平行四边形定义及性质(最全)
平行四边形的概念性质和判定(基础内容)

平行四边形平行四边形是特殊的四边形,它具有许多特点,我们要认真研究。
因为矩形,菱形,正方形等特殊的平行四边形的知识都是建立在这个基础之上的,所以掌握平行四边形的知识不仅是学好本部分的关键,也是学好全章的关键。
一.重点:平行四边形的概念,性质和判定是这部分的重点。
二.知识要点:(一)平行四边形定义:两组对边分别平行的四边形是平行四边形。
(二)平行四边形的性质: 从它的边,角,对角线三个方面进行研究。
1.由定义知平行四边形的对边平行。
2.两组对边分别相等;3.两组对角分别相等;4.对角线互相平分;5.平行四边形是中心对称图形。
(三)平行四边形的判定。
1.利用定义判定。
2.两组对边分别相等的四边形是平行四边形。
3.一组对边平行且相等的四边形是平行四边形。
4.两组对角分别相等的四边形是平行四边形。
5.对角线互相平分的四边形是平行四边形。
三.例题:(一)要熟练掌握平行四边形的性质及判定,就要学会多角度地思考问题,要学会认真审题,注意题设中的关键词语,如:"两组","互相","平行且相等"等等,并会举反例否定一个命题。
例1.判断正误(我们要判断一个命题是假命题,举一个反例即可)1.一组对边平行,一组对角相等的四边形是平行四边形。
()分析:如图,四边形ABCD中,AB∥CD,∠A=∠C, ∵∠A+∠D=180°,∠B+∠C=180°, ∴∠B=∠D,∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形)。
∴此命题正确。
2.一组对边平行,一组对边相等的四边形是平行四边形。
()分析: 此命题不正确。
反例:AB∥CD,AD=BC,但四边形ABCD不是平行四边形。
3.一组对边平行,一组对角互补的四边形是平行四边形。
()分析: 是错误的。
反例:如图, AB∥CD,∠A+∠C=180°,但四边形ABCD不是平行四边形。
平行四边形的性质及判定

课程标题平行四边形的性质及判定学习过程※学习探究1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形,在四边形ABCD中,A B∥DC,AD∥BC,那么四边形ABCD是平行四边形。
定义的作用:(1)给出一种判定四边形是平行四边形的方法,如果所给四边形的两组对边分别平行,那么它一定是平行四边形;(2)给出了平行四边形的一个重要性质:两组对边分别平行。
例一、如图,在平行四边形ABCD中,EF∥AB,GH∥AD,图中有多少个平行四边形?注意:平行四边形的定义是判定四边形是否是平行四边形的方法之一。
2、平行四边形的性质(1)定义性质:平行四边形的两组对边分别平行。
(2)性质:A、平行四边形的对角相等。
B、平行四边形的对边相等。
C、平行四边形的对角线互相平分。
(3)平行四边形是中心对称图形,平行四边形绕其对角线的交点旋转180后,与自身重合,我们说平行四边形是中心对称图形,对称中心为对角线的交点。
注意:边:对边平行,对边相等;角:对角相等,邻角互补;对角线:对角线互相平分。
例二、如图,平行四边形ABCD的对角线AC、BD相交于O,周长为80cm,BOC12∆AOB∆边的长。
的周长比cm,求这个平行四边形各的周长大3、平行四边形的面积平行四边形的面积等于它的底和该底上的高的积,如图所示,平行四边形ABCD的面积=BC∙AE=C∙BF,也就是平行四边形的面积=底边长×高=ah注意:同底(等底)同高(等高)的平行四边形面积相等,如图所示,平行四边形ABCD 与平行四边EBCF有公共边BC,则平行四边形ABCD的面积=平行四边形EBCF的面积。
例三、 如图,已知平行四边形ABCD 中的周长是36cm ,DE 、DF 分别是它的两条高,且DE=求平行四边形的面积。
,35,34cm DF cm =4、 平行四边形的概念和性质在实际应用中易出现的错误如:平行四边形的一条角平分线分对边为3和4两部分,求平行四边形的周长。
平行四边形的性质和判定

初二数学下册平行四边形的性质一、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
二、平行四边形的性质1. 平行四边形的对边相等;2. 平行四边形的对角相等;3. 平行四边形的对角线互相平分三、两条平行线之间的距离如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等。
两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。
例题1:如图,若AB∥EG,EF∥BC,AC∥FG,则图中有几个平行四边形?将它们表示出来,并说明理由。
例题3:如图,在ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E,求证:AB=BE例题6:已知直线a,b,c互相平行,直线a与b的距离是6厘米,直线b与c的距离是10厘米,那么直线 a与c的距离是()A. 16厘米B. 4厘米C. 16厘米或4厘米D. 不能确定例题8:如图,平行四边形ABCD的对角线相交于点O,点E,F在对角线BD上,AE∥CF,求证 AE= CF练习:1.平行线之间的距离是指()A. 从一条直线上一点到另一条直线的垂线的长度B. 从一条直线上一点到另一条直线的垂线段长度C. 从一条直线上一点到另一条直线的垂线段D. 从一条直线上一点到另一条直线上的一点间线段的长度2.如图2,ABCD中,下列说法一定正确的是()A. AC=BDB. AC⊥BDC. AB=CDD. AB=BC图2 图3 图43. 如图3,在ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()cmA. 2B. 4C. 6D. 84. 如图4,ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A. 8B. 9C. 10D. 115. 