第八章 协整与误差校正模型
协整和误差修正模型

协整和误差修正模型一、协整理论 1. d 阶单整序列对不平稳时间序列{}t Y 进行d 阶差分如下(d =1,2,…n):1t t t Y Y Y -∆=- 一阶差分21()t t t t Y Y Y Y -∆=∆∆=∆-∆ 二阶差分……1111()d d d d t t t t Y Y Y Y ----∆=∆∆=∆-∆ d 阶差分若{}t Y 进行d 阶差分后成为平稳序列, 则称{}t Y 为d 阶单整序列。
记为{}~()t Y I d2. 协整定义如果时间序列{}{}{}(1)(2)(),,...,r tttY Y Y 都是d 阶单整序列,即,{}~(),1,2,...,jtY I d j r =,且存在12,,...,rβββ使得(1)(2)()12...~()r t t r t Y Y Y I d b βββ+++-其中b>0, 称序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在(d,b) 阶协整关系。
3. 协整的意义若序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在协整关系,则它们之间存在长期稳定关系,对它们进行回归,可排除伪回归现象。
4. 协整检验EG 两步法( see p.275)二、误差修正模型 ECM 方法:若{}{},t t X Y 都是1阶单整序列,它们存在协整关系,建立自回归模型 012131t t t t t Y X Y X ββββμ--=++++ (1) 整理得:011t ttt Y X e ββγμ-∆=+∆++ (2) 其中t e 为残差序列, 1t e -为误差修正项。
(1) 或(2) 称为ECM模型,用于短期分析。
它们的Eviews命令分别为:LS Y C X Y(-1) X(-1),或:GENR T=Y-Y(-1)GENR H=X-X(-1)GENR e= residLS T C H e(-1)三、实例根据下表,讨论时间序列的平稳性、协整关系以及它们的误差修正模型。
5.3 协整与误差修正模型 计量经济学PPT课件

• 非平稳的时间序列,它们的线性组合也可能成为 平稳的。称变量X与Y是协整的(cointegrated)。
3、协整
• 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得Zt=XT ~ I(d-b), 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列 {X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b), 为协整向量(cointegrated vector)。
5%的显著性水平下协 整的ADF检验临界值
为-3.521
注意:查什么临 界值表?
结论:中国居民总量消费的对数序 列lnY与总可支配收入的对数序列 lnX之间存在(1,1)阶协整。
注意:
这里采用由协整检 验临界值表算得的 临界值(-3.521 ),没有采用ADF 检验给出的临界值 (-1.953),是 正确的。但是,在 很多应用研究中忽 视了这一点,而直 接采用ADF检验给 出的临界值,则是 错误的,容易产生
• 均衡方程中应该包含均衡系统中的所有时间序 列,而协整方程中可以只包含其中的一部分时 间序列。
• 协整方程的随机扰动项是平稳的,而均衡方程 的随机扰动项必须是白噪声。
• 不能由协整导出均衡,只能用协整检验均衡。
五、误差修正模型 Error Correction Model, ECM
1、一般差分模型的问题
• 对于非稳定时间序列,可通过差分的方法将其 化为稳定序列,然后才可建立经典的回归分析 模型。
Yt 0 1 X t t
Yt 1X t vt vt t t1
协整与误差修正模型的研究

协整与误差修正模型的研究第一部分协整理论概述 (2)第二部分误差修正模型介绍 (4)第三部分协整与误差修正关系 (7)第四部分模型构建与检验方法 (9)第五部分实证分析应用案例 (13)第六部分结果解释与经济含义 (16)第七部分模型局限性与改进方向 (18)第八部分研究展望与未来趋势 (22)第一部分协整理论概述协整理论概述在经济学和金融学中,我们常常遇到时间序列数据之间的长期均衡关系。
然而,在实际经济活动中,这种均衡关系并不总是能够得到严格的保持,而是存在着一定程度的波动和偏差。
为了解决这一问题,经济学家们提出了协整理论。
协整理论是指两个或多个非平稳的时间序列之间存在一种长期稳定的关系。
换言之,即使各时间序列本身是随机游走的过程,它们之间也可能存在一个稳定的线性组合,使得这个组合呈现出平稳性质。
协整理论的发展为研究经济变量之间的长期动态关系提供了一个强有力的工具。
协整理论的核心思想是由 Engle 和Granger 于1987 年提出的。
他们认为,如果两个非平稳的时间序列之间存在协整关系,则这两个时间序列可以通过一个线性组合达到长期均衡状态,且这个线性组合具有零均值、有限方差和恒定自相关等特性。
在这个意义上,我们可以将协整关系看作是一种长期均衡关系的表现形式。
为了检验两个时间序列之间是否存在协整关系,Engle 和 Granger 提出了一种两步法:首先检验每个时间序列是否为非平稳过程;然后,如果这两个时间序列都是非平稳过程,再通过回归分析来检验它们之间是否存在协整关系。
这种方法被称为 Engle-Granger 两步协整检验。
除了 Engle-Granger 两步协整检验之外,还有许多其他的方法可以用来检验协整关系,例如 Johansen 检验和 Pedroni 检验等。
这些方法都可以有效地帮助我们确定不同时间序列之间的协整关系。
协整理论不仅用于检验不同时间序列之间的长期均衡关系,还可以用于构建误差修正模型。
协整和误差修正模型

(6)取 1 0,则模型变为 yt = 0 + 1 yt -1 + 0 xt + ut.
