销售利润问题

合集下载

利润问题应用题

利润问题应用题

利润问题应用题standalone; self-contained; independent; self-governed;autocephalous; indie; absolute; unattached; substantive1 中百超市如果将进货价为40元的商品按50元销售,就能卖出500个,但如果这种商品每个涨价1元,其销售量就减少10个,如果你是超市的经理,为了赚得8 000元的利润,你认为售价应定为多少(售价不能超过进价的160%)这时应进货多少个解答这种商品销售问题时,需要明确:总利润=单利润×售出商品的总量.2 . 红星建材店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该建材店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.?5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该建材店要获得最大月利润,售价应定为每吨多少元(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗请说明理由.3 某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促进销售,该经营户决定降价销售,经调查发现,这种小型西瓜每降价元,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元4 某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售1部,所有出售的汽车的进价均降低万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利万元,销售量在10部以上,每部返利1万元.(1)若该公司当月卖出3部汽车,则每部汽车的进价为万元;(2)如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车(盈利=销售利润十返利)。

销售利润问题(修订版)

销售利润问题(修订版)

销售利润问题商品是市场上供买卖的物品。

没有买卖的物品就称不上商品。

我们买到的商品的销售过程是这样形成的:商家销售的过程是获得商品的利润的过程,商家先用一定的钱额(成本)购进市场需要的商品,再加上一些钱额,进行对外销售,以获取加上这些钱额(利润)。

商业上,商品进货的价格叫做进价;商品购进后,先按照期望获利加价,这个加价是想获取的利润(期望利润);这时商品预售的价格叫做标价、原价或定价;商品期望利润率=利润÷进价×100%根据期望利润百分数可以推导出一个商品的定价:定价=成本+期望利润=成本×(1+期望利润的百分数)商家在销售过程中,为了获取更高额的利润,会对原订的价格适当地调整,即按一定的折扣降价销售;商品实际卖出的价格叫做售价或卖价,如果降价折扣确定不好,会直接影响到消费者的购买的数量。

折扣数=售价÷定价 每101或10%叫“一折”,打八折是108或80%。

根据折扣的关系式还能够推导其他的关系式:商品售价=商品定价×折扣数此时获取的利润是卖价与成本的差,其中,商品利润=售价-成本商品利润率=商品利润÷成本×100%=(售价-成本)÷成本×100%由此能够推导的关系式:售价=成本×(1+利润百分率)就必须熟练运用利润百分数,折扣等公式,制定合适的商品价格幅度,确定使用哪种促销方式,制定自己的销售策略,才能在商海中立于不败之地。

解答商品销售利润问题的应用题必须熟知商品销售的过程及相应的关系式,运抓不变量(一般情况下成本是不变量),用分数或百分数应用题的解答分析步骤求解。

常见的几种题型如下:(一)已知进价、售价,求利润率【例1】电脑产品的进价是10000元,售价为12000元,此商品的利润率是多少?分析与解答:电脑产品的商品利润是(12000-10000=)2000元,由“商品利润率=利润÷进价×100%”求得商品利润率为(2000÷10000×100%=)20%。

销售利润问题

销售利润问题

商品销售利润问题一、销售问题中的常见术语:进价、成本价、定价、售价、标价、原价、获利(盈利)、亏损、打折、提价、降价二、销售问题的基本公式(自己回忆):单件利润= -总利润= -= ×打折后的价格=三、销售问题练习题1、某商品打八折后售价为96元,则该商品原价为元。