在周长为48cm的平行四边形ABCD中,对角线AC,BD交于O点,△ABO和△ADO的周长差是4cm,那么这个平行四边形较短的边长是()cmA. 6B. 14C. 10D. 86. 如图6,在ABCD中,BE⊥AD于点E,若∠ABE=50°,则∠C=_____________7. 如图7,在ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则DE=_____________cm8. 如图8,平行四边形ABCD的对角线相交于点O,AD≠CD,过点O作OM⊥AC,交AD于点M,如果△CDM的周长为a,那么平行四边形ABCD的周长是_______________图6 图7 图89. 如图,在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B/处,AB/和CD相交于点O,求证OA=OC10.如图,过ABCD的对角线AC,BD的交点O作一条直线,分别交AB和DC于E,F两点,交CB和AD的延长线于G,H两点,求证OG=OH11.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求BC,CD,AC,OC的长及ABCD的面积平行四边形的判定一、平行四边形的判定二、三角形的中位线1. 定义:连接三角形两边中点的线段叫做三角形的中位线。
平行四边形的性质和判定

平行四边形的性质和判定一、 知识梳理1、 平行四边形的定义、性质及判定2选择的判定定理(第12题)E 图3 常见判定方法的辨析()⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧)(.7;.6.5,.4.3.2.1条对角线平分;两顶点的对角线被另一一组对角相等该对角的角相等一组对边相等且一组对相平分;角线被另一条对角线互一组对边相等且一条对另一组对边相等;一组对边平行一条对角线;两顶点的对角线平分另一组对角相等该对角的分;角线被另一条对角线平一组对边平行且一条对角相等;一组对边平行且一组对3、平行四边形的面积(1) 如图1,()()==ABCD S 平行四边形.即平行四边形S = × =ah (a 是平行四边形任何一边长,h 必须是a边与其对边的距离).(2)如图2,EBCF ABCDS S 平行四边形平行四边形.图1 图2(3)面积计算类型:练习:如图3、平行四边形ABCD 的两条对角线相交于点O ,E 为AB 边中点,图中与△ADE 面积相等的三角形(不包括△ADE )共有( )个.A 、3B 、4C 、5D 、64、三角形中位线——构造平行四边形(1) 定义:连结三角形两边中点的线段叫做三角形的中位线.(2)三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.三角形中位线定理的作用:①位置关系:可以证明两条直线平行.②数量关系:可以证明线段的倍分关系.二、 典型例题平行四边形的概念、性质及相关计算例1、(2005 桂林)已知任意直线l 把ABCD 分成两部分,要使这两部分的面积相等,直线l 所在的位置需满足的条件是___ (只要填一个你认为合适的条件).例2、 (2006 淮安课改)如图,平行四边形ABCD 中,AB 3=,5BC =,AC 的垂直平分线交AD 于E ,则CDE △的周长是( ) A.6 B.8 C.9 D.10例3、在MBN △中,6BM =,点A ,C ,D 分别在MB ,BN ,NM 上,四边形ABCD 为平行四边形,NDC MDA =∠∠,ABCD 的周长是( ) A.24 B.18 C.16 D.12例4、如图,在□ABCD 中,对角线AC 、BD 相交于O ,AC+BD=18,BC=6,则△AOD 的周长为 .1题 2题 3题 4题例5、(08山东潍坊)在平行四边形ABCD 中,点1A ,2A ,3A ,4A 和1C ,2C ,3C ,4C 分别是AB 和CD 的五等分点,点1B ,2B 和1D ,2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 的面积为( )A .2B .35C .53D .15例5 例6例6、 (2006 河北课改)如图,在ABCD 中,53AD AB ==,,AE 平分BAD ∠交BC 边于点E ,则线段BE EC ,的长度分别为( ) A.2和3 B.3和2 C.4和1 D.1和4例7、(2008年西宁市) 如图已知:平行四边形ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG 交CE 于F ,交AD 于G .求证:AE DG =.例8、(2006 长春课改)如图,在ABCD 中,E 为BC 边上一点,且AB AE =. (1)求证:ABC EAD △≌△.(2)若AE 平分DAB ∠,25EAC =∠,求AED ∠的度数.例9、(2005 黑龙江课改)如图,E 、F 是ABCD 对角线BD 上的两点,请你添加一个适当的条件: ,使四边形AECF 是平行四边形.D C B NDB A BC E F G1 2 3 4 C C C例10、(2005 山东)如图,在ABCD 中,对角线AC BD ,相交于点O ,E F ,是对角线AC 上的两点,当E F ,满足下列哪个条件时,四边形DEBF 不一定是平行四边形( )A.OE OF =B.DE BF =C.ADE CBF ∠=∠ D.ABE CDF ∠=∠例11、(2006 南京课改)已知:如图,在ABCD 中,E F ,分别是AB CD ,的中点. 求证:(1)AFD CEB △≌△;(2)四边形AECF 是平行四边形.例12、(2006黄冈)如图,DB AC ∥,且12DB AC =,E 是AC 的中点,求证:BC DE =.例13、(2008年湖州市) 如图,在ABC △中,D 是BC 边的中点,F E ,分别是AD 及其延长线上的点,CF BE ∥.(1)求证:BDE CDF △≌△.(2)请连结BF CE ,,试判断四边形BECF 是何种特殊四边形,并说明理由.