此模型称为局部调整模型(偏调整模型)。
(7)取 0 0,则模型变为 yt = 0 + 1 yt -1 + 1 xt -1 + ut .
模型中只有变量的滞后值作解释变量,yt的值仅 依靠滞后信息。这种模型称为“盲始”模型。
从上式两侧同时减 yt-1,在右侧同时加减 0xt -1 得:
yt = 0 + 0 xt + (1 -1) yt-1 + (0 + 1) xt-1 + ut
上式右侧第三、四项合并得:
yt = 0 + 0 xt + (1 - 1 ) ( yt-1 - k1 xt-1) + ut 其中k1 = (0 + 1) / (1 - 1 )。在上述变换中没有破坏恒
n
yt = 0 + i xti + ut , ut IID (0, 2 ) i0
上述模型的一个明显问题是xt与xt -1 , xt-2, …, xt - n 高
度相关,从而使 j的OLS估计值很不准确。
3.动态分布滞后模型(自回归分布滞后模型)
如果在分布滞后模型中包括被解释变量的若干个滞
长期趋势模型: yt = k0 + k1 xt + ut
短期波动模型: yt = 0 xt + (1- 1 ) ECMt + ut
ECMt = yt-1 - k0 - k1 xt-1
三、误差修正模型(ECM)的建立
(2) ECM模型中的参数 k0 , k1 估计方法有 : ① 若变量为平稳变量或者为非平稳变量但存在长期
协整分析与误差修正模型

协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。
当两个变量之间存在协整关系时,它们的线性组合将是平稳的。
协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。
协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。
2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。
3)如果线性组合是平稳的,那么就可以认为存在协整关系。
协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。
但是,协整分析不能提供因果关系,只能提供关联关系。
2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。
它是在协整分析的基础上发展而来的。
误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。
因此,误差修正模型可以用来分析变量之间的动态行为。
基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。
α、β和γ分别表示模型的截距和参数。
误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。
2)构建误差修正模型,通过估计模型参数来描述长期关系。
3)进行模型检验,包括参数显著性检验、拟合优度检验等。
4)根据模型结果进行解释和预测。
误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。
同时,误差修正模型还可以用于预测和政策分析等方面。
但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。
综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。
“协整与误差修正模型”基本内容

“协整与误差修正模型”基本内容Abstract本部分我们要介绍时间序列计量经济学模型中的“协整与误差修正模型”内容。
对于时间序列数据而言,若其为非平稳的,那么我们无法使用经典的回归模型,而若变量之间是协整关系(即它们之间有着长期稳定的关系),那么经典的回归模型方法仍然是valid。
简单差分未必能解决非平稳时间序列的所有问题,因此误差修正模型也就应运而生了。
Problem:对于时间序列数据,如果通过平稳性检验为非平稳序列,能否建立经典计量经济学模型?Answer:需要对模型采用的非平稳时间序列进行协整检验。
一、长期均衡关系与协整经济理论指出,某些经济变量间确实存在着长期均衡关系这种均衡关系意味着经济系统不存在破坏均衡的内在机制。
