡, 引起滞后现象,从而使色谱峰变宽。对于填充柱,气相 传质阻力系数Cg为
(2)对于液液分配色谱,传质阻力系数(C) 包含流动相传质阻力系数(Cm)和固定相传质 系数(Cs),即
C=Cm+Cs
其中Cm又包含流动的流动相中的传质阻力和滞留 的流动相中的传质阻力,即
Cm
md
2 p
Dm
sm
d
2 p
Dm
式中右边第一项为流动的流动相中的传质阻力。当流 动相流过色谱柱内的填充物时,靠近填充物颗粒的流 动相流速比在流路中间的稍慢一些,故柱内流动相的 流速是不均匀. ωm是由柱和填充的性质决定的因子。
本一致,主要区别在液液色谱中纵向扩 散项可忽略不计,影响柱效的主要因素 是传质阻力项。
4.流动相线速度对板高的影响
(1)LC和GC的H-u图表明, 对于一定长度的 柱子,柱效越高,理论塔板数越大,板高越小。但 究竟控制怎样的线速度,才能达到最小板高呢?根 据van Deemter公式分别作LC和GC的H-u图,见图a (b)。由图a和(b)不难看出:LC和GC的H-u图 十分相似,对应某一流速都有一个板高的极小值, 这个极小值就是柱效最高点; LC板高极小值比GC 的极小值小一个数量级以上,说明液相色谱的柱效 比气相色谱高得多LC的板高最低点相应流速比起 GC的流速亦小一个数量级,说明对于LC,为了取 得良好的柱效,流速不一定要很高。
色谱1时95,6年提荷出兰了学色者谱v过an程D动ee力m学ter理等论在—研—究速气率液 理论。他们吸收了塔板理论中板高的概念,并 充分考虑了组分在两相间的扩散和传质过程, 从而在动力学基础上较好地解释了影响板高的 各种因素。该理论模型对气相、液相色谱都适 用。 van Deemter方程的数学简化式为
C=Cg+Cl
气相传质过程是指试样组分从气相移动到固定相表面
的过程。这一过程中试样组分将在两相间进行质量交换, 即进行浓度分配。有的分子还来不及进入两相界面,就 被气相带走;有的则进人两相界面又来不及返回气相。 这样,使得试样在两相界面上不能瞬间达到分配平衡, 引起滞后现象,从而使色谱峰变宽。对于填充柱,气相 传质阻力系数Cg为
(2)对于液液分配色谱,传质阻力系数(C) 包含流动相传质阻力系数(Cm)和固定相传质 系数(Cs),即
C=Cm+Cs
其中Cm又包含流动的流动相中的传质阻力和滞留 的流动相中的传质阻力,即
Cm
md
2 p
Dm
sm
d
2 p
Dm
式中右边第一项为流动的流动相中的传质阻力。当流 动相流过色谱柱内的填充物时,靠近填充物颗粒的流 动相流速比在流路中间的稍慢一些,故柱内流动相的 流速是不均匀. ωm是由柱和填充的性质决定的因子。
本一致,主要区别在液液色谱中纵向扩 散项可忽略不计,影响柱效的主要因素 是传质阻力项。
4.流动相线速度对板高的影响
(1)LC和GC的H-u图表明, 对于一定长度的 柱子,柱效越高,理论塔板数越大,板高越小。但 究竟控制怎样的线速度,才能达到最小板高呢?根 据van Deemter公式分别作LC和GC的H-u图,见图a (b)。由图a和(b)不难看出:LC和GC的H-u图 十分相似,对应某一流速都有一个板高的极小值, 这个极小值就是柱效最高点; LC板高极小值比GC 的极小值小一个数量级以上,说明液相色谱的柱效 比气相色谱高得多LC的板高最低点相应流速比起 GC的流速亦小一个数量级,说明对于LC,为了取 得良好的柱效,流速不一定要很高。
仪器分析(第四版)第二章

一个板体积 3.试样开始都加在0号板上,且试样沿色谱方向的扩 散(纵向扩散)忽略不计 4.分配系数在各塔板上是常数
3