例14(08西城一模) 如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F. 若PE=PF ,且AP+AE=CP+CF. (1)求证:PA=PC ;EAA D EBC C DD C A BO F E(2)若AD=12,AB=15,60DAB ︒∠=,求四边形ABCD 的面积.例15、如图,E 、F 分别是ABCD 的边AD 、 BC 上的点,且AE=CF (1)求证:△ABE ≌△CDF ;(2)若M 、N 分别是BE 、DF 的中点,连接MF 、EN ,试判断四边形MFNE 是怎样的四边形?并证明例16、(2008年甘肃)如图,在ABCD 中,点E 是CD 的中点,AE 的延长线与BC 的延长线相交于点F .(1)求证:△ADE ≌△FCE ;(2)连结AC 、DF ,则四边形ACFD 是下列选项中的( ). A .梯形 B .菱形 C .正方形 D .平行四边形例17、如图,四边形ABCD 中,E 、F 分别是AD 、AB 的中点,CE 、CF 交BD 于G 、H ,若G 、H 为BD 的三等分点,证明四边形ABCD 为平行四边形.例18、已知AD 是△ABC 的中线,E 为AC 上一点,连线BE 交AD 于F ,且AE =FE , 求证:AC =BFD BD例19、六边形ABCDEF,∠A=∠B=∠C=∠D=∠E=∠F=120°,AB=20,BC=40,CD=30,DE=25,求AF和EF的长三、能力训练1、(2006广东课改)如图所示,在ABCD中,对角线AC BD,交于点O,下列式子中一定成立的是()A.AC BD⊥B.OA OC=C.AC BD=D.AO OD=2、. (2006河北)如图,在四边形ABCD 中,AB CD BC AD==,,若110A=∠,则_____=C∠.3、. (2006佛山课改)如图,在平行四边形ABCD中,AC BD,相交于点O.下列结论中正确的个数有()结论:①OA OC=,②BAD BCD∠=∠,③AC BD⊥,④180BAD ABC∠+∠=.A.1个B.2个C.3个D.4个1题2题3题4、不能判定四边形是平行四边形的条件是()A、AB=CD AD=BC ;B、A B∥CD AB=CDC、AB=CD A D∥BC;D、A B∥CD A D∥BC5、(2005天津)如图,在ABCD中,EF AB∥,GH AD∥,EF与GH交于点O,则该图中的平行四边形的个数共有()A.7个B.8个C.9个D.11个6、(08北京)ABC∆中,D、E分别是AB、AC的中点,若DE=2cm,则BC =______cm.7、在平行四边形ABCD中, ∠B=110O,延长AD至F,延长CD至E,连接EF,则∠E+∠F=( )A 110OB 30OC 50O D70OAC5题 7题 8题8、(08湖南怀化)如图,在平行四边形ABCD 中,DB=DC 、65=∠A ,CE ⊥BD 于E ,则=∠BCE . 9、(08四川达州)如图,一个四边形花坛ABCD ,被两条线段MN EF ,分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是1234S S S S ,,,,若MN AB DC ∥∥,EF DA CB ∥∥,则有( ) A .14S S = B .1423S S S S +=+ C .1423S S S S = D9题 11题10、(2005宿迁)已知点(20)A ,、点B (12-,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在 ( )A.第一象限 B.第二象限 C.第三象限 D.第四象限11、如图,在等腰ABC Rt ∆中,AC=BC,以斜边AB 为一边作等边ABD ∆,使点C,D 在AB 的同侧;再以CD 为一边作等边CDE ∆,使点C,E 落在AD 的异侧.若AE=1,则CD 的长为( )112、(2008年广东) 如图所示,已知等边三角形ABC 的边长为1,按图中所示的规律,用2008 个这样的三角形镶嵌而成的四边形的周长是13、(2005 贵阳课改)在一次数学探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等.(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有 组; (2)请在图9的三个平行四边形中画出满足小强分割方法的直线; (3)由上述实验操作过程,你发现所画的两条直线有什么特征?14、(2005 四川泸州大纲)如图,在ABCD 中,两条对角线相交于点O ,点E ,F ,G ,H 分别是OA ,OB ,OC ,OD 的中点,以图中的任意四点(即点A ,B ,C ,D ,E ,F ,G ,H ,O 中的任意四点)为顶点画两种不同的平行C AB ┅┅ 红 紫 白黄 D M A FE C N B A D BA D BA B四边形.15、(2005 佛山课改)已知任意..四边形ABCD ,且线段AB 、BC 、CD 、DA 、AC 、BD 的中点分别是E 、F 、G 、H 、P 、Q .(1)若四边形ABCD 如图①,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”).甲:顺次连接EF 、FG 、GH 、HE 一定得到平行四边形; ( ) 乙:顺次连接EQ 、QG 、GP 、PE 一定得到平行四边形. ( )(2)请选择甲、乙中的一个,证明你对它的判断.(3)若四边形ABCD 如图②,请你判断(1)中的两个结论是否成立?16、(2006 荆州课改)ABCD 中,2AB BC =,E 为DC 的中点,AE 与BC 延长相交于点F . 求证:F FAB =∠∠. 17、(2006 贵阳课改)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AF BD ⊥,CE BD ⊥,垂足分别为F ,E .(1)连接AE ,CF ,得四边形AFCE .试判断四边形AFCE 的形状?