计量经济学第五章协整与误差修正模型

合集下载

协整和误差修正模型

协整和误差修正模型

协整和误差修正模型一、协整理论 1. d 阶单整序列对不平稳时间序列{}t Y 进行d 阶差分如下(d =1,2,…n):1t t t Y Y Y -∆=- 一阶差分21()t t t t Y Y Y Y -∆=∆∆=∆-∆ 二阶差分……1111()d d d d t t t t Y Y Y Y ----∆=∆∆=∆-∆ d 阶差分若{}t Y 进行d 阶差分后成为平稳序列, 则称{}t Y 为d 阶单整序列。

记为{}~()t Y I d2. 协整定义如果时间序列{}{}{}(1)(2)(),,...,r tttY Y Y 都是d 阶单整序列,即,{}~(),1,2,...,jtY I d j r =,且存在12,,...,rβββ使得(1)(2)()12...~()r t t r t Y Y Y I d b βββ+++-其中b>0, 称序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在(d,b) 阶协整关系。

3. 协整的意义若序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在协整关系,则它们之间存在长期稳定关系,对它们进行回归,可排除伪回归现象。

4. 协整检验EG 两步法( see p.275)二、误差修正模型 ECM 方法:若{}{},t t X Y 都是1阶单整序列,它们存在协整关系,建立自回归模型 012131t t t t t Y X Y X ββββμ--=++++ (1) 整理得:011t ttt Y X e ββγμ-∆=+∆++ (2) 其中t e 为残差序列, 1t e -为误差修正项。

(1) 或(2) 称为ECM模型,用于短期分析。

它们的Eviews命令分别为:LS Y C X Y(-1) X(-1),或:GENR T=Y-Y(-1)GENR H=X-X(-1)GENR e= residLS T C H e(-1)三、实例根据下表,讨论时间序列的平稳性、协整关系以及它们的误差修正模型。

5.3 协整与误差修正模型 计量经济学PPT课件

5.3 协整与误差修正模型  计量经济学PPT课件
• 如果X与Y间的长期均衡关系正确,该式表述的非 均衡误差应是一平稳时间序列,并且具有零期望值, 即是具有0均值的I(0)序列。
• 非平稳的时间序列,它们的线性组合也可能成为 平稳的。称变量X与Y是协整的(cointegrated)。
3、协整
• 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得Zt=XT ~ I(d-b), 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列 {X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b), 为协整向量(cointegrated vector)。
5%的显著性水平下协 整的ADF检验临界值
为-3.521
注意:查什么临 界值表?
结论:中国居民总量消费的对数序 列lnY与总可支配收入的对数序列 lnX之间存在(1,1)阶协整。
注意:
这里采用由协整检 验临界值表算得的 临界值(-3.521 ),没有采用ADF 检验给出的临界值 (-1.953),是 正确的。但是,在 很多应用研究中忽 视了这一点,而直 接采用ADF检验给 出的临界值,则是 错误的,容易产生
• 均衡方程中应该包含均衡系统中的所有时间序 列,而协整方程中可以只包含其中的一部分时 间序列。
• 协整方程的随机扰动项是平稳的,而均衡方程 的随机扰动项必须是白噪声。
• 不能由协整导出均衡,只能用协整检验均衡。
五、误差修正模型 Error Correction Model, ECM
1、一般差分模型的问题
• 对于非稳定时间序列,可通过差分的方法将其 化为稳定序列,然后才可建立经典的回归分析 模型。
Yt 0 1 X t t
Yt 1X t vt vt t t1

计量经济学第五章协整与误差修正模型

计量经济学第五章协整与误差修正模型
数据变换
根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质

协整与误差修正模型的研究

协整与误差修正模型的研究

协整与误差修正模型的研究第一部分协整理论概述 (2)第二部分误差修正模型介绍 (4)第三部分协整与误差修正关系 (7)第四部分模型构建与检验方法 (9)第五部分实证分析应用案例 (13)第六部分结果解释与经济含义 (16)第七部分模型局限性与改进方向 (18)第八部分研究展望与未来趋势 (22)第一部分协整理论概述协整理论概述在经济学和金融学中,我们常常遇到时间序列数据之间的长期均衡关系。

