(完整版)协整分析与误差修正模型(精)

合集下载

计量经济学第五章协整与误差修正模型

计量经济学第五章协整与误差修正模型
数据变换
根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质

协整分析与误差修正模型共46页文档

协整分析与误差修正模型共46页文档
协整分析与误差修正模型
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。ቤተ መጻሕፍቲ ባይዱ—史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

协整检验及误差修正模型

协整检验及误差修正模型

协整检验及误差修正模型设随机向量t X 中所含分量均为d 阶单整,记为t X I(d )。

如果存在一个非零向量β,使得随机向量()~t t Y X I d b =-β,0b >,则称随机向量t X 具有d ,b 阶协整关系,记为tX CI(d ,b ),向量β被称为协整向量。

特别地,t y 和t x 为随机变量,并且t y ,~(1)t x I ,当01()~I(0)t t t y x εββ=-+,即t y 和t x 的线性组合与I(0)变量有相同的统计性质,则称t y 和t x 是协整的,()01,ββ称为协整系数。

用收入{ln 1(1open —(2)用”;都有明显0.05的显图8-3 序列ln t x 的ADF 检验结果图8-4 序列ln t y 的ADF 检验结果于是尝试对其一阶差分序列采用带常数项的模型进行ADF 检验,首先点击主菜单Quick/Generate series ,出现图8-5的对话框,在方程设定栏里分别输入dlnxt=lnxt-lnxt(-1)和dlnyt=lnyt-lnyt(-1),产生ln t x 和ln t y 的一阶差分序列,为了方便,简记为ln t x ∇和ln t y ∇,一阶差分能初步消除增长的趋势,于是可以对其进行只带常数项的ADF 检验,检验结果见图8-6和图8-7:图8-5图8-6 序列ln t x ∇的ADF 检验结果图8-7 序列ln t y ∇的ADF 检验结果由图8-6和图8-7,得出两个一阶差分序列在=0.05α下都拒绝存在单位根的原假设的结论,说明ln t x ∇和ln t y ∇序列在=0.05α下平稳,即ln (0)tx I ∇,ln (0)t y I ∇,也就是ln (1)t x I ,ln (1)t y I ,这样我们就可以对二者进行协整关系的检验。

2、协整检验:首先用变量ln t y 对ln t x 进行普通最小二乘回归,在命令栏里输入ls lnyt c lnxt ,得到回归方程的估计结果:8-8,在0.051阶单整3。

第6章协整和误差修正模型

第6章协整和误差修正模型

第6章协整和误差修正模型本章介绍含有非平稳变量结构方程或V AR的估计。

在一维模型中,我们已经看到,可以通过差分去掉一个随机趋势,得到的平稳序列,再用Box-Jenkins方法来估计模型。

在多维情况下,并不这样直接处理。

通常,整变量的线性组合是平稳的,这些变量称为协整的。

许多经济模型都有这种关系。

本章主要内容:1.介绍协整的基本概念,及在经济模型中的应用。

非平稳变量之间的均衡关系意味着它们的随机趋势是相联系的。

均衡关系意味着这些变量不能相互独立运动。

随机趋势之间的这种联系保证了这些变量是协整的。

2.考虑了协整变量的动态路径,由于协整变量的趋势是相互联系的,这些变量的动态路径反映了偏离均衡的偏差的联系。

详细分析了变量的变化与偏离均衡的偏差之间的联系。

3.讨论了协整检验的几种方法。

6.1整变量的线性组合考虑一个简单的货币需求模型:1)居民持有实际货币余额,使名义货币需求与价格水平成比例;2)当实际收入及交易次数的增加,居民希望持有更多的货币余额;3)利率是持有货币的机会成本,货币需求与利率负相关。

因而,方程设定形式(采用对数形式)如下:0123t t t t t m p y r e ββββ=++++ (6.1.1) 这里: t m =货币需求, t p =价格水平 t y =实际收入 t r =利率t e =平稳扰动项i β=待估计的参数在货币市场是均衡的条件下,可以得到货币供给、价格水平、实际收入和短期利率的时间序列数据,且要求1231,0,0βββ=><。