(2)请证明你的结论.18、(2006 贵港)如图,AB CD ∥,AB CD =,点B E F D ,,,在同一直线上,BAE DCF =∠∠. (1)求证:AE CF =;(2)连结AF EC ,,试猜想四边形AECF 是什么四边形,并证明你的结论.B BC E ADEF C B D D 图② A D C B 图①FBCA19、 (2005 浙江课改)如图,在平行四边形ABCD 中,B ∠,D ∠的平分线分别交对边于点E F ,,交四边形的对角线AC 于点G H ,.求证:AH CG =.20、如图是某城市部分街道示意图,AF ∥BC ,EC ⊥BC ,BA ∥DE ,BD ∥AE ,EF =FC ,甲乙两人同时从B 站乘车到F 站,甲的路线是B →A →E →F ,乙的路线是B →D →C →F ,两车速度相同,无耽误时间,谁先到F 站?21、在等边三角形ABC 内,有一动点P ,过P 作ED ∥AB ,HI ∥BC ,GF ∥AC ,已知等边三角形ABC 的边长为a ,请问:ED +HI +GF 的长度是否唯一定值,如果是,该定值为多少?22、平行四边形ABCD 中,△ACP 和△ACQ 是正三角形, 求证:四边形BPDG 是平行四边形A B D E G H F。
平行四边形的定义及性质

平行四边形的定义及性质教学目标1、探索并掌握平行四边形的性质,并从中体会类比和转化的数学思想和方法。
2、能够灵活运用平行四边形的性质解决问题。
教学重难点重点:平行四边形的性质难点:探索和掌握平行四边形的性质教学准备:PPT课件课时安排:一课时教学过程:一、创设情境,导入新课展示图片,引导学生去阅读此内容。
从这些图片中我们可以看到这些图片中有平行四边形,平行四边形是我们熟悉的一种基本几何图形,生活中处处可以看到平行四边形的身影。
为什么平行四边形形状的物体与我们的生活有如此密切的关系呢?这一节让我们一同走进平行四边形的世界,一起去探究它的性质吧。
(出示教学目标)二、学习探究探究1:平行四边形的定义(1):让学生交流生活中见到的平行四边形。
(2):概括平行四边形的定义并板书。
(见课件)(3):你能从以下图形中找出平行四边形吗?(见课件)思考:(1)要识别一个图形是平行四边形,目前的方法有几个?(2)平行四边形首先应该是几边形?(3)应该有几组对边平行?说明:定义既是性质也是判定方法,现在判定一个四边形是平行四边形的方法只有一个,就是利用定义判定。
探究2:平行四边形的性质(1)按课本第72页的“试一试”画图。
(2)剪下平行四边形,沿平行四边形的各边再在 一张纸上画一个平行四边形,各顶点记为A 、B 、C 、D 。
通过连结对交线得交点O ,用一枚图钉穿过点O ,把其中一个平行四边形绕点O 旋转,观察旋转180°后的图形与原来的图形是否重合。
思考:(1)平行四边形是否是中心对称图形?(2)请说出平行四边形边、角之间的数量关系。
(3)在学生操作、讨论、交流猜想出结论后,最后概括平行四边形是中心对称图形,平行四边形的对边相等,对角相等。
我们可以用演绎推理证明上述探索得到的结论。
已知:四边形ABCD 是平行四边形。
求证:AB=CD,AD=BC∠A= ∠C, ∠ABC= ∠CDA.证明:∵四边形ABCD 是平行四边形 ∴AD ∥BC ,AB ∥CD (平行四边形定义) ∴∠1=∠2, ∠3=∠4(两直线平行,内错角相等)∵BD=DB∴△ABD ≌△CDB (ASA )∴∠A=∠C (全等三角形对应角相等)AD=CB ,AB=CD(全等三角形对应边相等)∵∠1=∠2, ∠3=∠4∴∠1+∠4=∠2+∠3(等式性质)即∠ABC=∠ADC AD=CB ,AB=CD ,∠A=∠C ,∠ABC=∠ADC以上的相等关系可以概括为平行四边形的性质定理:.平行四边形的性质定理1 平行四边形对边相等.平行四边形的性质定理2 平行四边形对角相等三、 教学反馈:已知平行四边形ABCD 中1)若AB =8,周长等于24,求其余三边的长中,∵ AB =CD=8 AD =BC (平行四边形的对边相等)又 ∵AB+BC+CD+DA=24, B∴2AB+2BC=24. 即:AB+BC=12∴BC=4即CD=8, AD=BC=4.(2) 若∠A=40°,求其它各内角的度数ABCD中解(2):在又∵∠A +∠B=180°(平行四边形,两邻角互补)∴∠B =180°-∠A=180°-40°=140∘.∴∠B=∠D =140°.即∠A=∠C=40 °∴∠B=∠D =140°四、巩固练习课本第75页练习1、3题五、本课小结这节课你学了那些知识?六、作业布置课本第80页习题18.1第2、3题。
40-平行四边形的定义及性质ok

2、画出平行四边形的两条对角线。 3、用一张半透明的纸复制你刚才画的 平行四边形,并将复制后的平行四边形绕对 角线的交点旋转180度,你有什么发现?
(C) A AD=BC AB=CD B (D)
D (B) ∠BAD=∠DCB
O (A) C
∠ABC=∠CDA
思考:平行四边形的邻角有什么关系呢?
已知:
平行四边形的性质: 边:
平行四边形的对边平行且相等;
∵四边形ABCD是平行四边形 ∴AB∥CD AD∥BC
角:
平行四边形的对角相等;邻角互补。
∵四边形ABCD是平行四边形 ∴∠A=∠C ∠B=∠D ∠A+∠B=180°∠B+∠C=180°…
例2、如图 小明用一根36m长的绳子围成 了一个平行四边形的场地,其中一条边AB 长为8m,其他三条边各长多少?
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB 证明:连接AC,在平行四边形ABCD中 ∵AB∥CD,AD∥BC(平行四边形的对边平行) D ∴∠1=∠2,∠3=∠4 A 猜想:平行四边形的对边、 在 △ABC和△CDA中 4 1 对角各有什么关系? ∠1=∠2,AC=CA,∠3=∠4 ∴ △ABC≌△CDA(ASA) B 2 3 C ∴AB=CD,BC=DA,∠B=∠D 又∵∠1=∠2,∠3=∠4 ∴∠1+∠4=∠2+∠3 即∠BAD=∠DCB
如图,在 ABCD中,AC=4 ㎝ ,CD=3 ㎝ ,BC=5 ㎝ , 则 ABCD的面积 12㎝2 为 ________ .