假设和之间的长期“均衡关系”由下式描述:其中,是随机干扰项。
值得注意的是,在期末,存在下述三种情形之一:(1) 等于它的均衡值,即.(2) 小于它的均衡值,即.(3) 大于它的均衡值,即.注意到,如果正确地提示了与之间的长期稳定的"均衡关系",则意味着对其均衡点的偏离从本质上来说是"临时性"的,这个时候自然假设随机干扰项必须是平稳序列。
另外,非平稳的时间序列,它们的线性组合也可能成为平稳的。
Definition3.1一般地,如果序列都是阶单整的,存在向量,使得,其中,则认为序列是阶协整,记为,为协整向量。
注:(1)如果两个变量都是单整变量,只有它们的单整阶相同时,才有可能协整;(2)三个以上的变量,如果具有不同的单整阶,有可能经过线性组合构成低阶单整变量。
阶协整的经济意义:两个变量,虽然具有各自的长期波动规律,但是如果它们是阶协整的,则它们之间存在着一个长期稳定的比例关系。
二、协整的检验1.两变量的Engle-Granger检验(1987年恩格尔和格兰杰提出的两步检验法/EG检验法)(1,1)阶协整最令人关注,EG检验法正是为了检验两个均呈现1阶单整的变量是否为协整的。
实验八:协整关系检验与误差修正模型(ECM)new
实验八:协整关系检验与误差修正模型(ECM)new实验八:协整关系检验与误差修正模型(ECM)一、实验目的通过上机实验,使学生加深对时间序列之间协整关系的理解,能够运用Eviews 软件检验时间序列数据之间的协整关系并以此估计误差修正模型(ECM)。
二、预备知识(1)用EViews估计线性回归模型的基本操作;(2)时间序列数据的协整关系及其检验方法;(3)误差修正模型的结构及估计方法。
三、实验内容(1)用EViews检验两个时间序列数据的协整关系;(2)用EViews估计误差修正模型;四、实验步骤(一)、建立工作文件sy8.wf1及导入数据打开sy8.xls文件,运用前面学过的方法,在EViews新建一个工作文件sy8.wf1,把sy8.xls的数据导入到EViews,并根据得到人均消费(consp)和人均GDP(gdpp)两个序列,分别计算对应的自然对数,即lnc=log(consp)、lngdp=log(gdpp)。
(二)、分别检验序列lnc和lngdp的单整阶数。
运用图示法观察序列的时间路径图,如图8-1所示。
可见,lnc和lngdp都随时间不断上升,表明两者都是非平稳的。
(再运用自相关函数法,判断lnc 的平稳性。
打开lnc 序列的窗口,点击view\Correlogram ,设定滞后阶数为12,可得样本自相关系数图,操作和结果分别如图8-2和图8-3所示。
可见,lnc 是非平稳的。
再分析lnc 的一阶差分是否平稳。
在自相关函数图中,设定显示序列的一阶差分(1st differenc )后,再观察其样本自相关函数图,设定和结果如图8-4和图8-5所示。
可见,lnc 取一阶差分后就达到平稳,因此,lnc 是一阶单整序列,即I(1)序列。
如果采用单位根检验,结果相同。
同理,也可检验得到lngdp 序列是I(1)序列。
(三)运用Engle-Granger 方法(即EG 检验)检验consp 与gdpp 的协整关系。
协整与误差修正模型
变量选择是合理的,随机误差项一定是“白噪声”(即均 值为0,方差不变的稳定随机序列),模型参数有合理的经 济解释。
这也解释了尽管这两时间序列是非稳定的,但却可以用 经典的回归分析方法建立回归模型的原因。
• 从这里,我们已经初步认识到:检验变 量之间的协整关系,在建立计量经济学模 型中是非常重要的。 而且,从变量之间是否具有协整关系 出发选择模型的变量,其数据基础是牢固 的,其统计性质是优良的。
Yt 1X t vt
式中,vt=t-t-1。
实际情况往往并非如此
如果t-1期末,发生了上述第二种情况,即Y的值小于其 均衡值,则Y的变化往往会比第一种情形下Y的变化Yt 大一些; 反之,如果Y的值大于其均衡值,则Y的变化往往会小 于第一种情形下的Yt 。 可见,如果Yt=0+1Xt+t 正确地提示了X与Y间的长 期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从 本质上说是“临时性”的。 因此,一个重要的假设就是:随机扰动项t 必须是平 稳序列。 显然,如果t有随机性趋势(上升或下降),则会导 致Y对其均衡点的任何偏离都会被长期累积下来而不能被 消除。