2、某商品进价500元,提高40%后标价出售,则售价为;3、某商品的进价200元,将进价提高20%后标价出售,则售出此商品后获利元。

4、某商品的标价为120元,若以9折降价出售,相对于进价仍可获利20%,则此商品的进价为。

5、某商店一套服装的进价为200元,若按标价的80%销售可获利72元,则该服装的标价为元。

6、一件商品按成本价提高20%标价,又以九折销售,售价为270元,这种商品的成本价是元。

7、某商店打折销售商品,如果按定价的6折出售,将赔20元,若按定价的8折出售,将赚15元,这种商品的定价为元。

8、某商品原价每个150元,先降价30%后又涨价30%,最后商品的销售价格是。

9、某商场将进价为800元的商品按此商品标价的8折出售,仍获利10%,则该商品的标价为元。

10、一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润元.四、例题:某种服装,平均每天可销售20件,每件盈利44元。

若每件降价1元,则每天可多销售5件,如果每天要盈利1600元,每件应降价多少元?五、练习:1、某商场销售一批名牌衬衫,平均第天可售出20件,每件盈利45元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施。

经调查发现,如果每件衬衫每降价1元,商场平均每天多售出4件,若该商场平均每天盈利2100元,则每件衬衫应降价多少元?2、某水果批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进价不变的前提下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要尽可能使顾客得到实惠,那么每千克水果应涨价多少元?3、某商店购进一种商品,单价30元,试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X,若商店每天销售这种商品要获得200元的销售利润,那么每件商品的售价应为多少元?每天要售出这种商品多少件?4、西瓜经营户以2元每千克的价格购进一批小西瓜,以3元每千克的价格出售,每天可出售200千克为了促销,该营销户决定降价销售,经调查发现,这种小西瓜每降价0.1元每千克每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?5、某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低x元。

《实际问题与一元二次方程2-销售利润问题》

《实际问题与一元二次方程2-销售利润问题》

一元二次方程标准形式及解法
一元二次方程的标准形式
01
$ax^2 + bx + c = 0$,其中 $a neq 0$。
解法
02
一元二次方程的解法包括因式分解法、完全平方公式法和公式
法(韦达定理)。
公式法中的求根公式
03
$x = frac{-b pm sqrt{b^2 - 4ac}}{2a}$。
判别式与根个数关系
结果展示
将求解得到的最优产品价格和销售量组合进行展示,并计算出对应的最大销售利润。
结果解释
对求解结果进行详细解释,说明最优组合是如何实现销售利润最大化的。
讨论与局限性
讨论模型的适用性和局限性,以及在实际应用中可能遇到的问题和解决方案。例如,市场 需求变化、竞争对手策略调整等因素可能对最优组合产生影响,需要企业根据实际情况进 行调整和优化。
04 建立销售利润问题数学模 型
确定未知数和参数
未知数设定
通常将我们需要求解的量设为未知数 ,如销售量、销售单价、成本等。
参数设定
除了未知数外,问题中还会给出一些 已知条件或参数,如固定成本、单位 变动成本、销售价格等。
根据实际问题建立方程
利润公式
利润 = (销售单价 - 单位成本) × 销售量 - 固定成本。
求解过程
按照所选解法逐步求解方程,得出未知数的值。在求解过程中,需要注意计算准 确性和步骤规范性。
05 案例分析:某企业销售利 润最大化问题
案例背景介绍
企业基本情况
目标市场与消费者需求
某企业是一家生产并销售家居用品的 公司,近年来面临市知名度等方面有较 高要求。
06 总结与展望
本文主要工作及成果总结

3.4(21)--销售中与利润率相关的盈亏问题

3.4(21)--销售中与利润率相关的盈亏问题

3.4(21)--销售中与利润率相关的盈亏问题一.【知识要点】1.与销售相关的等量关系: (1)销售总额=单价×销售量(2)现价=原价×(1+提价率);现价=原价×(1-降价率)(3)利润=售价-进价 (4)=100%⨯利润利润率进价(5)利润=进价×利润率 (6)售价=进价×(1+利润率) (7)=10⨯折扣数实际售价标价 二.【经典例题】1.填空:(1)某商品原售价是100元,现降价10%,降价后售价是 元.(2)某商品进价是160元,售价是180元,则利润是 元.(3)某商品进价是160元,售出后盈利40元,则利润率是(3)某商品进价是160元,售出后亏损40元,则利润率是(4)某商品原来进价是100元, 利润率是30%,则利润是 .(5)某商品原来每件进价是100元, 盈利30%,则售价是 元.(6)某商品原来每件进价是100元, 亏损20%,则售价是 元.(7)商品原价是200元,九折出售,卖价是 元。