然而,在实际经济活动中,这种均衡关系并不总是能够得到严格的保持,而是存在着一定程度的波动和偏差。

为了解决这一问题,经济学家们提出了协整理论。

协整理论是指两个或多个非平稳的时间序列之间存在一种长期稳定的关系。

换言之,即使各时间序列本身是随机游走的过程,它们之间也可能存在一个稳定的线性组合,使得这个组合呈现出平稳性质。

协整理论的发展为研究经济变量之间的长期动态关系提供了一个强有力的工具。

协整理论的核心思想是由 Engle 和Granger 于1987 年提出的。

他们认为,如果两个非平稳的时间序列之间存在协整关系,则这两个时间序列可以通过一个线性组合达到长期均衡状态,且这个线性组合具有零均值、有限方差和恒定自相关等特性。

在这个意义上,我们可以将协整关系看作是一种长期均衡关系的表现形式。

为了检验两个时间序列之间是否存在协整关系,Engle 和 Granger 提出了一种两步法:首先检验每个时间序列是否为非平稳过程;然后,如果这两个时间序列都是非平稳过程,再通过回归分析来检验它们之间是否存在协整关系。

这种方法被称为 Engle-Granger 两步协整检验。

除了 Engle-Granger 两步协整检验之外,还有许多其他的方法可以用来检验协整关系,例如 Johansen 检验和 Pedroni 检验等。

这些方法都可以有效地帮助我们确定不同时间序列之间的协整关系。

协整理论不仅用于检验不同时间序列之间的长期均衡关系,还可以用于构建误差修正模型。

协整与误差修正模型

协整与误差修正模型

协整与误差修正模型有些时间序列,虽然他们本身非平稳,但是其线形组合确实平稳。

这个线形组合反映了变量之间的长期稳定的比例关系,称为协整关系。

第一节协整的定义与协整检验1、协整的定义如果时间序列nt t t y y y ,,21都是d 阶单整,即)(d I ,存在一个向量),(21n αααα =,使得)(~b d I y -'α,这里),,(21nt t t t y y y y =,0≥≥b d ,则称序列nt t t y y y ,,21是),(b d 阶协整的,记为),(~b d CI y t ,α为协整向量。

本部分只是介绍两个时间序列的协整关系,关于三个以上变量的协整关系将在另外一章予以讨论。

关于两个变量t x 和t y 是否协整,Engle 和Granger 于1987年提出了两步检验法,称为EG 检验。

序列t x 和t y 若都是d 阶单整的,用一个变量对另一个变量进行回归,即有t t t u x y ++=βα用αˆ和βˆ表示回归系数的估计值,则模型残差估计值为 tt t x y u βαˆˆˆ--= 若)0(~ˆI u,则t x 和t y 具有协整关系,且)ˆ(β-I 为协整向量,上式即为协整回归方程。

实例待定误差修正模型误差修正模型是由Davidsom 、Hendry 、Srba 和Yeo 于1978年提出的,称为DHSY 模型。

对)1,1(ADL 模型t t t t t x y x y αββββ++++=--131210移项后整理可得t t t t x y x y αββββββ+⎪⎪⎭⎫ ⎝⎛-+--+∆+=∆-12312101)1( 该方程即为ECM ,其中x y 2311βββ-+-是误差修正项,记为ecm 。

模型解释了因变量t y 的短期波动t y ∆是如何被决定的。

一方面,它受到自变量短期波动t x ∆的影响,另一方面,取决于ecm 。

如果变量t x 和t y 间存在着长期均衡关系,即有x y α=,式中的ecm 可以改写为x y 2311βββ-+= 可见,ecm 反映了变量在短期波动中偏离它们长期均衡关系的程度,称为均衡误差。

Eviews:协整与误差修正模型

Eviews:协整与误差修正模型

LnC一阶差分单位根检验结果
LnGDP一阶差分单位根检验结果
协整检验
建立lnC 与lnGDP的回归模型,采用OLS法进行估计,得到结果如下:
期均衡关系
经济理论指出,某些经济变量间确实存在长 期均衡关系。这种均衡关系意味着经济系统不 存在破坏均衡的内在机制。如果变量在某时期 受到干扰后偏离其长期均衡点,则均衡机制将 会在下一期进行调整以使其重新回到均衡状态。
协整
尽管许多经济变量是非平稳的,即它们是一阶或高阶的单 整时间序列。但是,由于长期均衡关系的存在,非平稳的 时间序列,它们的线性组合也能成为平稳的。 一般地,如果序列 X1t , X 2t , .X kt 都是d阶单整的,存在向 量 1,2 , ,k ,使得 Z X ~ I d b,其中 b 0, X X , X , , X 则认为序列 X1t , X 2t , .X kt 是(d, b)阶协整,记为 X t ~ CI d , b 为协整向量(co integrated vector)。
et 的单整性检验
通常使用DF检验或者ADF检验来检验et的单整性。由于协整回归中 已含有截距项,则检验模型中无需再用截距项。如使用模型1:
et et 1 i et i i
i 1
p
进行检验时,拒绝零假设 H : 是平稳序列,从而说明X与Y是协整的。
0
0
,意味着残差项et
时间序列计量经济学模型