塔板高度
H
2 1 A 0
L
L H n
P12例
n>50,对称的峰形曲线 气相色谱中,n约为103-106,呈趋于正态分布曲线
理论塔板数(n)可根据色谱图上所测得的保留
时间(tR)和峰底宽(Y)或半峰宽( Y1/2 )按下
4)k与保留时间的关系
若流动相在柱内线速度为u(一定时间内载气在柱内
流动的距离,若固定相对组分有保留作用,组分在
柱内的线速度us小于u,两者比值为滞留因子
R S uS / u
也可用质量分数表示:
mM RS w mS m M
1 1 mS 1 k 1 mM
推导:
组分和流动相通过长度为L的色谱柱,所需时间为:
理论上可以推导出:
VS 1 kK K VM
相比,: VM / VS, 反映各种色谱柱柱型及其结构特征 填充柱(Packing column): 6~35 毛细管柱(Capillary column): 50~1500
结论:
分在两相中质量比,均与组分及固定相的热力学性
1)分配系数是组分在两相中的浓度之比,分配比是组
试样中各组分经色谱柱分离后,按先后次序经过检测 器时,检测器就将流动相中各组分浓度变化转变为相 应的电信号,由记录仪所记录下的信号——时间曲线 或信号——流动相体积曲线,称为色谱流出曲线,
常用术语:
基线: 在操作条件下,仅有纯流动相进入检 测器时的流出曲线。 稳定的基线为一直线
基线漂移:基线随时间定向缓慢变化
3
塔板高度
H
2 1 A 0
L
L H n
P12例
n>50,对称的峰形曲线 气相色谱中,n约为103-106,呈趋于正态分布曲线
理论塔板数(n)可根据色谱图上所测得的保留
时间(tR)和峰底宽(Y)或半峰宽( Y1/2 )按下
4)k与保留时间的关系
若流动相在柱内线速度为u(一定时间内载气在柱内
流动的距离,若固定相对组分有保留作用,组分在
柱内的线速度us小于u,两者比值为滞留因子
R S uS / u
也可用质量分数表示:
mM RS w mS m M
1 1 mS 1 k 1 mM
推导:
组分和流动相通过长度为L的色谱柱,所需时间为:
理论上可以推导出:
VS 1 kK K VM
相比,: VM / VS, 反映各种色谱柱柱型及其结构特征 填充柱(Packing column): 6~35 毛细管柱(Capillary column): 50~1500
结论:
分在两相中质量比,均与组分及固定相的热力学性
1)分配系数是组分在两相中的浓度之比,分配比是组
试样中各组分经色谱柱分离后,按先后次序经过检测 器时,检测器就将流动相中各组分浓度变化转变为相 应的电信号,由记录仪所记录下的信号——时间曲线 或信号——流动相体积曲线,称为色谱流出曲线,
常用术语:
基线: 在操作条件下,仅有纯流动相进入检 测器时的流出曲线。 稳定的基线为一直线
基线漂移:基线随时间定向缓慢变化
第二章色谱法应用基础薄层色谱

❖ 5、名词解释: 吸附色谱 分配色谱
按照吸附剂(固定相)分类 TLC可分为
❖ 吸附薄层色谱
是以吸附剂(固定相)和被分离物之间的吸附作 用为基础进行样品分离的形式
❖ 分配薄层色谱
利用被分离物在流动相和固定相的相对极性差异 来分离的形式
吸附薄层色谱和分配色谱的主要特点
方法
吸附薄层法 正相分配薄 反相分配薄
层色谱
层色谱
主要分离对 象
疏水(亲脂)亲水无机物、相似的疏水 弱极性或中 亲水极性有 物质 等极性有机 机物 化合物
2.2.4 TLC展开方式
❖ 上行展开 ❖ 下行展开 ❖ 一次展开 ❖ 二次展开 ❖ 单向展开 ❖ 双向展开 ❖ 径向展开
2.2.5 TLC显色方法