(8)商品原价是200元,七五折出售,卖价是 元。

2.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖出这两件衣服总的是盈利还是亏损,或是不盈不亏?3.某商店购进甲.乙两件服装共用去600元,为获得较大利润,商店老板决定将甲服装按50%的利润定价,乙按40%的利润定价,在实际销售中,两件均按九折出售,共获利174元,两件服装的进价各是多少?4.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售。

请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?三.【题库】【A】1.列方程解决下列各题:①安踏运动鞋打八折后是220元,设原价是x元,列方程:。

初一数学销售利润问题.doc

初一数学销售利润问题.doc

一、销售利润问题解答这类应用题除了遵循解答应用题的一般步骤之外,还必须注意抓住以下数量的概念及关系式:商品的进货价格叫做进价。

商品预售的价格叫做标价或原价。

商品实际卖出的价格叫做售价。

商品利润 =商品售价 -商品进价。

商品售价 =商品原价(或标价)×折数。

商品利润率 =商品利润 /商品进价 =(商品售价 -商品进价) /商品进价。

常见的利润问题有:(一)已知进价、售价、求利润率1.脑产品的进价是10000 元,售价为12000 元,此商品的利润率是多少?2.某商品的进价是250 元,按标价的9 折销售时,利润率为15.2% ,商品的标价是多少?(三)已知进价、标价及利润率,求标价或原价的折数3.某名牌西装进价是1000 元,标价是1500 元,某商场要以利润率不低于5% 的价格销售,问售货员可以打几折出售此商品?(四)已知利润率、标价求进价4.商场对某一商品调价,按原价的8 折出售,此时商品的利润率是10% ,已知商品标价为1375 元,求进价。

5.一商场将每台VCD 先按进价提高40% 标出销售价,然后再以八五折优惠价出售,结果还赚了228 元,那么每台 VCD 进价多少元?x% 出售,6.商店购进某种商品的进价是每件 8 元,销售价是每件 10 元,现为扩大销量,将每件的售价降低但要求卖出每一件商品所获利润是降低前所获利润的 90% ,问售价降低了多少?7.“五一”期间,某商场搞优惠促销,决定由顾客抽奖定折扣,某顾客购买甲、乙两种商品,分别抽七折和九折优惠券,共付款 386 元,这两种商品原销售价之和为500 元,这两种商品原销售价分别是多少?8.抗“非典”期间,个别商贩将原来每桶价格 a 元的过氧乙酸消毒液提高20%后出售,市政府及时采取措施,使每桶价格在涨价后以八五折出售,那么现在每桶价格是多少?9.某商店将每台彩电先按进价提高40 %标出售价,然后广告宣传将以八折的优惠价出售,结果每台彩电赚了300 元,则经销这种彩电的利润率是多少?10. 某商品的进价是 500 元,标价是 750 元,商品要求以利润率不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?11. 甲乙两件服装的成本共500 元,商店老板为获取利润,决定将甲服装按50 %的利润定价,乙服装按 40 %的利润定价,在实际出售时,应顾客要求,两件服装均按9 折出售,商店共获利157 元,求甲、乙两件服装的成本各是多少?12. 某商品把进价提高后标价为1200 元,为了吸引顾客,再按九折出售,利润能盈利10%,这件商品的进价是多少?13. 某商品的进价为800 元,标价为1200 元,由于商品积压,准备打折出售,但要保持利润率不低于 5 %,则最低可以打几折?14.某商店有进价不同的两个计算器都卖 64 元,其中一个盈利 60 %,另一个亏本 20%,在这次买卖中,这家商店是赚还是赔?。

