协整与误差修正模型

合集下载

协整和误差修正模型

协整和误差修正模型

协整和误差修正模型一、协整理论 1. d 阶单整序列对不平稳时间序列{}t Y 进行d 阶差分如下(d =1,2,…n):1t t t Y Y Y -∆=- 一阶差分21()t t t t Y Y Y Y -∆=∆∆=∆-∆ 二阶差分……1111()d d d d t t t t Y Y Y Y ----∆=∆∆=∆-∆ d 阶差分若{}t Y 进行d 阶差分后成为平稳序列, 则称{}t Y 为d 阶单整序列。

记为{}~()t Y I d2. 协整定义如果时间序列{}{}{}(1)(2)(),,...,r tttY Y Y 都是d 阶单整序列,即,{}~(),1,2,...,jtY I d j r =,且存在12,,...,rβββ使得(1)(2)()12...~()r t t r t Y Y Y I d b βββ+++-其中b>0, 称序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在(d,b) 阶协整关系。

3. 协整的意义若序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在协整关系,则它们之间存在长期稳定关系,对它们进行回归,可排除伪回归现象。

4. 协整检验EG 两步法( see p.275)二、误差修正模型 ECM 方法:若{}{},t t X Y 都是1阶单整序列,它们存在协整关系,建立自回归模型 012131t t t t t Y X Y X ββββμ--=++++ (1) 整理得:011t ttt Y X e ββγμ-∆=+∆++ (2) 其中t e 为残差序列, 1t e -为误差修正项。

(1) 或(2) 称为ECM模型,用于短期分析。

它们的Eviews命令分别为:LS Y C X Y(-1) X(-1),或:GENR T=Y-Y(-1)GENR H=X-X(-1)GENR e= residLS T C H e(-1)三、实例根据下表,讨论时间序列的平稳性、协整关系以及它们的误差修正模型。

计量经济学第五章协整与误差修正模型

计量经济学第五章协整与误差修正模型
数据变换
根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质

协整与误差修正模型

协整与误差修正模型

协整与误差修正模型有些时间序列,虽然他们本身非平稳,但是其线形组合确实平稳。

这个线形组合反映了变量之间的长期稳定的比例关系,称为协整关系。

第一节协整的定义与协整检验1、协整的定义如果时间序列nt t t y y y ,,21都是d 阶单整,即)(d I ,存在一个向量),(21n αααα =,使得)(~b d I y -'α,这里),,(21nt t t t y y y y =,0≥≥b d ,则称序列nt t t y y y ,,21是),(b d 阶协整的,记为),(~b d CI y t ,α为协整向量。

本部分只是介绍两个时间序列的协整关系,关于三个以上变量的协整关系将在另外一章予以讨论。

关于两个变量t x 和t y 是否协整,Engle 和Granger 于1987年提出了两步检验法,称为EG 检验。

序列t x 和t y 若都是d 阶单整的,用一个变量对另一个变量进行回归,即有t t t u x y ++=βα用αˆ和βˆ表示回归系数的估计值,则模型残差估计值为 tt t x y u βαˆˆˆ--= 若)0(~ˆI u,则t x 和t y 具有协整关系,且)ˆ(β-I 为协整向量,上式即为协整回归方程。

实例待定误差修正模型误差修正模型是由Davidsom 、Hendry 、Srba 和Yeo 于1978年提出的,称为DHSY 模型。

对)1,1(ADL 模型t t t t t x y x y αββββ++++=--131210移项后整理可得t t t t x y x y αββββββ+⎪⎪⎭⎫ ⎝⎛-+--+∆+=∆-12312101)1( 该方程即为ECM ,其中x y 2311βββ-+-是误差修正项,记为ecm 。

模型解释了因变量t y 的短期波动t y ∆是如何被决定的。

一方面,它受到自变量短期波动t x ∆的影响,另一方面,取决于ecm 。

如果变量t x 和t y 间存在着长期均衡关系,即有x y α=,式中的ecm 可以改写为x y 2311βββ-+= 可见,ecm 反映了变量在短期波动中偏离它们长期均衡关系的程度,称为均衡误差。

