一题多解,培养学生的发散性思维

合集下载

在一题多解中培养学生的发散思维能力

在一题多解中培养学生的发散思维能力

在一题多解中培养学生的发散思维能力
发布时间:2023-04-17T02:14:35.792Z 来源:《教育学》2022年11月总第302期作者:康厚斌[导读] 数学教学离不开解题教学,从教与学两个维度看,教师不仅要引导学生学会主动学习,理解和运用一些基本方法、技能技巧,而且要从以掌握知识为主的知识立意转化为以问题解决为主的能力立意,其中如何正确地对所给信息进行思维加工是有效实现由知识立意转化为能力立意的关键,也应是解题教学的着力点。

陕西省汉中市略阳县天津高级中学723400
摘要:数学教学离不开解题教学,从教与学两个维度看,教师不仅要引导学生学会主动学习,理解和运用一些基本方法、技能技巧,而且要从以掌握知识为主的知识立意转化为以问题解决为主的能力立意,其中如何正确地对所给信息进行思维加工是有效实现由知识立意转化为能力立意的关键,也应是解题教学的着力点。

但对所给信息进行思维加工的深度和广度把握的不同,以及学生对相关内容和思想掌握程度的估计不足,都会导致学生认知角度的不同和教学效果的不同。

关键词:一题多解思想方法发散思维认知深度
笔者就2015年重庆市文科数学高考试题第14题为例谈谈自己的一些认识,供参考。

总之,一题多解题目从不同角度、不同层次来考虑问题,在解题过程中不仅可以重新复习、深刻理解知识点,还能让学生体会多种数学思想方法,培养发散性思维能力,也提高了解题效率,在认知过程中活而不空深而不偏,促进学生的深度认知和广度思维。

一题多解培养学生发散性思维

一题多解培养学生发散性思维

拖 滑 距 z 羲, 先 以速 n 加速度相等 , 以机车 多运 动 的一部 分位 移就 是 由 车 行 离 机 从 加度 一 车 所
匀 加 速 到 , 匀 减 速 到 0有 : 再 ,
是 一 ( — m) ^ M g一 ( 过 程 中 机 车 通 过 的位 移 ,
如有这样一题 : 总 质 量 为 M 的 列 车 , 水 平 直 线 轨 道 以 速 度 沿 据 图 一L, S
图 2
一 ,
由已知条件可得 一
解 法 三 : 能定 理 动

行驶 , 尾部有一质量为 的车厢突然脱 钩 , 司机发觉 此事故时 , 列车 已行驶 了 L的距离 , 于是 司机 立即关 闭气 门, 撤去牵引力 , 设机车 的牵引力是恒定 的, 列车 所受的阻力是车重的 k倍( <1 , 是 ) 求列车前后部分都
停 止 后 的距 离 .
对拖车: k g l 一÷m - m x—o 荫,
对 机车: nL kM- )x一。 k g - ( - g2 一÷ ( -m z, r m M- )  ̄


L 二一 一

解 法 四 : 量 角度 能
机车与拖车初速度 V 相 同 , o 末速 为 0 阻力 产生 ,
到 D处停止. 由题意可知 AC距离 为L, D 为待求距 B

, ‘ ,
离 d 由题 意知牵 引力 F一是 , . 在减速 过程 中的加
速度都为-k. g
解 法 一 : 式 法 公
解 法五 : 度 变化 角度 速
拖 车速度 由 V 减小到 0 机车速 度 由 o , 先 增加 到 再减小到 7 最后减小到 0 而在减速运动 中两者 J 。 ,

七年级上册数学一题多解

七年级上册数学一题多解

七年级上册数学一题多解在数学中,一题多解是非常有价值的学习方法,它不仅能提高学生的解题能力,还能培养学生的思维灵活性和创造性。

七年级上册的数学题目中,很多题目都可以采用多种解法来解答。

以下是对一题多解的简述:一题多解的意义加深理解:通过尝试不同的解题方法,学生可以更加深入地理解数学概念和原理。

培养思维:一题多解有助于培养学生的发散性思维,使他们能够从多个角度看待问题。

提高能力:学生在掌握多种解题方法后,能够更灵活地应对各种数学问题,提高解题效率。

示例:解一元一次方程以解一元一次方程为例,除了常规的移项、合并同类项等方法外,还可以采用以下方法:方法一:直接计算法对于简单的一元一次方程,如 2x=4,可以直接通过除法得到x=2。