一元二次方程销售利润问题公式

一元二次方程销售利润问题公式

一元二次方程销售利润问题公式销售利润问题是在商业运营中常见的一个概念,用于计算企业在销售产品或提供服务后所获得的经济利润。

在讨论销售利润时,我们可以使用一元二次方程来建立一个数学模型,方便我们计算和分析销售利润的关系。

一元二次方程是一种形式为ax^2 + bx + c = 0的二次多项式方程,其中a、b和c是实数,并且a不等于零。

在销售利润问题中,我们可以假设x表示销售量,而方程中的a、b和c则代表企业的具体情况。

假设某企业销售一种产品,每个单位的成本是固定的。

我们可以用a来表示每个单位的成本,假设成本为固定值1元。

因此,销售量x的平方乘以成本1元即可表示销售的总成本。

此外,我们还需要考虑销售利润的其他因素,例如销售额和其他费用。

我们可以用b来表示每个单位的售价,即销售单价。

假设售价为2元,那么销售量x乘以售价2元即可表示销售的总收入。

最后,我们还需考虑其他费用对销售利润的影响,例如运营费用、市场费用等。

我们可以用c来表示这些费用。

假设其他费用为3元。

因此,根据上述设定,我们可以建立以下一元二次方程来求解销售利润:x^2 + 2x - 3 = 0通过解这个方程,我们可以求得销售利润的相关信息。

具体来说,我们可以通过求解方程的根来得到销售量的解,从而计算出销售利润的大小。

总结起来,一元二次方程可以作为一个数学模型,帮助我们计算和分析销售利润问题。

通过设定不同的参数,我们可以根据具体情况来求解销售利润的方程,并得出相应的结果。

这样的模型有助于企业在商业运营中做出合理的决策,提高销售利润的效益。

专题3.3销售利润问题(压轴题专项讲练)(人教版)(原卷版)

专题3.3销售利润问题(压轴题专项讲练)(人教版)(原卷版)