❖ a 芳胺类
1)化学法
❖ Ehrlich试剂
1,2-萘醌-4-磺酸
❖ 菲醌(主要用于邻苯二胺类)
❖ 茚三酮(用于鉴定脂肪胺、氨基酸等) ❖ 如L-丙氨酸、甲酯、(S)-2-氨基丙醇等鉴定
❖ 亲水性混合物TLC用固定相
纤维素、硅藻土、聚酰胺和离子交换树脂
常用TLC吸附剂
❖ 硅胶(Silica Gel) ❖ 多孔网状结构的中性或弱酸性吸附剂,适用
于酸性及中性物质的分离(大部分有机物均 可),碱性化合物能与硅胶作用,拖尾或无 法展开
❖ 氧化铝 ❖ 可用于碱性或中性化合物的分离
❖ 纤维素 ❖ 亲水性强,用于亲水性化合物的分离
一般有机物的极性由小到大排列顺序
❖饱和烃<不饱和烃<醚<酯 <醛、 酮 <胺 <羟基化合物<酸 <离子 化合物(如R+NH3, RCOO-等)
2)常用吸附剂的吸附能力
❖ 蔗糖<纤维素 <淀粉<碳酸钙 <硫酸钙 < 碳酸镁 <硅胶<活性炭 <氧化镁 <三氧化 二铝
第二章 色谱法的原理

按上述分配过程,对于n=5,k=1,m=1的体系,随 着脉动进入柱中板体积载气的增加,组分分布在柱内任一 板上的总量(气液两相中的总质量),由塔板理论可建流 出曲线方程:
C
m n V 2 exp[ (1 ) ] 2 Vr 2 Vr
n
m为组分质量,Vr为保留体积,n为理论塔板数。 当流动相体积V=Vr 时,C值最大,即
分离度和柱效率
理论需要解决的问题:
塔板理论和速率理论都难 以描述难分离物质对的实 际分离程度。即柱效为多 大时,相邻两组份能够被 完全分离。
难分离物质对分离度的大 小受色谱过程中两种因素 的综合影响:
保留值之差──色谱 过程的热力学因素; 区域宽度──色谱过 程的动力学因素。
色谱分离中的四种情况:
① 柱效较高,△K(分配系数)较 大,完全分离; ② △K不是很大,柱效较高,峰 较窄,基本上完全分离; ③ △K较大,柱效较低,但分离的 不好; ④ △K小,柱效低,分离效果更 差。
分离度:相邻两组分色谱峰保留值之差与两组分色谱峰底宽 总和之半的比值,(设W1=W2) 当R<1时,两峰有部分重叠; 当R=1时,分离程度可达98%;
分配系数K与分配比k的关系
cs ms / Vs Vm K k k cm mm / Vm Vs
相比率β:反映各种色谱柱型特点的参数 例如:填充柱,其β值一般为6~35; 毛细管柱,其β值为60~600。
二、 塔板理论(plate
theory)
最早由Martin等人提出塔板理论,把色 谱柱比作一个精馏塔,沿用精馏塔中塔板 的概念来描述组分在两相间的分配行为, 同时引入理论塔板数作为衡量柱效率的指 标。
色谱基本理论

2-1
2-2 色谱流出曲线及有关色谱术语
2.2.1 流出曲线和色谱峰
2-1
试样中各组分经色谱柱分离后,以此流出色 谱柱,经检测器转换为电信号,然后用数据 记录装臵将各组分的浓度变化记录下来,即 得色谱图。 色谱图是以组分的浓度变化引起的的电信号 作为纵坐标,流出时间作为横坐标的,这种 曲线称为色谱流出曲线。
(5) 保留体积 VR
从进样开始到被测组份在柱后出现浓度极大 点时所通过的流动相体积。保留体积与保留时间 t。 的关系如下: VR = tR· F0
(6) 调整保留体积VR′
某组份的保留体积扣除死体积后,称该组份 的调整保留体积,即 VR′ = VR- VM
(7)相对保留值γ2.1
某组份 2 的调整保留值与组份 1 的调整保留值之比, 称为相对保留值:
2-3 色谱法分析的基本原理
色谱分析根本目的:将样品中各组分彼
此分离,组分要达到完全分离,两峰间的距 离必须足够远.