方法二:移项法对于形如 3x+2=5x−3 的方程,可以通过移项将未知数集中在方程的一边,然后解出 x 的值。

方法三:合并同类项对于含有多个未知数项的方程,如 2x+3x=5,可以先合并同类项得到 5x=5,然后再解出 x。

方法四:乘除法对于系数不为1的一元一次方程,如 0.5x=2,可以通过乘法将系数化为1,从而解出 x。

实际应用在实际解题过程中,学生可以根据题目的特点和自己的掌握情况,选择最合适的解法。

通过一题多解的训练,学生可以逐渐提高解题的灵活性和准确性,为后续的数学学习打下坚实的基础。

总之,一题多解是数学学习中非常有价值的方法,值得学生在日常学习中多加实践和应用。

在数学中,一题多解是非常有价值的学习方法,它不仅能提高学生的解题能力,还能培养学生的思维灵活性和创造性。

七年级上册的数学题目中,很多题目都可以采用多种解法来解答。

以下是对一题多解的简述:一题多解的意义加深理解:通过尝试不同的解题方法,学生可以更加深入地理解数学概念和原理。

培养思维:一题多解有助于培养学生的发散性思维,使他们能够从多个角度看待问题。

提高能力:学生在掌握多种解题方法后,能够更灵活地应对各种数学问题,提高解题效率。

例谈如何利用一题多解培养学生的发散思维能力

例谈如何利用一题多解培养学生的发散思维能力

例谈如何利用一题多解培养学生的发散思维能力
利用一题多解的教学模式可以帮助学生培养发散思维能力,并激发他们的创造力和想象力。

以下是一些可以采取的教学方法:
1. 提供多种解答方式:在呈现问题或任务时,故意设计多种可能的解答方式,并鼓励学生思考不同的角度和方法。

教师可以引导学生发现和探索问题的多个解决方案,并促进他们进行多样化的思考。

2. 引导学生提出问题:鼓励学生对问题提出疑问,并帮助他们分析问题的本质。

通过不同的提问方式和各种角度的思考,学生可以培养批判性思维和创新思维。

3. 提供资源和工具:教师可以提供学生所需的资源和工具,如图书、网络资源、实验设备等,鼓励学生利用这些资源进行独立的探索和创新。

这样,学生可以根据自己的兴趣和需求选择适合自己的解决方案。

4. 开展小组合作:组织学生进行小组合作,让他们共同讨论问题,并尝试提出不同的解决方案。

小组合作可以激发学生的合作精神和创造思维,帮助他们借鉴和汲取其他同学的想法。

5. 鼓励学生试错和修改:学生在探索过程中可能会遇到困难和错误,教师应鼓励他们从失败中学习,并帮助他们调整和改进解决方案。

这种反思和修改的过程可以促进学生的反馈能力和创造性思维。

通过以上教学方法,学生可以从不同的角度和思路来解决问题,培养他们的发散思维能力。

此外,学生在解决问题的过程中还可以培养一些其他的能力,如分析能力、判断能力、合作能力等。

巧用圆中的“一题多解”,培养学生发散性思维

巧用圆中的“一题多解”,培养学生发散性思维

巧用圆中的“一题多解”,培养学生发散性思维摘要:在初中数学教学中,习题解答是重要的组成部分,这不仅是由数学学科能用于解决现实问题的特征决定的,更是为了培养学生的逻辑思维、解题能力。

一题多解指的就是学生在解决数学问题的时候,不再局限一道题目一个解题思路和方法的限制,而是学会从不同的角度寻找切入点,使用多种方法解决问题。

本文从初中数学教学“圆”的一题多解教学入手展开研究,进行有效的一题多解训练,带出多种数学知识与方法,培养学生的发散性思维。

关键词:发散性思维;一题多解;初中数学;圆数学本身具有着一定的抽象性和逻辑性,而且解决问题的方式也是多样的。

教师注重转变教学理念和教学方法,引导学生从多角度和多层面进行问题的分析,学会使用一题多解来找到解决问题的多种方式,对发散学生的思维,培养学生的数学能力至关重要。

一、数学课程中的一题多解数学学科教学本身具有一定的抽象性与综合性内涵,它旨在培养学生的灵活逻辑思维能力。

在新课改背景下,为了实现数学教学实效性的有效提升,教师也希望从多个方面思考,实现多角度数学教学,引入一题多解训练模式,在提炼数学知识内容过程中也希望培养学生良好的变式思维,更多结合数学问题、条件、结论之间的相互转换来彰显学生对于教学内容、方法的不同理解,培养学生思维的广阔性和慎密性。

在该过程中,教师的教学过程不再固定于某一局限性定式思维上思考问题,要鼓励学生充分的发挥出想象力,能针对一个题目从多角度和多方向进行观察和分析,多角度和多变并且多层次的应用学习过的知识,得出不同类型解决问题的方式方法,同时也养成任何问题都去多方面思考的习惯。