专题3.3 销售利润问题【典例1】平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为________元,每件乙种商品利润率为________;(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?(1)设甲的进价为x元/件,根据甲的利润率为50%,求出x的值;(2)设购进甲种商品x件,则购进乙种商品(50x)件,再由总进价是2100元,列出方程求解即可;(3)分两种情况讨论,①打折前购物金额超过450元,但不超过600元,①打折前购物金额超过600元,分别列方程求解即可.解:(1)设甲的进价为x元/件,则(60x)=50%x,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(8050)÷50=60%.故答案为:40;60%;(2)设购进甲种商品x件,则购进乙种商品(50x)件,由题意得,40x+50(50x)=2100,解得:x=40.即购进甲商品40件,乙商品10件;(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),①打折前购物金额超过600元,600×0.82+(y600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.1.(2022·湖北省宜昌市渔峡口中学七年级期中)某书城开展学生优惠购书活动,凡是一次性购买不超过200元的一律九折优惠;超过200元时,其中的200元按九折计算,超过200元的部分按八折计算.小军第一次购书付款72元,第二次购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元.(1)求小军第一次所购书的定价是多少元?(2)求小军第二次购书的实际付款是多少元?2.(2022·黑龙江牡丹江·七年级期末)某商场进行促销活动,花200元可办理一张会员卡(注:此卡只作为购物优惠凭证不能顶替货款),凭会员卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小李要买一台标价为3000元的电视,如何购买合算?小李能节省多少元钱?(3)小李按合算的方案,把这台电视买下,如果商场还能盈利30%,这台电视的进价是多少元?3.(2022·全国·七年级专题练习)文峰文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(1)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少利润?(2)在实际销售中,该文具店老板在以(1)中标价销售完m盒后,决定搞一场促销活动,尽快清理库存.老板先将标价提高到每盒40元,再推出活动:购买两盒,第一盒七折,第二盒半价,不单盒销售.售完所有盲盒该老板共获利600元,求m的值.4.(2022·全国·七年级单元测试)某商店购进甲、乙两种型号的节能灯共100只,购进100只节能灯的进货款恰好为2600元,这两种节能灯的进价、预售价如下表:(利润=售价进价)(1)求该商店购进甲、乙两种型号的节能灯各多少只?(2)在实际销售过程中,商店按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润380元,求乙型号节能灯按预售价售出了多少只?5.(2022·河南·郑州市第七初级中学七年级期末)教育部数据显示,近五年共有创业大学生约55万人,国务院办公厅也出台了《关于进一步支持大学生创业的指导意见》来支持大学生创新创业.河南的小张也加入了创业大军,回到自己家乡,做茶叶加工,然后销售到全国各地,创业初期,小张从茶农那里采购甲,乙两种品种的茶叶共100 千克.(1)如果小张购进甲,乙两种茶叶共用了9600元,已知每千克甲种茶叶进价80元,每千克乙种茶叶进价120元,求小张购进甲,乙两种茶叶各多少千克?(2)在(1)的条件下,经过加工,小张把甲种茶叶加价50%作为标价,乙种茶叶加价40%作为标价.由于乙种茶叶深受大众的喜爱,在按标价进行销售的情况下,乙种茶叶很快售完,接着甲种茶叶的最后10 千克按标价打折处理全部售完.在这次销售中,小张获得的利润率为42.5%.求甲种茶叶打几折销售?6.(2022·四川师范大学附属中学七年级期末)某商场计划采购甲、乙两种空气净化机共120台,这两种空气净化机的进价、售价如表:解答下列问题:(1)若两种空气净化机的总进价恰为44万元,则甲、乙两种空气净化机各进了多少台?(2)若两种空气净化机都能按售价全部卖出,此时商场获得的利润恰好是成本的30%,则甲、乙两种空气净化机各进了多少台?7.(2022·全国·七年级专题练习)春节,即农历新年,是一年之岁首、传统意义上的年节.俗称新春、新年、新岁、岁旦、年禧、大年等,口头上又称度岁、庆岁、过年、过大年.春节历史悠久,由上古时代岁首祈年祭祀演变而来,为了喜迎新春,某水果店现购进水果篮40个和坚果礼盒20个,已知每个水果篮的进价比每个坚果礼盒的进价便宜10%,水果篮每个售价110元,坚果礼盒每个售价150元.(1)春节期间水果店促销,坚果礼盒按售价八折出售,水果篮按原价销售.