两峰间的距离是由组分在两相 间的分配系数决定的,即与色 谱过程的热力学性质有关。但 是两峰间虽有一定距离,如果 每个峰都很宽,以致彼此重叠, 还是不能分开。这些峰的宽或 窄是由组分在色谱柱中传质和 扩散行为决定的,即与色谱过 程的动力学性质有关。 因此,要从热力学和动力学两 方面来研究色谱行为。
γ 2.1 t R2 t R1 VR1 VR2
由于相对保留值只与柱温及固定相的性质有关,而 与柱径、柱长、填充情况及流动相流速无关,因此, 它是色谱法中,特别是气相色谱法中,广泛使用的定 性数据. 必须注意,相对保留值绝对不是两个组份保留时间或 保留体积之比 .
*选择因子
在定性分析中,通常固定一个色谱峰作为标 准(s),然后再求其它峰(i)对这个峰的相对 保留值.在多元混合物分析中,通常选择一对最 难分离的物质对,将它们的相对保留值作为重要 参数.在这种特殊情况下,可用符号α表示:
3--第二章色谱分析理论基础

当待分离组分随着载气进入色谱柱,组分就开始在两相间进行 分配,平衡后,再随着载气进入下一个塔板进行分配,平衡后 再进入下一个塔板。以此类推,从而不断达到分配平衡。
1.塔板理论基本假设
(1)在色谱柱中的每一小段长度H内,组分迅速达到分 配平衡,这一小段色谱柱称为理论塔板,其长度称为理论 塔板高度,简称板高,记为H; (2)载气不是连续通过色谱柱,而是脉冲式,每次进气 量为一个板体积; (3)试样开始时都加在0号塔板上,且试样沿柱纵向扩 散忽略不计; (4)分配系数在各塔板上是常数; (5)塔板与塔板之间不连续。
结论: 分配系数K是色谱分离中的一个重要参数。 两组分分配系数K相差越大,两峰分离的就越好。 不同物质的分配系数K相同时,组分不能分离。因此是色 谱分离依据。
3.分配比k
又叫容量比、容量因子。
在一定温度、压力下,在两相间达到分配平衡时,组分在 两相之间的质量比值,以k表示。
组分在固定相中的质量
k=
分子扩散大。
3.传质阻力项C
组分在气相和液相两相间进行反复分配时,遇到阻力。传质阻 力C包括气相传质阻力Cg和液相传质阻力CL 。液相传质阻力 大于气相传质阻力。
C =(Cg + CL)
气相传质过程是指试样组分从气相移动到固定相表面的过程。
这一过程中试样组分将在两相间进 行质量交换,即进行浓度分配。有 的分子还来不及进入两相界面,就 被气相带走;有的则在进入两相界 面后又来不及返回气相。这样,使 得试样在两相界面上不能瞬间达到 分配平衡,引起滞后现象,从而使 色谱峰变宽。
(3)对于某确定的色谱分配体系,组分的分离最终决定于 组分在每相中的相对量,而不是决定于组分在每相中的相对 浓度,因此分配比是衡量色谱柱对组分保留能力的重要参数。 k越大,组分保留时间越长,k=0,组分的保留时间为死时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保留时间是色谱法定性的基本依 据,但同一组分的保留时间常受到流
动相流速的影响,因此色谱工作者有
时用保留体积来表示保留值。
6. 保留体积VR 指从进样开始到被测组分在柱后出 现浓度极大点时所通过的流动相的体积。 保留时间与保留体积关系:
VR= tR Fco
7.调整保留体积VR 某组分的保留体积扣除死体积后,称 为该组分的调整保留体积。
以后每当一个新的板体积载气以脉动式进入 色谱柱时,上述过程就重复一次,如下所示:
塔板号r 进样 q p 0 0.5 0.5 0.25 0.25 0.25 0.25 0.125 0.125 1 2 3
进气1△V q p
进气2△V q 0.125 0.125+0.125 p 0.125 0.125+0.125
色谱图(无铅汽油)
农药
碳酸饮料
2、 区域宽度 色谱峰的区域宽度是色谱流出曲线 的重要参数之一,用于衡量柱效率及反 映色谱操作条件的动力学因素。表示色 谱峰区域宽度通常有三种方法。
1.标准偏差---即0.607倍峰高处色谱 峰宽的一半。 2.半峰宽Y1/2---即峰高一半处对应的峰 宽。它与标准偏差的关系为 Y1/2=2.354 3.峰底宽度Y---即色谱峰两侧拐点上的 切线在基线上截距间的距离。它与标 准偏差的关系是 Y = 4
始于马丁(Martin)和辛格(Synge)
提出的塔板模型。
分馏塔:在塔板上多次气液平衡,按沸
点不同而分离。
色谱柱:组分在两相间的多次分配平衡,
按分配系数不同而分离。
板式精馏塔
塔板理论的导出 将色谱分离过程比拟作蒸 馏过程,引用了处理蒸馏过程 的概念、理论和方法来处理色 谱过程。把色谱柱比作一个分 馏塔,色谱柱可由许多假想的 塔板组成(既色谱柱可分成许 多小段),
进气3△V
q 0.063 0.063+0.125 p 0.063 0.125+0.063
0.125+0.063 0.063+0.125
0.063 0.063
按上述分配过程,对于n=5, k=1,m=1的体系,随着脉动式 进入柱中板体积载气的增加, 组分分布在柱内任一板上的总 量(气相、液相总质量)见下表。
溶质在气液两相的分配方式符合数学 上的“二次项分配”,从二次项分配 可以导出流出曲线的数学表达式
m n 1 VR V C exp- n 2 VR VR 2
C——色谱流出曲线上任意一点的浓度 N——理论塔板数 M——溶质的质量 VR——溶质保留体积 V——在色谱流出曲线上任意一点的保留体积
3、死区域VG
色谱柱中不被固定相占据的空间
4. 保留时间tR 试样从进样到柱后出现峰极大点时所 经过的时间,称为保留时间,如下图。
信 号
进样
tR
5.调整保留时间tR´ 某组分的保留时间扣除死时间后,称 为该组分的调整保留时间, 即
tR´= tR tM
由于组分在色谱柱中的保留时间tR包含了 组分随流动相通过柱子所需的时间和组分 在固定相中滞留所须的时间,所以tR实际 上是组分在固定相中保留的总时间。
0.10
0.05
5
n
图7-4
组分从n=5柱中流出曲线图
由图7-4可以看出,组分从具 有5块塔板的柱中冲洗出来的最大 浓度是在N为8和9时。流出曲线 呈峰形但不对称。这是由于柱子 的塔板数太少的缘故。
经多次分配后的浓度分布
当n>50时,就可以得到对称的峰形
曲线。在气相色谱中,n值是很大的, 约为103~105,因而这时的流出曲线 可趋近于正态分布曲线。这样,
第二节
色谱法中常用的术语和参数
一、气相色谱法中常用的术语和参数 1、典型的色谱图 下图是使用热导池检测器,往色谱仪中 注入带有少量空气时,得到的色谱图
(二)基线 在实验操作称为基线,稳 定的基线应该是一条水平直线。 (三)峰高 色谱峰顶点与基线之间的垂直距离, 以(h)表示。
△V(除去固定相,称为板体积)
H塔板高度
塔板理论假定:
⑴ 在这样一小段间隔内,气相
平均组成与液相平均组成可以很快
达到分配平衡,这样达到分配平衡
的一小段柱长,称为理论塔板高度
H.