二、圆的一题多解问题探析在学完圆的有关知识后,很多学生会发现有些习题常出现一题多解的特点.这是由于图形的位置及圆的对称性等特性而出现的情况。

本文将课本中的例、习题的改编题及近几年来全国各地的中考题有关圆中一题多解的问题归纳起来,作为培养学生发散思维的有效路径并展开分析。

一题多解对培养学生能力的作用

一题多解对培养学生能力的作用
上,如图(2)。此时
KBC≤K≤KBD,而过点B 的直线y+4=K(x-9),即 Kx-y-9K-4=0与椭圆有交 点,代入椭圆方程得: (4+9K2)x2-18K(9K+4)
D o C
图(2)
B(9、-4)
x+9(9K+6)(9K+2)=0,由判别式等于0得:
K
= −3+ 6
3
或K
=
−3+ 6
3
圆有交点,点到直线的距离不大于半径,从而建立不等
式。通过上面的教学过程,我们看到通过对式子的结构特
征的仔细观察(观察能力的培养)充分挖掘变量即充分理
解、分析、探索变量的意义,还能培养学生的发散思维,
提高分析能力。不仅如此,在整个探索的过程中,也把学
生的情感带入了奇妙的数学王国。
二、培养学生的数学欣赏能力

y max
=
−3+ 6
3
y min
=
−3+ 6
3
以上三种解法,是由所给的函数形式,联想到斜率,
其中一点的坐标中含有参数,是一个动点,消去参数后,
发现它们在不同的曲线上,问题转成了直线与曲线(圆、
椭圆)的关系,利用点到圆相交的直线距离不大于半径建
立不等式,当直线与椭圆有交点时,解方程组,转化为一
元二次方程,若方程有解,判别式不小于零,建立不等
一题多解对培养学生能力的作用
文/苏荣章
进入21世纪,各国对数学教学目的中能力的培养都很 重视,几乎所有国家都提出要发展学生运用数学知识,分析 和解决问题的能力。比如美国的数学课程标准中就提出培养 推理能力、数学洞察力、解决问题的能力,以及对数学的 欣赏能力。在数学教学实践中,笔者个人认为:在复习课中 引入一题多解,非常有利于学生上述能力的培养。因为在复 习课中,学生已具备一定的数学知识与技能,具有一定的分 析、解决问题的能力。

略论小学数学教学中的一题多解与学生发散思维的培养

略论小学数学教学中的一题多解与学生发散思维的培养

略论小学数学教学中的一题多解与学生发散思维的培养摘要:小学数学教育是基础教育性学科,对于培养学生智力和思维能力都具有重要作用。

长期以来,我国小学数学教学对学生发散性思维能力的培养力度不够,在此结合一题多解教学方式对小学数学发散思维的培养进行探索。

关键词:小学数学教学;一题多解;发散思维一、一题多解对培养小学生发散思维的重要作用1.一题多解的数学教学方法能够激发小学生对数学知识的好奇心,让小学生有学习数学的动力。

小学数学知识凝结了人类长期以来摸索的数学知识最基本也是最基础的精华。

传统的数学教学模式中,往往通过数学习题和数学例题的练习帮助小学生掌握数学知识,这是一种比较枯燥和无趣的教学方式,会导致小学生对数学丧失学习兴趣。

针对小学生的年龄特征和心理发展状况,小学数学教师在教学过程中最好能够设置有趣的、生动的教学情境来激发学生的求知欲,让他们产生自觉、自发的去学习数学知识的愿望,而一题多解刚好可以起到这种作用。

一题多解并不是说把一道数学题的多种解法教给学生就万事大吉了,而是要通过一题多解的教学方式培养小学生去探索、去研究、去发现。

在教学中,教师可以常常使用以下用语来诱导学生:想想看这道题还有没有其他的解决方法?你们还有其他的解题思路吗?勇敢智慧的孩子会探索等等,小学生在教师的引导下可以形成善于思考、乐于思考的好习惯。

2.一题多解的数学解题方法可以锻炼小学生的发散性思维和创新性思维。

小学数学不同于小学语文的根本之处在于小学数学着重对学生的思维进行锻炼和提高。

为了增强小学生的发散思维和创新思维,教师可以运用一题多解的教学方式来增强小学生思维的灵活性和变通性。

在探寻一道习题多种解法的过程中,小学生的创新思维也能够得到发展,小学生独立思考的能力在一题多解教学的过程中得到加强。

教师在教学过程中要改变以前自己一个人滔滔不绝的习惯,要把小学生放在学习主体地位上,让学生在课堂上勇于提出自己的见解和疑问,鼓励学生之间进行融洽的沟通和探讨,实现陶行知先生描述的教学相长的教学境界。