14 协整与误差修正模型

14 协整与误差修正模型
武汉大学经济学系数量经济学教研室《2010实验教改项目组》编制
四、预测2004年的人均居民消费CONSP 预测2004年的人均居民消费 年的人均居民消费CONSP
预测2004年的人均国内生产总值 年的人均国内生产总值GDPP (一)预测 年的人均国内生产总值 1. 建立 建立LOGGDPP的ARMA模型 的 模型 2. 运用 运用ARMA模型预测 模型预测GDPP 模型预测 (二) 预测2004年的人均居民消费 预测 年的人均居民消费CONSP 年的人均居民消费 1. 运用误差修正模型(eq_log_ecm); 运用误差修正模型( ); 2. 比较:直接对 比较:直接对consp和gdpp进行 进行OLS回归再预测; 回归再预测; 和 进行 回归再预测 • 根据预测值与实际值的相差程度,比较2种模型预测的效 根据预测值与实际值的相差程度,比较 种模型预测的效 从统计资料中得知, 果(从统计资料中得知,2004年人均居民消费实际值为 年人均居民消费实际值为 2155.1元)。 元
CONSP: Level-None Level-
武汉大学经济学系数量经济学教研室《2010实验教改项目组》编制
CONSP: 1st difference-Trend and Intercept difference-
武汉大学经济学系数量经济学教研室《2010实验教改项目组》编制
CONSP: 1st difference-Intercept difference-
武汉大学经济学系数量经济学教研室《2010实验教改项目组》编制
二、协整检验:Engle-Granger检验 协整检验:Engle-Granger检验
• 第二步:对该式残差序列进行 第二步:对该式残差序列进行ADF检验 检验 • genr e1=resid

第6章协整和误差修正模型

第6章协整和误差修正模型

第6章协整和误差修正模型本章介绍含有非平稳变量结构方程或V AR的估计。

在一维模型中,我们已经看到,可以通过差分去掉一个随机趋势,得到的平稳序列,再用Box-Jenkins方法来估计模型。

在多维情况下,并不这样直接处理。

通常,整变量的线性组合是平稳的,这些变量称为协整的。

许多经济模型都有这种关系。

本章主要内容:1.介绍协整的基本概念,及在经济模型中的应用。

非平稳变量之间的均衡关系意味着它们的随机趋势是相联系的。

均衡关系意味着这些变量不能相互独立运动。

随机趋势之间的这种联系保证了这些变量是协整的。

2.考虑了协整变量的动态路径,由于协整变量的趋势是相互联系的,这些变量的动态路径反映了偏离均衡的偏差的联系。

详细分析了变量的变化与偏离均衡的偏差之间的联系。

3.讨论了协整检验的几种方法。

6.1整变量的线性组合考虑一个简单的货币需求模型:1)居民持有实际货币余额,使名义货币需求与价格水平成比例;2)当实际收入及交易次数的增加,居民希望持有更多的货币余额;3)利率是持有货币的机会成本,货币需求与利率负相关。

因而,方程设定形式(采用对数形式)如下:0123t t t t t m p y r e ββββ=++++ (6.1.1) 这里: t m =货币需求, t p =价格水平 t y =实际收入 t r =利率t e =平稳扰动项i β=待估计的参数在货币市场是均衡的条件下,可以得到货币供给、价格水平、实际收入和短期利率的时间序列数据,且要求1231,0,0βββ=><。