某公司一共花了1030元买了水果篮和坚果礼盒共9个,问某公司水果篮和坚果礼盒各买了多少个?(2)在(1)的条件下水果篮和坚果礼盒销售一空,水果篮利润是坚果礼盒利润的2倍.问水果篮和坚果礼盒每个进价各是多少元?8.(2022·江苏南通·七年级期末)某百货商场经销甲、乙两种服装,甲种服装每件进价500元,乙种服装每件进价800元.(1)若该商场同时购进甲、乙两种服装共30件,总进价为21000元,求商场购进甲、乙两种服装各多少件?(2)若该商场对(1)中所购进的甲、乙两种服装进行销售,其中甲种服装每件售价800元,乙种服装每件盈利50%,则该商场销售完这批服装一共能盈利_______元;(3)该商场元旦当天对所有商品实行“满1000元减400元的优惠”(比如:某顾客购物3200元,满三个1000元,则可优惠1200元,只需付款2000元).到了晚上八点后,又推出“先打折”,再参与“满1000元减400元”的活动.张先生元旦购买甲、乙两种服装各一件,标价合计2000元.后来他发现按照晚上八点后的优惠方式付款,竟然比不打折直接参与“满1000元减400元”的活动多付200元钱.问该商场晚上八点后推出的活动是先打几折?9.(2022·浙江丽水·七年级期末)盲盒近来火爆,这种不确定的“盲盒”模式受到了大家的喜爱,某玩具商店计划采购文具盲盒和Molly盲盒,计划采购两种盲盒共100盒,这两种盲盒的进价、售价如表所示:(1)若采购共用去3400元,则两种盲盒各采购了多少盒?(2)在(1)的条件下全部售完这100盒,那么玩具商店获利多少元?(3)是否有一种采购方案使得销售完这100盒盲盒的总利润恰好为1400元?若能,请说出采购方案;若不能,证明理由.10.(2022·山东·日照山海天旅游度假区青岛路中学七年级期末)某超市第一次用5500元购进了甲、乙两种商品,其中甲种商品150件,乙种商品100件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为30元/件,乙种商品售价为35元/件.(注:获利=售价进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少2元;甲种商品按原售价提价m%销售,乙种商品按原售价降价m%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多270元,那么m的值是多少?11.(2022·海南·乐东黎族自治县教育研究培训学校七年级期末)某百货超市经销甲、乙两种服装,甲种服装每件进价50元,售价80元;乙种服装商品每件售价120元,可盈利50%.(1)乙种服装每件进价为____________元;(2)若该商场同时购进甲、乙两种服装共40件,总进价用去2750元,求商场销售完这批服装,共盈利多少?(3)在元旦当天,超市实行“每满100元减30元的优惠”促销(比如:某顾客购物120元,他只需付款90元).张先生上午买了一件标价为320元的羽绒服,到了晚上八点后,超市又推出:先打折,再参与“每满100元减30元”的让利活动,他发现现在购买反而要多付4.4元.问该超市晚上八点后推出的让利活动是先打多少折再进行满减活动的?12.(2022·湖北武汉·七年级期末)武汉某超市准备在两周年庆典之际搞优惠促销活动回馈新老客户,由顾客抽奖决定折扣.某顾客购买了A、B两种商品共410元,分别抽到了六折和八折,而A、B两种商品的原价之和为600元.(1)求A、B两种商品的原价各是多少元?(2)若本次买卖中A种商品最终亏损30%,B种商品最终盈利60%,那么该超市在本次买卖中是盈利还是亏损?盈利或亏损多少元?13.(2022·全国·七年级专题练习)一种节能型冰箱,商家计划按进价加价20%作为售价,为了促销,商家现在按原售价的九折出售了40 台,降价后的新售价是每台2430 元.(1)按照新售价出售,商家每台冰箱还可赚多少元?(2)售完这批冰箱后,商家将购进40 台冰箱的进货款存入银行,存期一年,不扣利息税到期可得人民币92025 元,求这项储蓄的年利率是多少?14.(2022·全国·七年级专题练习)某水果店以5元/千克的价格购进一批橙子,很快售罄,该店又再次购进,第二次进货价格比第一次每千克便宜了2元,两次一共购进600千克,且第二次进货的花费是第一次进货花费的1.2倍.(1)该水果店两次分别购进了多少千克的橙子?(2)售卖中,第一批橙子在其进价的基础上加价a%进行定价,第二批橙子因为进价便宜,因此以第一批橙子的定价再打八折进行销售.销售时,在第一批橙子中有5%的橙子变质不能出售,在第二批橙子中有10%的橙子变质不能出售,该水果店售完两批橙子能获利2102元,求a的值.15.(2022·山东临沂·七年级期末)某商场计划用9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为A型1500元/台,B型2100元/台,C型2500元/台.(1)若该商场恰好用9万元从该厂家购进50台两种不同型号的电视机,请你研究一下该商场的进货方案;(2)已知该商场销售A型电视机可获利150元/台,销售B型电视机可获利200元/台,销售C型电视机可获利250元/台.在(1)条件下,你将选择哪种方案,使得销售获利最多?16.(2022·全国·七年级专题练习)“双十一”活动期间,某羽绒服商家的优惠措施是:购买所有商品先按标价打六折,再享受折后每满200元减30元的优惠.