浅谈高中数学教学过程中对学生发散思维能力的培养

浅谈高中数学教学过程中对学生发散思维能力的培养

浅谈高中数学教学过程中对学生发散思维能力的培养摘要:高中数学是一门重要的基础学科,对于高中学习以及以后的继续深造有非常重要的意义。

数学的教学和学习中,教与学要很好地配合,达到一个理想的状态,重要的教学环节是对学生发散思维的培养。

发散思维是突破常规思维,拓展常规思维,以多变,全方位寻找答案,建立一题多解的方法,突出创造性思维为核心的思维模式。

关键词:发散性思维一题多解培养发散思维能力发散思维,又称辐射思维、放射思维、扩散思维或求异思维,是指大脑在思维时呈现的一种扩散状态的思维模式,它表现为思维视野广阔,思维呈现出多维发散状。

在数学教学中,我们主要体现在“一题多解”思维能力的培养,对学生的解题思路、解题方法上,注重多途径、多方案解决问题,不同角度对题型进行思考,实现举一反三、触类旁通的效果。

多层次培养这种不同角度去探索同一个问题的能力,就是培养学生发散思维最好的教学途径。

根据自己多年的教学经验,我总结出多种数学发散思维能力培养的方法:一、教师改变教学观念,不断丰富知识,多方位解题,引导学生发散思维能力的培养数学学习过程中,概念学习是基础,概念构建了整个数学的知识结构构架,通过概念,我们能把数学思想方法很好地表达。

因此,教学过程中,概念的理解,对学生的学习效果举足轻重。

我要求学生对概念的理解主要做到四个方面:首先,对概念的产生作常识性的了解,让学生产生学习的兴趣;其次,准确表述概念,逐字逐句,演算过程,图形表达,让大家深刻理解掌握;再次,拓展概念,寻找变化,在变化中深化对概念的理解;最后,把概念运用到题型的变化中来,让大家通过现象看本质,概念是主线,概念也是变化的主线,是发散思维培养的基础本质过程,引导学生不断进步。

二、通过一题多解、一题多问的教学方法,培养学生的发散思维能力在教学过程中,我们不但重视教学进度,更注重教学质量。

一题多解,是我们提高教学效果的重要途径,对学生学习兴趣的提高、发散思维的培养都大有裨益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一题多解,培养学生的发散性思维
教学不只是继承和吸收前人的知识成果,还必须应用和创新,教师应该把传授知识和培养能力、掌握方法放在同等重要的位置。

通过例题示范和习题的一题多解,可以开拓思路,培养学生的发散性思维能力,还可以通过纵横发散,使知识串联、综合沟通,达到举一反三的目的。

一、发散性思维的定义
发散性思维,又称扩散性思维、辐射性思维、求异思维,是一种从不同的方向、途径和角度去设想,探求多种答案,最终使问题获得圆满解决的思维方法。

发散性思维的特点是:充分发挥人的想象力,突破原有的知识圈,从一点向四面八方辐射开,并通过知识、观念的重新组合,寻找更新更多的设想、答案或方法。

例如,一题多解、一词多组、一字多意或通过不同方法去探究答案的思维活动。

例如,风筝的用途是什么?有人回答:放在空中玩儿、测量风向、当射击靶子。

还有人回答:传递军事情报、作联络暗号等等。

他们根据不同的想法说出他们各自的答案,这样从不同的角度考虑问题将会促使学生拓展思维,把所学的知识灵活地运用,提高解题能力。

二、培养学生一题多解
一题多解训练,就是启发和引导学生从不同的角度、不同的思路,用不同的方法和不同的运算过程去分析、解答同一道数学题的练习活动。


师在教学活动中做好学生课堂教学的引导者和组织者,在课堂教学中,引导学生从多方面考虑问题,培养学生的一题多解能力,培养学生的发散思维能力,使其养成一个良好的解题方法和思路。

1.启发联想,诱发一题多解
联想是由一事物想到另一个事物的思维过程,它是创造性思维的起点。

课堂上启发学生展开联想,进行发散性思维,可以帮助学生突破感官时空限制,扩大感知领域,唤起学生对已有知识和经验的回忆,沟通新旧知识之间的联系,达到一题多解,发展学生的思维。