当然,在研究中需要检验这些限制。

货币需求的任何偏差{}t e 必须是暂时的。

如果{}t e 有随机趋势,偏离货币市场均衡的偏差不能消失。

所以,这里的关键假设是{}t e 是平稳的。

许多研究者认为,实际GDP 、货币供给、价格水平、利率都是I(1)变量。

每个变量都没有返回到长期水平的趋势。

但(6.1.1)说明:对这些非平稳变量,存在线性组合是平稳的。

第二讲 协整理论与误差修正模型

第二讲 协整理论与误差修正模型

其残差序列是平稳序列,以它为误差修正项,可建立如下误差修正模型 表7 ECM模型回归结果
中变量的符号与长期均衡关系的符号一致,误差修正系数为负,符合反
向修正机制。回归结果表明,城镇居民人均可支配收入的短期变动对人
均消费支出存在正向影响,本期可支配收入每增加1%,本期人均消费将 增加0.884%;上期可支配收入每增加1%,本期人均消费将增加0.241%;
2.协整理论的重要意义
(1)避免伪回归。 (2) 估计量的“超一致性”。如果一组非平稳时间序列之间存在 协整关系,可以直接建立回归模型,而且,其参数的最小二乘估计量 具有超一致性,即以更快的速度收敛于参数的真实值。 (3) 区分变量之间的长期均衡关系和短期动态关系。 格兰杰和恩
格尔已证明,如果变量之间存在长期均衡关系,则均衡误差将显著影
当N>1时,意味着有N-1个协整参数需要估计。如果某些协整参数已事先 知道,那么计算临界值时,应相应减少N的值。作为一个极端情形,当全 部协整参数都已知时,应在附表8中N=1一栏中查找参数,计算临界值。 当N=1时,所涉及的变量只有一个。所以协整检验退化成为单整检验。 这时实际是做 ADF 检验。由此可见麦金农( Mackinnon )协整检验临界值 表实际上是协整检验和单整检验结合在一起,即把ADF 检验和 AEG 检验结 合在一起。所以N = 1对应的是ADF检验。N 2时,对应的是AEG 检验, 即协整检验。
(1)两变量的Engle-Granger检验
表2
双变量协整检验AEG临界值
例2
检验中国城镇居民人均消费性支出与人均可支配收入
(见表3.3与图3.1)时间序列的协整关系。
表3
中国城镇居民人均收入、人均消费(单位:元)

协整分析与误差修正模型

协整分析与误差修正模型

协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。

当两个变量之间存在协整关系时,它们的线性组合将是平稳的。

协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。

协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。

2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。

3)如果线性组合是平稳的,那么就可以认为存在协整关系。

协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。

但是,协整分析不能提供因果关系,只能提供关联关系。

2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。

它是在协整分析的基础上发展而来的。

误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。

因此,误差修正模型可以用来分析变量之间的动态行为。

基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。

α、β和γ分别表示模型的截距和参数。

误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。

2)构建误差修正模型,通过估计模型参数来描述长期关系。

3)进行模型检验,包括参数显著性检验、拟合优度检验等。

4)根据模型结果进行解释和预测。

误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。

同时,误差修正模型还可以用于预测和政策分析等方面。

但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。

综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。

第4讲 协整与误差修正模型

第4讲 协整与误差修正模型

现在的问题是:何原因造成的残差序列自相关? 首先,模型没问题,因散点图呈线性关系。 其次,遗漏重要解释变量了吗?需要考虑政策变量吗? 再次,是滞后性吗?需要考虑前期收入对即期消费的影响吗? 有人做过研究:如用年度数据,发现前期收入比当期收入对消费的 影响都大。 最后,看时序图:
不难看出:x和y有明显共同趋势,需检验是否存在协整关系。 下面我们用EG两步法: 第一步:构建协整回归(见前) 第二步:对e做单位根检验 定义:genr e=y-yf,对e做单位根检验:
第4 讲
一、协整关系
协整与误差修正模型(ECM)
协整模型常用在经济学领域分析相关变量的长期均衡关系,也常 被用来分析金融中的套利等。自从20世纪90年代以来,国际著名杂志 发表了大量的相关文章。 协整分析是基于非平稳序列基础之上,而利用非平稳序列进行回 归,经常出现伪回归。而另一种情况却是更有应用价值的协整关系。
对二者取自然对数后进行单位根检验,发现在10%的水平下都不能拒 绝变量含有单位根。
如果暂时忽略非平稳性,直接设立以下回归方程,即 cont=c+βinct+et
回归后得:cont=−0.167+1.008inct
R2=0.998,且各系数也具有统计显著性。 试问:是不是伪回归呢?
为此,考察:et=cont − c − βinct
1 3 y x 是误差修正项,即(1) 可见(3)即为ECM模型,其中 (1 2 ) 中ecm 。
如果 xt 和 yt 间存在长期均衡关系,即 y ax ,则上述(3)式中 的ecm 正好可以改写成: 1 3
y
(1 2 )
x
可见,短期波动 yt 的影响因素有二:
第二步:做回归 (1)建立回归方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

协整与误差修正模型在处理时间序列数据时,我们还得考虑序列的平稳性。

如果一个时间序列的均值或自协方差函数随时间而改变,那么该序列就是非平稳的。

对于非平稳的数据,采用传统的估计方法,可能会导致错误的推断,即伪回归。

若非平稳序列经过一阶差分变为平稳序列,那么该序列就为一阶单整序列。

对一组非平稳但具有同阶的序列而言,若它们的线性组合为平稳序列,则称该组合序列具有协整关系。

对具有协整关系的序列,我们算出误差修正项,并将误差修正项的滞后一期看做一个解释变量,连同其他反映短期波动关系的变量一起。

建立误差修正模型。

建立误差修正模型的步骤如下:首先,对单个序列进行单根检验,进行单根检验有两种:ADF (Augument Dickey-Fuller )和DF(Dickey-Fuller)检验法。