A
4 B 5
D
3 C
2、如图,小明用一根36m长的绳子围成了 一个平行四边形的场地,其中一条边AB长 为8m,其他三条边各长多少? 解: 四边形ABCD是平行四边形
平行四边形的性质及判定(四边形)讲义
EOABD C平行四边形的性质及判定一、知识提要1.定义有两组对边分别平行的四边形叫做平行四边形.平行四边形用“□”表示,平行四边形ABCD记作□ABCD.2.平行四边形的性质:对边相等,对角相等,对角线互相平分.3.三角形的中位线平行于三角形的第三边,且等于第三边的一半.4.两条平行线间的任何两条平行线段都是相等的,其中,两条平行线间最短的线段长度叫做平行线间的距离.5.平行四边形的判定:共5个①两组对边分别平行的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.二、精讲精练1.(2011广东)已知□ABCD的周长为32,AB=4,则BC=()A. 4B. 12C. 24D. 282.在平行四边形中,四个角之比可以成立的是( )A.1:2:3:4 B.2:2:3:3 C.2:3:3:2 D.2:3:2:33.(2011江苏)在四边形ABCD中,AB∥CD,AD∥BC,AC、BD相交于点O.若AC=6,则线段AO的长度等于________.4.(2011山东)如图,在□ABCD中,AC,BD相交于点O,点E是AB的中点,3OE cm,则AD的长是__cm.5.(2011湖南)如图所示,在□ABCD中,对角线AC、BD相交于点O,且AB≠AD,则下列式子不.正确..的是( )A.AC⊥BD B.AB=CDC.BO=OD D.∠BAD=∠BCD6.在平行四边形ABCD中,∠B-∠A=20°,则∠D的度数是_______.7.平行四边形的两邻边分别为3,4,那么其对角线必( )A.大于1 B.大于1且小于7C.小于7 D.大于7或小于1A DCOB8. 以长为5cm, 4cm, 7cm 的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是 ( ) A. 1 B. 2 C. 3 D. 49. 已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______.10. 在□ABCD 中,AB =3,BC =5,∠B 的平分线AE 交AD 于点E ,则DE 的长为__________.11. 在平面内和直线l 距离为8 cm 的直线有______条. 12. 平行四边形的一组对角的平分线( )A .一定相互平行B .一定相交C .可能平行也可能相交D .平行或共线13. (2011湖南)如图.下列四组条件中.不能..判定四边形ABCD 是平行四边形的是( )A .AB =DC , AD =BCB .AB ∥DC ,AD ∥BC C .AB ∥DC ,AD =BCD .AB ∥DC ,AB =DC14. 如图,平行四边形ABCD 中,AE =CG , DH =BF ,连结E ,F ,G ,H ,E ,则四边形EFGH 是_____.15. 如图,平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =CF ,则四边形BEDF 是___________.16. 如图,平行四边形ABCD 中,E ,F 分别为边BC ,AD 的中点,则图中共有平行四边形的个数是( ) A . 3 B . 4 C . 5 D . 617. (2011天津)如图,点D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,连接DE 、EF 、FD .则图中平行四边形的个数为__________.18. 已知四边形ABCD ,有以下四个条件,①AB ∥CD ;②AB =CD ;③BC ∥AD ;④BC =AD .从这四个条件中,任选两个,能使四边形ABCD 成为平行四边形的选法共有( ) A .3 B .4 C .5 D .6FEDCBA DCBAHGA BCDEFF EDCBA FA BCDEABECFD 19. 如图,在△ABC 中,∠ACB =90°,点E 为AB 中点,连结CE ,过点E 作ED ⊥BC 于点D ,在DE 的延长线上取一点F ,使AF =CE .求证:四边形ACEF 是平行四边形.20. (2011湖北)如图,在平行四边形ABCD 中,E 为CD 中点,BE 的延长线与AD 的延长线相交于点F . (1)证明:∠DFE =∠CBE ; (2)证明:△DFE ≌△CBE .21. 如图,四边形ABCD 是平行四边形,AD =12,AB =13,BD ⊥AD ,求BC ,CD及OB 的长.22. (2011四川)如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,E 、F 在AC 上,G 、H 在BD 上,且AF =CE ,BH =DG ,求证:EG ∥HF .OD CBAH G O E DCBA F E DCB A F三、测试提高【板块一】平行四边形的性质1. (2011重庆)如图,在平行四边形 ABCD 中(AB ≠BC ),直线EF 经过其对角线的交点O ,且分别交AD 、BC 于点M 、N ,交BA 、DC 的延长线于点E 、F ,下列结论:①AO =BO ;②OE =OF ; ③△ODM ≌△OBN ; ④△EAO ≌△CNO ,其中正确的是( ) A. ①② B. ②③ C. ②④ D. ③④2. (2011辽宁)如图,在□ABCD 中,点E 、F 分别在边AD 、BC 上,且BE ∥DF ,若∠EBF =45°,则∠EDF 的度数是( ) A .30° B .45° C .55° D .75°3. (2011浙江)如图,已知E 、F 是□ABCD 对角线AC 上的两点,且BE ⊥AC ,DF ⊥AC ,对角线AC ,BD 相交于点O ,则图中有几对全等三角形( ) A .3 B .4 C .5 D .64. 如图,EF 过平行四边形ABCD 对角线的交点O ,并交AD 于点E ,交BC 于F ,若AB =4,BC =6,OE =2,那么四边形EFCD 的周长是( ) A .16 B .14 C .12 D .10N MFE ODC BAFEDCBA O ABCDE FF E ODCB A【板块二】平行四边形的判定5. (2011广西)如图,在平行四边形ABCD 中,EF ∥AD , HN ∥AB ,则图中的平行四边形的个数共有( ) A .12个 B .9个 C .7个 D .5个四、课后作业1. 在□ABCD 中,∠A = 2∠B ,则∠C =________.2. 在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( ). A.1∶2∶3∶4 B.1∶2∶2∶1 C.1∶1∶2∶2 D.2∶1∶2∶13. 已知平行四边形ABCD 的周长是100cm, AB :BC =4:1,则AB 的长是__________.4. 在平行四边形ABCD 中,∠A :∠B =3:2,则∠C =_______度,∠D =____度.5. 用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的短边长为____.6. 