例.某厂有工人126人,男女工人之比是5∶4,男工有多少人?读题后,引导学生根据“男女工人数之比是5∶4”展开联想:①男工人数是女工人数的;②女工人数是男工人数的;③男工人数占全厂工人的;④女工人数占全厂工人的;⑤男工人数比女工人数多;⑥女工人数比男工人数少;⑦男工人数占5份,女工人数占4份。

这样老师不断地启发、诱发学生,学生的联想越丰富,思路就越宽阔,解题方法也就越新颖、越多样。

2.巧设提问,诱发一题多解
学生学习的实质是在教师的启迪下自主探索建构的过程。

解题时巧设问题,如“这题还有别的解法吗?”“如果……会怎样?”等势必会扩大学生思考的范围,拓宽学生解决问题的视野,促使学生开动脑筋,更深入地思考,去发现解决问题的新思路、新途径。

例.客车和货车同时从甲乙两地相对开出,客车每小时行50千米,货车每小时行40千米,4小时相遇。

甲乙两地相距多少千米?
学生按常规用①50×4+40×4=360(千米);②(50+40)×4=360(千米)两种方法解答后,教师及时设问:“如果假设客车和货车速度相同会怎样?这道题还有其他的解法吗?”启迪学生思考,从而得出几种新颖奇特、富有思维价值的解法。

解法1:假设客车和货车每小时都行40千米,客车就少行4个10千米,于是可得:40×8+4×10=360(千米)。

解法2:假设客车和货车每小时都行50千米,货车就多行4个10千米,于是可得:50×8-4×10=360(千米)。

解法3:假设客车和货车每小时都行40千米,而客车多行的也正好是40千米,就可以得出解法:40×9=360(千米)。

像这样在解题时巧设问题,可以帮助学生从不同方面考虑问题,有助于拓宽他们的思维,得到更多的解题方法。

三、一题多解解培养学生发散性思维
在教学中设计一些一题多解的题,培养学生从不同的角度分析题,使他们的思维越来越丰富,这样同一道题可得到截然不同的解题思路,它对于提高学生的解题能力有很大帮助,同时对于提高学生的发散性思维也有很大帮助。

例.一盒糖连盒重600克,吃去一半糖后,连盒还重350克,糖重多少克?盒重多少克?
解法1:(600-350)×2=250×2=500(克) 600-500=100(克)思路:先算出半盒糖的重量,再乘以2求出一盒糖的重量,最后用一盒糖连盒重600克减去一盒糖的重量,就可求得盒子的重量。

解法2:350×2-600=100(克) 600-100=500(克)思路:先算出两个盒子与一盒糖的总重量700克,再减去一盒糖连盒重600克,求出一个盒子的重量,最后用一盒糖连盒重600克减去盒子的重量,就可求得一盒糖的重量。

解法3:350-(600-350)=100(克) 600-100=500(克)思路:先求一半糖的重量,再用一半糖连盒重350克减去一半糖的重量,求出盒子的重量,最后用一盒糖连盒重600克减去盒子的重量,就可求得一盒糖的重量。

解法4:350-(600÷2)=50(克) 50×2=100(克) 600-100=500(克)思路:用一半糖连盒重350克减去一半糖与半个盒子的总重量求出半个盒子的重量,再乘以2求得一个盒子的重量,最后用一盒糖连盒重600克减去盒子的重量,就可求得一盒糖的重量。

这是一道一题多解的题,从不同的角度分析可以得出几种不同的解法,学生经常进行这样多向思维的训练,可以广开思路,萌发思维的创造性,提高学生思维的灵活性与敏捷性。

21世纪,世界将进入全球化知识经济时代。

在知识经济时代,国家的创新能力,包括知识创新能力和技术创新能力,是决定一个国家在国际竞争和世界总格局中地位的重要因素。

在知识经济逐步到来的今天,培养学生的创新意识和创新能力,提高学生的综合素质和创造力,将关系到国家的前途和命运。

一题多解是从不同的角度、不同的方位审视分析同一题中的数量关系,用不同解法求得相同结果的思维过程。

教学中适当的一题多解,可以
激发学生去发现和去创造的强烈欲望,加深学生对所学知识的深刻理解,训练学生对数学思想和数学方法的娴熟运用,锻炼学生思维的广阔性和深刻性、灵活性和独创性,从而培养学生的思维品质,发展学生的创造性思维。

在数学教学中,采用“一题多解”的教学方法,并引导学生评价各种解法的特点和优劣,不但能提高学生的学习兴趣、提高解题能力、优化解题思路,而且能增强发散思维能力,培养学生的创新意识和创新能力。

(作者单位山西省大同西花园一校)。

相关文档
最新文档