检验程序:
对于多变量的协整检验过程,基本与双变量情形相同, 即需检验变量是否具有同阶单整性,以及是否存在稳定的线 性组合。 在检验是否存在稳定的线性组合时,需通过设置一个变 量为被解释变量,其他变量为解释变量,进行OLS估计并检 验残差序列是否平稳。 如果不平稳,则需更换被解释变量,进行同样的OLS估 计及相应的残差项检验。 当所有的变量都被作为被解释变量检验之后,仍不能得 到平稳的残差项序列,则认为这些变量间不存在(d,d)阶 协整。
同样地,检验残差项是否平稳的DF与ADF检验临界值 要比通常的DF与ADF检验临界值小,而且该临界值还受 到所检验的变量个数的影响。
协整分析
+
⎡ u1t ⎢⎣u 2t
⎤ ⎥ ⎦
=
⎡−1/ 2⎤
⎢ ⎣
1/
2
⎥ ⎦
( y1,t−1
−
1 8
y
2,t
−1
)
+
⎡1 ⎢⎣1
/ /
8 4
1/ 4 ⎤ − 3 / 4⎥⎦
⎡ Δy1,t−1 ⎢⎣Δy 2,t −1
⎤ ⎥ ⎦
+
⎡ u1t ⎢⎣u 2t
⎤ ⎥ ⎦
其中
Π
=
⎡−1
⎢ ⎣
在右侧加、减 Π3Yt−2 并整理得
ΔYt = (Π1 + Π 2 + Π 3 − I )Yt−1 − Π 2ΔYt−1 − Π 3Yt−1 + Π 3Yt−2 − Π 3Yt−2 + Π 3Y t−3+ut = (Π1 + Π 2 + Π 3 − I )Yt−1 − Π 2ΔYt−1 − Π 3ΔYt−1 − Π 3ΔYt−2 + ut
y1,t −2 y 2,t −2
⎤ ⎥ ⎦
+
⎡ u1t ⎢⎣u 2t
⎤ ⎥ ⎦
与其相应的误差修正模型是,
⎜⎜⎝⎛
Δy1,t Δy 2,t
⎟⎟⎠⎞
=
⎡−1/ 2
⎢ ⎣
1
/
2
1/ 16 ⎤ −1/ 16⎥⎦
⎡ ⎢ ⎣
y1,t −1 y 2,t −1
⎤ ⎥ ⎦
+
⎡1 ⎢⎣1
/ /
8 4
1/ 4 ⎤ − 3 / 4⎥⎦
3
ΠYt−1 = αβ ′Yt−1 =
⎜⎛ α11 ⎜ α 21 ⎜⎜⎜⎝αLN1
时间序列的协整检验与误差修正模型讲义
时间序列的协整检验与误差修正模型讲义时间序列的协整检验与误差修正模型是在经济学和金融学中广泛使用的方法,用于分析两个或多个变量之间的长期稳定关系。
本讲义将介绍协整检验的基本概念和步骤,并讨论误差修正模型的理论背景和实际应用。
一、协整检验1. 概念与原理协整是指两个或多个变量之间存在长期稳定的关系,即它们的线性组合是平稳的。
协整关系可以用来解释一个变量对另一个变量的影响,并提供长期均衡关系的信息。
协整检验的基本原理是利用单位根检验方法,测试变量是否存在单位根(非平稳性)。
如果变量存在单位根,则它们是非平稳的;如果变量不存在单位根,则它们是平稳的。
如果变量之间存在协整关系,它们的线性组合将是平稳的。
2. 协整检验的步骤协整检验的一般步骤如下:- 收集数据并绘制时间序列图,观察变量之间的趋势和关系;- 进行单位根检验,常用的方法包括ADF检验、Phillips-Perron检验等;- 如果变量存在单位根,则进行差分,直到变量变为平稳的;- 应用最小二乘法等方法,估计协整关系方程;- 进行残差平稳性检验,确保协整关系的合理性;- 如果协整关系存在,可以进行模型的进一步分析与应用。
二、误差修正模型(Error Correction Model, ECM)1. 概念与原理误差修正模型是一种动态模型,用于解释协整关系的调整速度和误差纠正机制。
在误差修正模型中,除了协整关系的线性组合外,还引入了误差修正项,用于捕捉变量之间的短期非平衡关系。
误差修正项反映了系统离开长期均衡后的调整速度,通过估计误差修正项的系数,可以判断系统是否有趋向于均衡的能力。
当误差修正项的系数为负数且显著时,表示系统具有自我修复的能力;当系数为零时,表示系统处于长期均衡状态;当系数为正数时,表示系统趋向于进一步偏离均衡。
2. ECM模型的应用误差修正模型可以用于解释和预测时间序列数据的长期和短期动态变化。
它在经济学和金融学中有广泛的应用,如货币供给与通货膨胀、利率与消费支出、汇率与经济增长等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
协整的概念 问题:估计出来的货币需求函数是否揭示了货币需求的
长期均衡关系?