平行四边形ABCD 的周长32, 5AB =3BC ,则对角线AC 的取值范围为_______.7. 在平行四边形ABCD 中,∠A =65°,则∠D 的度数是_______8. 由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的 ( ).A.周长B. 一腰的长C.周长的一半D. 两腰的和 9. 能够判定一个四边形是平行四边形的条件是 ( ). A. 一组对角相等 B. 两条对角线互相平分 C. 两条对角线互相垂直 D. 一对邻角的和为180°10. 关于四边形ABCD :①两组对边分别平行②两组对边分别相等③有两组角相等④对角线AC 和BD 相等.以上四个条件中,可以判定四边形ABCD 是平行四边形的有______个.11. 四边形ABCD 中,AD ∥BC ,要判定ABCD 是平行四边形,那么还需满足 ( ). A. ∠A +∠C =180° B. ∠B +∠D =180° C. ∠A +∠B =180° D. ∠A +∠D =180°12. 已知平行四边形ABCD 中,AB = 12,AB 边上的高为3,BC 边上的高为6,则平行四边形ABCD 的周长为 .NHE D CBA F13.已知:如图,△ABC中,AB=AC,DE//AC,DF//AB.求证:DE+DF=AB14.如图,在□ABCD中,O是对角线AC、BD的交点,E,F是BD上的点,BE⊥EC,DF⊥AF,垂足分别为E、F.那么OE与OF是否相等?为什么?15.(2010江苏)如图,在□ABCD中,点E,F是对角线AC上两点,且AE=CF.求证:∠EBF=∠FDE.16.(2011福建)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.FAB C DE OEDCB AFC ABD EFB DAFCE。
平行四边形的概念和性质讲义
八年级平行四边形的概念和性质知识归纳一.平行四边形的定义两组对边分别平行的四边形是平行四边形.平行四边形用符号“□”表示.平行四边形ABCD记作□ABCD,读作平行四边形ABCD.要点诠释:平行四边形的定义即是它的一个性质,又是它的一种判定方法.二.平行四边形的性质1.从边看:平行四边形的对边平行且相等;2.从角看:平行四边形的对角相等、邻角互补;3.从对角线看:平行四边形的对角线互相平分.要点诠释:已知平行四边形,要根据推理证明的需要,合理选用其性质.题型:运用平行四边形的性质解决线段、角及面积计算问题例1.在□ABCD中,AB=3,BC=5,则它的周长为__________.(结论:平行四边形的一组邻边之和等于周长的一半,反之,周长等于2倍邻边之和).【变式】1.在□ABCD中,∠A的平分线分BC成4cm和3cm两条线段,则□ABCD的周长为.例2.如下左图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是________°.【变式】2-2.如上右图,在□ABCD中,∠C=60º,DE⊥AB于E,DF⊥BC于F.(1)则∠EDF= ;(2)若AE=4,CF=7,则□ABCD的周长为.例2-3.如右图,已知□ABCD的周长为20,对角线AC交BD于点O,△BOC比△AOB的周长多4,则边AB=____________,BC=____________.结论:平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.【变式】2-3.在□ABCD中,对角线AC,BD相交于点O,已知△BOC与△AOB△的周长之差为3,平行四边形ABCD的周长为26,则BC的长度为_____________.例2-4.如图,□ABCD 的对角线AC 交BD 于点O ,分平行四边形为四个三角形,它们的面积有怎样的关系?结论:平行四边形的对角线分平行四边形为四个面积相等的三角形,且都等于平行四边形面积的四分之一.相对的两个三角形全等.【变式】2-4.如图,直线EF 过平行四边形ABCD 对角线的交点O ,分别交AB 、CD 于E 、F ,那么阴影部分的面积是平行四边形ABCD 面积的( )A .51 B .41 C .31 D .21例2-5.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,过点O 作直线EF ,分别交AD ,BC 于点E ,F .判断四边形ABFE 的面积与四边形FCDE 的周长和面积有何关系?试说明理由.结论:过平行四边形对角线交点的任一条直线都将平行四边形分成周长和面积相等的两部分.【变式】2-5.如图,□ABCD 的对角线AC ,BD 相交于O ,EF 过点O 与AD ,BC 分别相交于E ,F ,如果AB =4,BC =5,OE =1.5,那么四边形EFCD 的周长为( )A .16B .14C .12D .10题型三:运用平行四边形的性质进行证明例3-1.如图,在□ABCD 中,点E ,F 分别是边AD ,BC 的中点,求证:AF =CE .【变式】3-1.如图,在□ABCD中,平行于对角线AC的直线MN分别交DA,DC的延长线于点M,N,交BA,BC于点P,Q,求证:MP=QN.例3-2.如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,△BCD=110°,求△ABE的度数.【变式】3-2.如图,在□ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.例3-3.如图,AD△BC,AE△CD,BD平分△ABC,求证AB=CE.【变式】3-3.在□ABCD中,AE、BF分别平分△DAB和△ABC,交CD于E、F,AE、BF相交于点M.(1)求证:AE△BF;(2)求证:DF=CE.例3-4.如图,□ABCD的顶点A,C和□EBFD的顶点E,F在同一条直线上,求证:AE=CF.题型四:平行四边形的性质与勾股定理及其逆定理综合例4-1.如图,在□ABCD中,AB=10,AD=8,AC=6,AC交BD于点O,求OB以及□ABCD的面积.O【变式】4-1.如图,已知□ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,求AE的长.题型五:利用两平行线间的距离的性质解决面积问题例5-1. 如下左图,直线AE//BD,点C在BD上,若AE=5,BD=8,△ABD的面积为16,则△ACE的面积为_____________. .【变式】5-1.如上右图,直线a∥b,点A、B位于直线a上,点C、D位于直线b上,且AB:CD=1:2,若△ABC的面积为5,则△BCD的面积为______.。
平行四边形的性质(一)-
则AD=
㎝;AB=
㎝;
DC= ㎝。
在 ABCD中,∠A:∠B:∠C:∠D的值可能是( )
A.1:2:3:4
B.1:2:2:1
C.1:1:2:2
D.2:1:2:1
在 ABCD中,∠A:∠B=1:2,则各角的度数为----------
在 ABCD中, ∠B的平分线BE交AD于E,
BC=5,AB=3,
(1)学习了平行四边形的定义,你 能画一个平行四边形吗?