⑵载气进入色谱柱,不是连续而是脉
动式的,每次进气为一个板体积。
⑶试样开始时都加在第0号塔板上,
且试样沿色谱柱方向的(纵向扩散) 扩散可略而不计。
4 0 0 0 0 0.063 0.157 0.235 0.274 0.274 0.247 0.207 0.151 0.110 0.08 0.057 0.040 0.027
5 0 0 0 0 0 0.032 0.079 0.118 0.138 0.138 0.124 0.104 0.076 0.056 0.040 0.028 0.020
在每一小段(塔板)内,一部分空
间为涂在担体上的液相占据,另一 部分空间充满着载气(气相),载 气占据的空间称为板体积△V。当欲 分离的组分随载气进入色谱柱后, 就在两相间进行分配。
由于流动相在不停地移动, 组分就在这些塔板间隔的气液
两相间不断地达到分配平衡。
塔 板 数 ( 柱 长 L )
⑷分配系数和分配比在各塔板上是常
数。
为简单起见,设色谱柱由5 块塔板(n=5, n为柱子的塔板 数)组成,并以r表示塔板编号,r 等于0, 1,2,…,n—1,某组 分的容量因子k=1,则 根据上述假定,在色谱分离过 程中该组分的分布可计算如下:
开始时,若有单位质量,即 m=l(1mg或1μg)的该组分加 到第0号塔板上,分配达平衡 后, 由于k=l,即p=q,
3、保留值 1.死时间tM 不被固定相吸附或溶解的物质进入色 谱柱时,从进样到出现峰极大值所需的 时间称为死时间,它正比于色谱柱的空 隙体积,如下图。
信 进样 号
tM
因为这种物质不被固定相吸附或溶 解,故其流动速度将与流动相流动速度 相近。测定流动相平均线速ū时,可用柱
长L与tM的比值计算,即
ū = L/tM
k值越大,说明组分在固定相中的量越
多,相当于柱的容量大,因此又称分配容 量。它是衡量色谱柱对被分离组分保留能 力的重要参数。k值也决定于组分及固定相 热力学性质。它不仅随柱温、柱压变化而 变化,而且还与流动相及固定相的体积有 关。
3. 分配系数K与容量因子k 的关系
= K VS/VM =K / K=k·
2
流出曲线上的浓度c与时间t的关系可由下式示:
co t t R c e 2 2 2
2
式中co为进样浓度,tR为保留时间,σ 为标准偏差,c为时间t时的浓度,此式称为 流出曲线方程式。
以上讨论单一组分在色谱柱中的分 配过程。
2、有两个物质在色谱柱中的分配及 流出曲线
假如有A,B两个物质
A的K=1/3 B的K=3 色谱柱固定相和流动相体积相同 两个物质经过色谱柱之后的流出曲线如图:
分配系数 为 0.33 及3.00 的 A、 B 二组分经 多次分配 的结果
若试样为多组分混合物,则 经过很多次的分配平衡后,如果各 组分的分配系数有差异,则在柱口 处出现最大浓度时所需的载气板体 积亦将不同,由于色谱柱的塔板数 相当多,因此分配系数有微小差异, 仍可获得好的分离效果。
2 0 0 0.25 0.375 0.375 0.313 0.235 0.165 0.111 0.072 0.045 0.028 0.016 0.010 0.005 0.002 0.001
3 0 0 0 0.125 0.25 0.313 0.313 0.274 0.22 0.166 0.094 0.070 0.049 0.033 0.022 0.014 0.008
VR = VR V0 = tR Fco
8、净保留体积VN 经过压力修正的调整保留体积 VN = j VR j为色谱柱进口和出口之间的压力梯度校正系数
p i 1 p 3 0 j 3 2 p i 1 p 0
k = CsVS
/ Cm Vm
( =VM / VS )
在分配色谱中,Vs表示固定液的体积;在尺 寸排阻色谱中,则表示固定相的孔体积。 其中β称为相比,它是反映各种色谱柱柱型 特点的又一个参数。例如,对填充柱,其β 值一般为6-35;对毛细管柱,其β值为60-600。
二、 色谱分离的塔板理论
1、塔板理论的导出
色谱峰→窄,塔板数n→多, 理论塔板高→小,柱效能→高。 因而n或h作为描述柱效能的一个指标。 由塔板理论可导出n与色谱峰峰底宽度的关系:
tR tR n理 5.54 16 W 1/ 2 W L H理 n
2
2
式中L为色谱柱的长度,tR及W1/2或W用同一单位 (时间,距离)。
故p=q=0.5.
当一个板体积(1△v)的载气以脉动形 式进入0号板时,就将气相中含有q部 分组分的载气顶到1号板上,此时0号板 液相中p部分组分及1号板气相中的q 部分组分,将各自在两相间重新分配, 故0号板上所含组分总量为0.5,其中 气液两相各为0.25,而1号板上所含总 量同样为0.5,气液两相亦各为0.25。
第二章 色谱法的原理
(Principles of Chromatography)
第一节 色谱分析的基本原理
一、色谱分离的本质
分配系数的差异是所有色谱分离的实质
性原因
分配系数 K
是指在一定温度和压力下,组分在固定相和 流动相之间分配达平衡时的浓度之比值,即 K=溶质在固定相中的浓度/ 溶质在流动相中的浓度 = Cs / Cm Cs 和 Cm的单位是 g/ml