付款可采用“花呗”分3期的方式,还款的费率为2.5%.如图是小亮购买的优惠价和小红“花呗”分3期每期的应付款.(备注:“花呗”是一种消费信用贷款,用户可以“先消费,后付款”)(1)在此次活动中要购买标价为2350元的羽绒服.①打折满减后的优惠价为多少元?①若采用“花呗”分3期付款,则每期应付款为多少元?(2)在此次活动中购买某羽绒服,若采用“花呗”分3期付款,每期应付款为348.5元,求购买此羽绒服的优惠价及羽绒服标价.【答案】(1)①购买标价为2350元的羽绒服,打折满减后的优惠价为1200元;①采用“花呗”分3期付款,则每期应付款为410元;(2)购买此羽绒服的优惠价是1020元,羽绒服标价是1950元或2000元.17.(2022·内蒙古·乌海市第三中学七年级期末)贵阳市人民广场某超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=2售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?18.(2022·全国·七年级课时练习)某商场经销的甲、乙两种商品,甲种商品每件进价40元,加价50%作为售价;乙种商品每件进价50元,售价80元.(1)甲种商品每件售价为_____元,乙种商品每件的利润为元,利润率为%.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲、乙两种商品各多少件?(3)按以下优惠条件,若小梅一次性购买乙种商品实际付款504元,则此次小梅在该商场最多购买乙种商品多少件?19.(2022·全国·七年级专题练习)丹尼斯经销甲、乙两种商品,甲种商品每件售价60元,利润20元;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为;(2)丹尼斯同时购进甲、乙两种商品共50件,总进价为2100元,求购进甲种商品多少件?(3)在“春节”期间,该商场对所有商品进行如下的优患促销话动:按上述优惠条件,若小丽一次性购买乙种商品实际付款504元,求小丽购买商品的原价是多少?20.(2022·重庆一中七年级期末)2021年12月,某网店从甲厂家购进了A、B两种商品,A商品每件进价40元,B商品每件进价10元,两种商品共购进了500件,所用资金为11000元.(1)求12月A、B两种商品各购进了多少件?(2)12月初,该网店在出售A、B两种商品时,A商品在进价的基础上加价30%出售,并以此价格售出了1,B商4.为了促销,余下的A、B两种商品.网店推出买一件A商品送一件B商品的优惠活动,品以一定价格售出了15但是单独购买B商品无优惠.到12月底,从甲厂家购进的A、B两种商品全部售完,且剩余的A商品都参加了促销活动,最终网店通过销售A、B两种商品共获利15%,求12月份每件B商品的售价是多少元?(3)2022年1月份,甲厂家决定薄利多销,提出了优惠方案,同样生产A、B两种商品的乙厂家也提出了优惠方案.甲厂家优惠方案:乙厂家优惠方案:1月份,该网店从甲厂家分两次分别购进A、B两种商品,进价与12月份相同,按照甲厂家优惠方案,第一次全部购进A商品实际付款4320元,第二次全部购进B商品实际付款3690元.已知从乙厂家购买A商品每件进价34元,购买B商品每件进价12元,若网店从乙厂家购买与甲厂家数量分别相同的A、B两种商品,并享受乙厂家的优惠方案,那么相较于从甲厂家购买,网店实际付款金额是节省还是多花费,节省或多花费多少元?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设第二件衣服的成本价是y元,
由题意得:y ·(1-25%)=135
解这个方程,得:y=180。 则第二件衣服亏损:180-135=45
总体上约亏损了:45-27=18(元)
因此,总体上约亏损了:18元。
精品课件
某商品成本价是1000元,出售时标价1500 元,商店要求以利润率不低于5% 的售价打折销 出售,售货员最低可以打几折出售此商品?
精品课件
3.4
爱好出勤奋勤奋出天才!源自精品课件200元 7折
140 -115= 25
成本115元, 赚了多少钱?
需要花精品多课件 少钱?
1、把下面的“折扣数”化成百分数 “六折” “七五折” “八八折”
2、你是怎样理解某种商品打“六折” 出售的?
假如你是商店老板你追求的是什么?
精品课件
公 式:
P %后的价格为
100(1+P % )
元; (7)进价A元的商(B品-以A)B元卖
出B-,A 利润是 元, A ×100%
精品课件
算一算
例.一家商店将服装按成本价提高40%后 标价,又以8折(即按标价的80%)优 惠卖出,结果每件仍获利15元,这种 服装每件的成本是多少元?
仔细 审题!
精品课件
15元利润是怎样产生的?
解:设售货员最低可以打x折出售此商品, 根据
题意,得
1500·x =1000(1+5%)
解得, x =0.7
答:售货员最低可以打七折出售此商品。
精品课件
(2)某商店将某种DVD按成本价提高35%,然后打出 “九折酬宾,外送50元出租车费”的广告,结果每 台DVD仍可获利208元,那么每台DVD的成本是多少元?
公式
利润=卖出价-成本价
(或者:利润=销售价-成本价)