(1)如果上述货币需求函数是适当的,那么货币需求 对长期均衡关系的偏离将是暂时的,扰动项序列是平稳 序列,估计出来的货币需求函数就揭示了货币需求的长 期均衡关系。 (2)如果扰动项序列有随机趋势而呈现非平稳现象, 那么模型中的误差会逐步积聚,使得货币需求对长期均 衡关系的偏离在长时期内不会消失。 上述货币需求模型是否具有实际价值,关键在于扰 动项序列是否平稳。
0.4
-0.5
0.0
0.5
1.0
图8.1 两个I(1)非相关序列线性相关系数分布
伪回归
Phillips(1986)对“伪回归”的理论解释
x v t t 1 t 模型: x
y y u t t 1 t
t
2 0 1 vt ~ iid , ut 0 0
ˆ 确定发散,且须除以 T 说明: 估计量
P 有确定分布的随机变量,即 ˆT
1 2
可得到一个具
伪回归
( 2)
模型残差平方和满足:
L 2 ˆ ˆ ˆ T u T ( y x ) H t t T T t 1 2 2 2
2
其中, H [ W ( r )] dr W ( r ) dr W ( r ) W ( r ) dr h 1 1 1 2
依照经典理论,一国或一地区的货币需求量主要取决 于规模变量和机会成本变量,即实际收入、价格水平 以及利率。以对数形式的计量经济模型将货币需求函 数描述出来,形式为:
l n M l n P l n Y ru t 0 1 t 2 t 3 t t
其中, M 为货币需求, P 为价格水平, Y 为实际收 入总额, r 为利率, u 为扰动项, 为模型参数。
1 2 1 2 1 2
1 2
W r W ( r ) dr
0 2 0 1
1
0
1
0
2
说明:在零假设下统计量
1 2
T
t
弱收敛于维纳过程的泛函, T
1 2
t
具有规范的极限分布;原来的T统计量既不服从T分布,也不存 在规范的极限分布,T统计量将随样本容量的增加而发散。
伪回归
如何防止伪回归:
(1)避免回归方程中出现非平稳时间序列变量。非平稳时 间序列变量进行差分,使得差分序列变成平稳序列,然后对
伪回归
Phillips(1986)对“伪回归”这一现象在理 论上作了完美的解释。 非平稳性对回归分析有什么影响?
x v t t 1 t 模型: x
y y u t t 1 t
t
2 0 1 vt ~ iid , ut 0 0
0 2 2
y x t t t
由OLS可得上述模型的估计量:
ˆ T ˆ x t
~ WN ( 0 , )
2 t
:
1 t t 2 t t t
x y x xy
要求时间序列数据平稳性,进而进 行常规的t、F等统计假设检验才具有较高的可靠 度。 事实上,大多数经济、金融时间序列表现出非平 稳性,比如:GDP、CPI、汇率等。
针对非平稳时间序列变量之间的定量关系如何进 行建模分析?
本章内容
♥ 伪回归
2
说明:随机扰动项 u
2
t
方差的估计
ˆt u T 2
2
S T
1
伪回归
( 3)
H0 : 0
检验统计量:
ˆ ( x x )
2 t
1 2
ˆ ˆ t 2 ˆˆ ˆˆ S
T
1 2
1 2
T t
L
W rdr W rdr [ W r W ( r ) dr ]
伪回归
Phillips(1986)针对上述模型得到如下结论: ( 1)
2 ˆT T ˆ T
1
1 h1 L 1 h2 2
1
W W ( r ) dr ( r ) dr h 1 2 1 1 其中, h h W ( r ) dr W ( r ) W ( r ) d r W ( r ) W ( r ) d r 2 2 1 2 1 2
差分变量进行回归。这种做法可以消除变量非平稳性可能带
来的“伪回归”问题,但会损失变量间长期关系的信息。 (2)直接对非平稳变量进行回归,但需要采用新的方法探 测变量间是否真正的存在相依关系,以建立起能反映水平变 量间长期关系的回归方程——协整分析。
10
第二节
协整的概念及性质
一、协整(COINTEGRATION)的概念 引例:一个货币需求分析的例子。
0 2 2
问题:
y x t t t
t ˆ ˆˆ ˆ ˆˆ ~ t(n 2)
H0 : 0
是否成立?
伪回归
Granger & Newbold(1974)通过Monte Carlo表明:
0.6 0.0
-1.0
0.2
♥ 协整的概念及性质 ♥ 协整检验 ♥ 误差修正模型(ECM) ♥ 本章小结
第一节
伪回归
所谓“伪回归”,是指时间序列变量间本来不存 在相依关系,但回归结果却得出存在相依关系的错误 结论。这是传统回归分析方法较易犯的一种错误。 (时间序列平稳性) Granger & Newbold(1974)通过Monte Carlo 实验最早发现“伪回归”这一现象,即如果用传统回 归分析方法对彼此不相关的非平稳变量进行回归, OLS 或 检验值往往会倾向于显著,从而得出变量相 依的“伪回归结果”,并得出:造成“伪回归”的根 本原因在于时间序列变量的非平稳性。