(2)观察这个四边形,除了两组 对边分别平行外,它的边、角之 间有什么关系吗?你是怎么得到 的?
已知: ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
证明:连结AC
∵AB∥CD,AD∥BC(平行四边形的对边平行)
平行四边形及性质
A
O
B
C
AB//CD AD//BC
两组对边分别平行的四边形 叫做平行四边形
D 平行四边形不相邻的两个顶 点连成的线段叫它的对角线
记作: ABCD 读作:平行四边形ABCD
四边形ABCD是平行四边形
随堂练习
把三个等边三角形按如图放置,找图中所有的 平行四边形
A
E
B
C
D
探究
∴∠1=∠2,∠3=∠4
在 ABC和 CDA
∠1=∠2,AC=CA,∠4=∠3
A
D
∴ ABC≌ CDA(ASA)
13
∴AB=CD,BC=DA,∠B=∠D
又∵∠1=∠2,∠3=∠4
B
∴∠1+∠3=∠2+∠4
42
C
即∠BAD=∠DCB
平行四边形的性质
平行四边形的对边平行且相等
初中数学重点梳理:平行四边形
平行四边形知识定位平行四边形在初中几何或者竞赛中占据非常大的地位,平行四边形是平面几何中最重要的图形,它的有关知识是今后我们学习特殊四边形、多边形乃至立体几何的重要基础。
平行四边形的证明性质以及应用,必须熟练掌握。
本节我们通过一些实例的求解,旨在介绍数学竞赛中平行四边形相关问题的常见题型及其求解方法本讲将通过例题来说明这些方法的运用。
知识梳理一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“”表示平行四边形,例如:平行四边形ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S==⨯底高ah;②平行四边形的对角线将四边形分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③ 说明四边形ABCD 的四条相等. (3)识别正方形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等.④ 先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角. (4)识别等腰梯形的常用方法① 先说明四边形ABCD 为梯形,再说明两腰相等.② 先说明四边形ABCD 为梯形,再说明同一底上的两个内角相等. ③ 先说明四边形ABCD 为梯形,再说明对角线相等. 5.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab . ③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a . ④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h .例题精讲【试题来源】 【题目】如图所示.在ABCD 中,AE ⊥BC ,CF ⊥AD ,DN=BM .求证:EF 与MN 互相平分.【答案】如下解析【解析】 证明:因为ABCD 是平行四边形,所以ADBC ,ABCD ,∠B=∠D .又AE ⊥BC ,CF ⊥AD ,所以AECF 是矩形,从而AE=CF.所以Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以△BEM≌△DFN(SAS),ME=NF.①又因为AF=CE,AM=CN,∠MAF=∠NCE,所以△MAF≌△NCE(SAS),所以 MF=NF.②由①②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.【答案】如下解析【解析】解:作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而△ABG≌△HBG(AAS),所以 AB=HB.①在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以△ABE≌△HBE(SAS),所以 AE=EH,∠BEA=∠BEH.下面证明四边形EHCF是平行四边形.因为AD∥GH,所以∠AEG=∠BGH(内错角相等).②又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以∠AGB=∠GEH.从而EH∥AC(内错角相等,两直线平行).由已知EF∥HC,所以EHCF是平行四边形,所以FC=EH=AE.【知识点】平行四边形【适用场合】当堂练习【难度系数】3【试题来源】【题目】如图2-34所示.ABCD中,DE⊥AB于E,BM=MC=DC.求证:∠EMC=3∠BEM.【答案】如下解析【解析】证明:延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知∠F=∠MDC,又由已知MC=CD,所以∠MDC=∠CMD,则∠MCF=∠MDC+∠CMD=2∠F.从而∠EMC=∠F+∠MCF=3∠F=3∠BEM【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.【答案】如下解析【解析】解:延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD.①又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF的外角,所以∠CHG=∠CFH+∠FCH=45°,所以∠CFH=45°-∠FCH.②由①,②∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有CA=CF.【知识点】平行四边形【适用场合】当堂练习题【难度系数】3【试题来源】【题目】设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:【答案】如下解析【解析】解:如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以FA=FH.设正方形边长为a,在Rt△ADF中,所以 Rt△ABG≌Rt△HCG(AAS),所以Rt△ABG≌Rt△ADE(SAS),【知识点】平行四边形【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.【答案】如下解析【解析】证明:因为DE BC,所以四边形BCED为平行四边形,所以∠1=∠4.又BD=FD,所以所以 BC=GC=CD.因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以又所以∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.【知识点】平行四边形【适用场合】当堂练习题【难度系数】4【试题来源】【题目】如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD于E,PF ⊥AC于F,那么PE+PF的值为.