——协整与误差修正模型
经典回归模型是以平稳的数据变量为基 础的。对于非平稳变量,如果使用经典 回归模型,就容易出现虚假回归等诸多 问题,即变量之间不存在因果关系,只 是这些非平稳的经济时间序列表现出了 共同的变化趋势,因此,使用经典回归 模型进行分析没有了任何实际意义。

协整检验及误差修正模型

协整检验及误差修正模型

协整检验及误差修正模型设随机向量t X 中所含分量均为d 阶单整,记为t X I(d )。

如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为tX CI(d ,b ),向量β被称为协整向量。

特别地,t y 和t x 为随机变量,并且t y ,~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称t y 和t x 是协整的,()01,ββ称为协整系数。

用收入{ln 1(1open —(2)用”;都有明显0.05的显图8-3 序列ln t x 的ADF 检验结果图8-4 序列ln t y 的ADF 检验结果于是尝试对其一阶差分序列采用带常数项的模型进行ADF 检验,首先点击主菜单Quick/Generate series ,出现图8-5的对话框,在方程设定栏里分别输入dlnxt=lnxt-lnxt(-1)和dlnyt=lnyt-lnyt(-1),产生ln t x 和ln t y 的一阶差分序列,为了方便,简记为ln t x ∇和ln t y ∇,一阶差分能初步消除增长的趋势,于是可以对其进行只带常数项的ADF 检验,检验结果见图8-6和图8-7:图8-5图8-6 序列ln t x ∇的ADF 检验结果图8-7 序列ln t y ∇的ADF 检验结果由图8-6和图8-7,得出两个一阶差分序列在=0.05α下都拒绝存在单位根的原假设的结论,说明ln t x ∇和ln t y ∇序列在=0.05α下平稳,即ln (0)tx I ∇,ln (0)t y I ∇,也就是ln (1)t x I ,ln (1)t y I ,这样我们就可以对二者进行协整关系的检验。

2、协整检验:首先用变量ln t y 对ln t x 进行普通最小二乘回归,在命令栏里输入ls lnyt c lnxt ,得到回归方程的估计结果:8-8,在0.051阶单整3。