当然,在研究中需要检验这些限制。

货币需求的任何偏差{}t e 必须是暂时的。

如果{}t e 有随机趋势,偏离货币市场均衡的偏差不能消失。

所以,这里的关键假设是{}t e 是平稳的。

许多研究者认为,实际GDP 、货币供给、价格水平、利率都是I(1)变量。

每个变量都没有返回到长期水平的趋势。

但(6.1.1)说明:对这些非平稳变量,存在线性组合是平稳的。

第4讲 协整与误差修正模型

第4讲 协整与误差修正模型

现在的问题是:何原因造成的残差序列自相关? 首先,模型没问题,因散点图呈线性关系。 其次,遗漏重要解释变量了吗?需要考虑政策变量吗? 再次,是滞后性吗?需要考虑前期收入对即期消费的影响吗? 有人做过研究:如用年度数据,发现前期收入比当期收入对消费的 影响都大。 最后,看时序图:
不难看出:x和y有明显共同趋势,需检验是否存在协整关系。 下面我们用EG两步法: 第一步:构建协整回归(见前) 第二步:对e做单位根检验 定义:genr e=y-yf,对e做单位根检验:
第4 讲
一、协整关系
协整与误差修正模型(ECM)
协整模型常用在经济学领域分析相关变量的长期均衡关系,也常 被用来分析金融中的套利等。自从20世纪90年代以来,国际著名杂志 发表了大量的相关文章。 协整分析是基于非平稳序列基础之上,而利用非平稳序列进行回 归,经常出现伪回归。而另一种情况却是更有应用价值的协整关系。
对二者取自然对数后进行单位根检验,发现在10%的水平下都不能拒 绝变量含有单位根。
如果暂时忽略非平稳性,直接设立以下回归方程,即 cont=c+βinct+et
回归后得:cont=−0.167+1.008inct
R2=0.998,且各系数也具有统计显著性。 试问:是不是伪回归呢?
为此,考察:et=cont − c − βinct
1 3 y x 是误差修正项,即(1) 可见(3)即为ECM模型,其中 (1 2 ) 中ecm 。
如果 xt 和 yt 间存在长期均衡关系,即 y ax ,则上述(3)式中 的ecm 正好可以改写成: 1 3
y
(1 2 )
x
可见,短期波动 yt 的影响因素有二:
第二步:做回归 (1)建立回归方程

协整检验与误差修正模型(ppt 73页)

协整检验与误差修正模型(ppt 73页)

二、协整检验—EG检验
1、两变量的Engle-Granger检验
• 为了检验两变量Yt,Xt是否为协整,Engle和Granger于 1987年提出两步检验法,也称为EG检验。
第一步,用OLS方法估计方程 Yt=0+1Xt+t
并计算非均衡误差,得到:
Yˆt ˆ0 ˆ1 X t
eˆt Yt Yˆt
• MacKinnon(1991)通过模拟试验给出了协整检 验的临界值。
样本容量 25 50 100 ∝
表9.3.1 双变量协整ADF检验临界值
显著性水平
0.01
0.05
-4.37
-3.59
-4.12
-3.46
-4.01
-3.39
-3.90
-3.33
0.10 -3.22 -3.13 -3.09 -3.05
然而,如果Z与W,X与Y间分别存在长期均衡关系:
Zt 01 W tv1t
Xt 01Ytv2t
则非均衡误差项v1t、v2t一定是稳定序列I(0)。于是它 们的任意线性组合也是稳定的。例如
v t v 1 t v 2 t Z t 0 0 1 W t X t 1 Y t
• 例9.3.1 检验中国居民人均消费水平CPC与人均国内生
产总值GDPPC的协整关系。
已知CPC与GDPPC都是I(2)序列,已知它们的回归式
CP t 4 C.7 9640 1.4056G 83 D 1tPR2P =0.99C 81
对该式计算的残差序列作ADF检验,适当检验模型为:
e ˆ t 1 .5 e ˆ t 1 5 1 .4 e ˆ t 9 1 2 .2 e ˆ t 7 3