利润率=
×100%
精品课件
2、算一算:
(1)原价100元的商品打8折
后价格为 80
元;
算一算
(2)原价100元的商品提价
40%后的价格为 140
元;
(3)进价100元的商品以150
元卖出,利润是 50
元,利润50率% 是

精品课件
后价格为 元; (5)原价X元的0商.8X品提价 40%后的价格为 (6)原价1元 00;元的商1品.4提X 价
每件以60元卖出,这种 夹克每件的成本价是多 少元?
精品课件
练一练
解:设这件夹克的成本价为X元,那么:
这件夹克的标价为X ·(1+ 50%)
元;
1这.5件X×夹克80的% 实际售价用X表示为
1.5X× 8元0%;=60
由此,列出方程 50 得:
解方程,得X=
50


答:这件夹克的成本价是
元。
精品课件
5、议一议
格售1、出某两服件装衣商服店,以按1成35本元计的算价,议一议
第一件盈利25 %,第二件亏损 25 %,则该商店卖这两件衣服 总体上是赚了,还是亏了?
这二件衣服的成本价 会一样吗?
算一算?
精品课件
设第一件衣服的解成本:价是X元,
则由题意得:X ·(1+25%)=135
解这个方程,得:X=108。 则第一件衣服赢利:135-108=27。
实际问题 抽象 数学问题 分析 不
已知量、未知量、 等量关系




合理 解的 验证
解释
合理性
方程 的解
求出
方程
(1)仔细审题,注意题目中的 关键词,关键字,关键量。
(2)设未知数X并用X表示其它相关 的量,根据等量关系列出方程。
(3)解方程并验精品证课件结果的合理性。
4、随堂练习:
• 一件夹克按成本价提高 50%后标价,后因季节 关系按标价的8折出售,
解:设每台DVD的成本是x元,根据题意,得 (1+35%)· x ·90% - x -50 =208
解得, x =1200
答:每台DVD的成本是1200元。
精品课件
这节课我们学习了哪些内容?
1.用一元一次方程解决实际 问题的关键: (1)仔细审题。 (2)找等量关系。 (3)解方程并验证结果。
2、理解打折、利润、利 润率,提价、降价等 概念的含义。
小结
精品课件
• 解:设每件服装的成本价为X元,那么
每件服装的标价为:X(1+40%)元
每件服装的实际售价为: 1.4X× 80%元
每件服装的利润为:(1.4X× 80% -X)
由此,列出方程: 元1.4X× 80% -X=15
解方程,得:X= 125

因此,每件服装的成本价是 125
元。
精品课件
• 用一元一次方程解决实际问题的一般步骤是什么?
相关文档
最新文档