协整分析与误差修正模型

协整分析与误差修正模型

协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。

当两个变量之间存在协整关系时,它们的线性组合将是平稳的。

协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。

协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。

2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。

3)如果线性组合是平稳的,那么就可以认为存在协整关系。

协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。

但是,协整分析不能提供因果关系,只能提供关联关系。

2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。

它是在协整分析的基础上发展而来的。

误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。

因此,误差修正模型可以用来分析变量之间的动态行为。

基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。

α、β和γ分别表示模型的截距和参数。

误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。

2)构建误差修正模型,通过估计模型参数来描述长期关系。

3)进行模型检验,包括参数显著性检验、拟合优度检验等。

4)根据模型结果进行解释和预测。

误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。

同时,误差修正模型还可以用于预测和政策分析等方面。

但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。

综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——在检验方程中增加差分的滞后项是为了消 除误差项的自相关性,滞后阶数一般由SIC或 AIC准则确定;
——在检验残差序列的平稳性时,可以在模型 中增加常数项或趋势项;
——检验统计量不再是DF或ADF分布,因此需 要使用麦金农临界值。(Eviews中给出了伴随 概率)
例5-1: 检验上证综合指数SH、深圳综合指数SZZ和深圳成分 指数的协整性。(1997.1.2~2006.9.29)
第五章 协整与误差修正模型
本章主要教学内容: 第一节 变量的协整关系与协整检验 第二节 误差修正模型
第一节 变量的协整关系与协整检验
关注两个变量(时间序列)间的关系,若两个序列均为 平稳序列,则可采用格兰杰因果检验。
对非平稳序列不能采用格兰杰因果检验,通常的回归分析 方法可能产生虚假回归。
虚假回归: yt Байду номын сангаас1xtt
协整向量: (ai)=(a1 a2 … ak )’
协整系数: ai
思考
当变量个数大于等于3时,协整方程可能 能否有多个?当变量个数为2呢?
2 协整关系的经济含义
当很多变量都含有单位根时,除非有一种机制把 这些变量联系在一起,否则这些变量会不受约束 的各自漫游。
问题是存在这种机制吗?经济学理论经常表明变
解: 1. 单整性检验
三个指数序列都是非平稳序列,但其一阶差分序列均 为平稳序列,因此三个指数均为一阶单整。
对任意的k,当t→∞时,理论上自相关系数
ρk→1。
二、时间序列的协整性
1. 协整性的定义
如果同阶单整的一组时间序列的一个线性组合为低阶 单整的序列,则称这组时间序列之间存在协整关系。
x1t,x2t,,xk t~I(d) a1x1t a2x2t akxkt~I(db),0bd x1t,x2t,,xk t~C(Id,b)
研究消费与支出的关系,如果两个序列不平稳,通过一阶 差分后均成为平稳序列,则模型研究的是收入增长与消费增长 之间的关系。
第一节 变量的协整关系与协整检验
能否对非平稳时间序列直接建立模型?
如何对非平稳时间序列直接建立模型,并防止出现虚 假回归现象?
20世纪80年代,恩格尔、格兰杰提出的协整理论较好 地解决了这个问题。
时间序列单整性的性质:
Yt是均值为0的0阶单整过程,则Yt
方差是有限的; Yt的新信息对Yt的影响是暂时的。 当k足够大时,自相关系数ρk是稳定递减的。
时间序列单整性的性质:
Yt是初始值为0的1阶单整过程,则Yt
T趋向无穷大时, Yt方差是无穷大的; Yt的新信息对Yt的影响是永久性的。
例3:购买力平价理论认为,本国物价p与外国物价p* 之比决定了名义汇率的均衡值,名义汇率的实际值e不 应该长期偏离其均衡值。因此,e与p/p*是协整的。
et 01pt pt*t
例4:期货价格与现货价格
S t 0 1 F t 1 2 F t 2 s F t s t
5. 协整与模型中变量的选择
量间存在某种长期均衡关系。
如果情况确实如此,那么各变量对这种长期均衡 关系的偏离不会持久。
因此,经济学理论所表明的长期均衡关系往往暗 示了一种把各变量联系在一起的内在机制。这种 机制就是变量间的协整关系。
3. 协整关系的计量意义(统计意义)
若 xt,yt ~I(1), ut axt byt ~I(0)
我们主要介绍两步检验法。
EG两步法的具体检验步骤: xt,yt ~I(1)
第一步: 利用最小二乘法估计模型,并建立相应的残差序列;
第二步: 对残差序列进行平稳性检验,可以使用的检验方程有:
et et1 jetj j et et1 jetj j et tet1 jetj j
注意:
能否两个 模型中都 加入?
则 yt xt t
虽然xt、yt是非平稳序列,但它们的一个线性关系却是平
稳的,即它们之间存在长期稳定的关系,因此可以用回归分析 的方法建立模型。
这种模型称为协整回归模型。协整理论的提出,从根本上 解决了虚假回归的问题。
4. 协整关系的例子 例1 持久收入理论 如果持久消费与持久收入成比例关系,暂时消费
如果被解释变量y与解释变量x1、x2、…xk之间存在协整 关系,即存在长期均衡关系,则可建立协整模型。 建立协整模型在确定变量时应注意: 1. 若只有一个解释变量x,则y与x的单整阶数应该相等; 2. 若有多个解释变量,则y的单整阶数不能高于解释变 量中单整阶数的最高者; 3. 若存在单整阶数高于y阶数的解释变量x,则一定有
y与x相互独立(没有关系),但回归模型可以通过t检验与 F检验。 此时,随机误差项序列不是一个白噪声过程。
第一节 变量的协整关系与协整检验
很多经济或金融时间序列非平稳,可以通过若干次差分方 将其转化为平稳序列。
用转化后的变量建立模型,往往经济意义不明确、或者经 济意义改变。
例:
yt 01 xtt
阶数相同的其他解释变量与x形成协整关系。 yt 0 1x1t 2x2t t
yt ~I(1),x1t ~I(2),x2t ~I(2)
1x1t 2x2t ~I(1)
三、协整检验
协整检验主要的两种方法
——两步估计法(恩格尔、格兰杰(1987)提出 ): 适用于模型变量中只存在一个协整关系的情况。
——乔纳森检验法(1995) 适用于模型变量中存在多个协整关系的情况。
是一个平稳过程,则持久收入与持久消费存在长期协整 关系。
C C p C T yp C T
例2 货币需求理论 M Ptt 01yt 2rt t
如果实际货币需求、实际产出、利率都是一阶单整序 列,并且实际货币需求与实际产出、利率之间存在长期 均衡关系,则随机误差项就是一个平稳序列。
3. 协整关系的例子
一、时间序列的单整性
如果一个时间序列yt,去除确定性成分以后, 经过d阶差分后成为平稳序列,则称该时间序 列为d阶单整序列——yt~I(d)。
时间序列单整性的性质:
1. yt ~I(d) abyt ~I(d) a,b0 2. yt ~I(d),xt ~I(c),dc ayt bxt ~I(d) 3. yt ~I(d),xt ~I(d) ayt bxt ~I(d*),d* d
相关文档
最新文档