计量经济学第五章 协整与误差修正模型

计量经济学第五章   协整与误差修正模型
协整向量: (ai)=(a1 a2 … ak )’ 协整系数: ai
思考

当变量个数大于等于3时,协整方程可能 能否有多个?当变量个数为2呢?
2 协整关系的经济含义




当很多变量都含有单位根时,除非有一种机制把 这些变量联系在一起,否则这些变量会不受约束 的各自漫游。 问题是存在这种机制吗?经济学理论经常表明变 量间存在某种长期均衡关系。 如果情况确实如此,那么各变量对这种长期均衡 关系的偏离不会持久。 因此,经济学理论所表明的长期均衡关系往往暗 示了一种把各变量联系在一起的内在机制。这种 机制就是变量间的协整关系。


一、时间序列的单整性

如果一个时间序列yt,去除确定性成分以后, 经过d阶差分后成为平稳序列,则称该时间 序列为d阶单整序列——yt~I(d)。
时间序列单整性的性质:
1. yt ~ I ( d ) a byt ~ I (d ) a, b 0
2. yt ~ I (d ), xt ~ I (c), d c ayt bxt ~ I (d ) 3. yt ~ I (d ), xt ~ I (d ) ayt bxt ~ I (d * ), d * d
考虑时间序列模型(自回归分布滞后模型)
yt 0 xt 1 xt 1 2 yt 1 t 两边减去yt 1后,可以变型为 yt 0 xt ( 0 1)xt 1 ( 2 1 )yt 1 t
0 1 0 xt ( 2 1 ) [ yt 1 xt 1 ] t ( 1 2)( 1 2) 0 xt (yt 1 0 1 xt 1) t
EG两步法的具体检验步骤: xt , yt ~ I (1)

计量经济学第五章 协整与误差修正模型

计量经济学第五章   协整与误差修正模型

yt 0 1xt t
y与x相互独立(没有关系),但回归模型可以通过t检验与 F检验。 此时,随机误差项序列不是一个白噪声过程。
第一节 变量的协整关系与协整检验
很多经济或金融时间序列非平稳,可以通过若干次差分方 将其转化为平稳序列。
用转化后的变量建立模型,往往经济意义不明确、或者经 济意义改变。
第五章 协整与误差修正模型
本章主要教学内容: 第一节 变量的协整关系与协整检验 第二节 误差修正模型
第一节 变量的协整关系与协整检验
关注两个变量(时间序列)间的关系,若两个序列均为 平稳序列,则可采用格兰杰因果检验。
对非平稳序列不能采用格兰杰因果检验,通常的回归分析 方法可能产生虚假回归。
虚假回归:
则 yt xt t
虽然xt、yt是非平稳序列,但它们的一个线性关系却是平
稳的,即它们之间存在长期稳定的关系,因此可以用回归分析 的方法建立模型。
这种模型称为协整回归模型。协整理论的提出,从根本上 解决了虚假回归的问题。
4. 协整关系的例子
例1 持久收入理论 如果持久消费与持久收入成比例关系,暂时消费
时间序列单整性的性质:
Yt是均值为0的0阶单整过程,则Yt
方差是有限的; Yt的新信息对Yt的影响是暂时的。 当k足够大时,自相关系数ρk是稳定递减的。
时间序列单整性的性质:
Yt是初始值为0的1阶单整过程,则Yt
T趋向无穷大时, Yt方差是无穷大的; Yt的新信息对Yt的影响是永久性的。
阶数相同的其他解释变量与x形成协整关系。
yt 0 1x1t 2 x2t t
yt ~ I (1), x1t ~ I (2), x2t ~ I (2)
1x1t 2 x2t ~ I (1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档