【答案】60/13【解析】解:延长CD至M,使DM=CD,连接AM,过P作PN⊥AM,N为AM上的点.在△ACM中,AD⊥CM且CD=DM,则AD是△ACM的角平分线.则PF=PN.又在四边形ABDM中,AB平行等于DM.则为平行四边形.AM平行BD,故PE,PN在同一直线上.那么PE+PF=PE+PN=EN平行四边形ABDM面积S=ABxAD=BDxEN而BD=√(5x5+12x12)=13则EN=ABxAD/BD=5x12/13=60/13.【知识点】平行四边形【适用场合】当堂例题【难度系数】4【试题来源】【题目】如图,设P为等腰直角三角形ACB斜边AB上任意一点,PE⊥AC于点E,PF⊥BC于点F,PG⊥EF于G点,延长GP并在其延长线上取一点D,使得PD=PC,求证:BC⊥BD,且BC=BD【答案】如下解析【解析】证明:∵PE⊥AC于E,PF⊥BC于F,∠ACB=90°,∴CEPF是矩形(三角都是直角的四边形是矩形),∴OP=OF,∠PEF+∠3=90°,∴∠1=∠3,∵PG⊥EF,∴∠PEF+∠2=90°,∴∠2=∠3,∴∠1=∠2,∵△ABC是等腰直角三角形,∴∠A=∠ABC=45°,∴∠APE=∠BPF=45°,∴∠APE+∠2=∠BPF+∠1,即∠APG=∠CPB,∵∠BPD=∠APG(对顶角相等),∴∠BPD=∠CPB,又∵PC=PD,PB是公共边,∴△PBC≌△PBD(SAS),∴BC=BD,∠PBC=∠PBD=45°,∴∠PBC+∠PBD=90°,即BC⊥BD.故证得:BC⊥BD,且BC=BD【知识点】平行四边形【适用场合】当堂练习题【难度系数】4【试题来源】【题目】如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()【答案】2【解析】解:延长AB,DC,过P分作PE⊥AE,PF⊥DF,则CF=BE,AP2=AE2+EP2,BP2=BE2+PE2,DP2=DF2+PF2,CP2=CF2+FP2,∴AP2+CP2=CF2+FP2+AE2+EP2,DP2+BP2=DF2+PF2+BE2+PE2,即AP2+CP2=DP2+BP2,代入AP,BP,CP得DP==2,【知识点】平行四边形【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE 和AD交于G,求证:GF∥AC.【答案】如下解析【解析】证明:连接EF.∵∠BAC=90°,AD⊥BC.∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°.∴∠ABC=∠DAC,∠BAD=∠C.∵BE、AF分别是∠ABC、∠DAC的平分线.∴∠ABG=∠EBD.∵∠AGE=∠GAB+∠GBA,∠AEG=∠C+∠EBD,∴∠AGE=∠AEG,∴AG=AE,∵AF是∠DAC的平分线,∴AO⊥BE,GO=EO,∵∴△ABO≌△FBO,∴AO=FO,∴四边形AGFE是平行四边形,∴GF∥AE,即GF∥AC.【知识点】平行四边形【适用场合】当堂练习题【难度系数】4习题演练【试题来源】【题目】如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.【答案】100°【解析】解:过D作DF∥BC,且使DF=BC,连CF、EF,则四边形BDFC是平行四边形,∴BD=CF,DA∥FC,∴∠EAD=∠ECF,∵AD=CE,AE=BD=CF,∴△ADE≌△CEF(SAS)∴ED=EF,∵ED=BC,BC=DF,∴ED=EF=DF∴△DEF为等边三角形设∠BAC=x°,则∠ADF=∠ABC=,∴∠DAE=180°﹣x°,∴∠ADE=180°﹣2∠DAE=180°﹣2(180°﹣x°)=2x°﹣180°,∵∠ADF+∠ADE=∠EDF=60°∴+(2x°﹣180°)=60°∴x=100.∴∠BAC=100°.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】5【试题来源】【题目】如图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE ⊥AC于E,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论【答案】如下解析【解析】解:△MEF是等腰直角三角形.证明如下:连接AM,∵M是BC的中点,∠BAC=90°,AB=AC,∴AM=BC=BM,AM平分∠BAC.∵∠MAC=∠MAB=∠BAC=45°.∵AB⊥AC,DE⊥AC,DF⊥AB,∴DE∥AB,DF∥AC.∵∠BAC=90°,∴四边形DFAE为矩形.∴DF=AE.∵DF⊥BF,∠B=45°.∴∠BDF=∠B=45°.∴BF=FD,∠B=∠MAE=45°,∴AE=BF.∵AM=BM∴△AEM≌△BFM(SAS).∴EM=FM,∠AME=∠BMF.∵∠AMF+∠BMF=90°,∴∠AME+∠AMF=∠EMF=90°,∴△MEF是等腰直角三角形.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.【答案】如下解析【解析】解:(1)证明:连接PD、PE、QD、QE.因为CE⊥AB,P是BF的中点,所以△BEF是直角三角形,且PE是Rt△BEF斜边的中线,所以PE=BF.又因为AD⊥BC,所以△BDF是直角三角形,且PD是Rt△BDF斜边的中线,所以PD=BF=PE,所以点P在线段DE的垂直平分线上.同理可证,QD、QE分别是Rt△ADC和Rt△AEC斜边上的中线,所以QD=AC=QE,所以点Q也在线段DE的垂直平分线上所以直线PQ垂直平分线段DE.(2)当△ABC为钝角三角形时,(1)中的结论仍成立.如图,△ABC是钝角三角形,∠BAC>90°.原题改写为:如图,在钝角△ABC中,AD、CE分别是BC、AB边上的高,DA与CE的延长线交于点F,BF的中点为P,AC的中点为Q,连接PQ、DE.求证:直线PQ垂直且平分线段DE.证明:连接PD,PE,QD,QE,则PD、PE分别Rt△BDF和Rt△BEF的中线,所以PD=BF,PE=BF,所以PD=PE,点P在线段DE的垂直平分线上.同理可证QD=QE,所以点Q在线段DE的垂直平分线上.所以直线PQ垂直平分线段DE.【知识点】平行四边形【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM 与BN相交于P,求证:∠BPM=45°.【答案】如下解析【解析】解:如图,过M作ME∥AN,使ME=AN,连NE,BE,则四边形AMEN为平行四边形,∴NE=AM,ME⊥BC,∵ME=AN=CM,∠EMB=∠MCA=90°,BM=AC,∴△BEM≌△AMC,得BE=AM=NE,∠1=∠2,∠3=∠4,∵∠1+∠3=90°,∴∠2+∠4=90°且BE=NE,∴△BEN为等腰直角三角形,∠BNE=45°,∵AM∥NE,∴∠BPM=∠BNE=45°【知识点】平行四边形【适用场合】随堂课后练习【难度系数】3。