若序列都是同阶单整,我们就可以对其进行协整分析。

在此我们只介绍单个方程的检验方法。

对于多向量的检验参见Johensen 协整检验。

我们可以先求出误差项,再建立误差修正模型,也可以先求出向量误差修正模型,然后算出误差修正项。

补充一点的是,误差修正模型反映的是变量短期的相互关系,而误差修正项反映出变量长期的关系。

下面我们给出案例分析。

案例分析在此,我们考虑从1978年到2002年城镇居民的人均可支配收入income 与人均消费水平consume 的关系,数据来自于《中国统计年鉴》,如表8.1所示。

根据相对收入假设理论,在一定时期,人们的当期的消费水平不仅与当期的可支配收入、而且受前期的消费水平的影响,具有一定的消费惯性,这就是消费的棘轮效应。

从这个理论出发,我们可以建立如下(8.1)式的模型。

同时根据生命周期假设理论,消费者的消费不仅与当期收入有关,同时也受过去各项的收入以及对将来预期收入的限制和影响。

从我们下面的数据分析中,我们可以把相对收入假设理论与生命周期假设理论联系起来,推出如下的结果:当期的消费水平不仅与当期的可支配收入有关,而且还与前期的可支配收入、前两期的消费水平有关。

在此先对人均可支配收入和人均消费水平取对数,同时给出如下的模型t t t lincome lconsume lconsume 2110∂+∂+∂=- t=1,2,…,n (8.1) 如果当期的人均消费水平与当期的人均可支配收入及前期的人均消费水平均为一阶单整序列,而它们的线性组合为平稳序列,那么我们可以求出误差修正序列,并建立误差修正模型,如下:t ecm lconsume lincome lconsume t t t t 4131210βββββ++∇+∇+=∇-- t=1,2,…,n (8.2)t ecm = 12110--∂-∂-∂-t t t lincome lconsume lconsume t=1,2,…,n (8.3)从(8.2)式我们可以推出如下的方程:tlincome lincome lconsume lconsume lconsume t t t t t 4030123222131131)()()1(ββββββββββ+∂-+∂--+∂--++=---(8.4)在(8.2)中lconsume ∇、 lincome ∇分别为变量对数滞后一期的值,)1(-ecm 为误差修正项,如(8.3)式所示。

(8.2)式为含有常数项和趋势项的形式,我们省略了只含趋势项或常数项及二项均无的形式。

表8.1year 城镇人均可支配收入(元)城镇居民人均消费额(元)year城镇人均可支配收入(元)城镇居民人均消费额(元)1978343.4116.0619911700.6619.79 1979405134.5119922026.6659.21 1980477.6162.2119932577.4769.65 1981500.4190.8119943496.21016.81 1982535.3220.23199542831310.36 1983564.6248.2919964838.91572.08 1984652.1273.819975160.31617.15 1985739.1317.4219985425.11590.33 1986900.9356.95199958541577.42 19871002.1398.29200062801670.13 19881180.2476.6620016859.61741.09 19891373.9535.3720027702.81834.31 19901510.2584.63分析步骤:1、单位根检验。

我们先介绍ADF检验。

在检验过程中,若ADF检验值的绝对值大于临界值的绝对值,则认为被检验的序列为平稳序列。

在此我们先以对lincome的检验为例,在主菜单中选择Quick/Series Statistics/Unit Root Test,屏幕提示用户输入待检验序列名,输入lincome,单击OK进入单位根检验定义的对话框,如图8.1。

图8.1对话框由三部分构成。

检验类型(Test Type)中默认项是ADF检验。

Test for unit root In 中可选择的是对原序列、一阶差分序列或是二阶差序列做单位根检验,在此我们保持默认的level,即原序列。

右上方的Include in test equation中,有三个选项,依次为含常数项,含常数项和趋势项,没有常数项且没有趋势。

在右下方的空格里默认为2,但我们一般根据AIC最小来确定滞后期数,本文选定为滞后一期。

检验的顺序为:先选含趋势项和常数项的检验,如果趋势项的T统计量不明显,就再选只含常数项的,如果常数项的T统计量不明显,就选择常数项和趋势项均不包括的一项。

当我们选含趋势项和常数项的检验时,会出现下面的结果,如图8.2所示。

图8.2在检验的结果输出窗口中,左上方为ADF检验值,右上方为1%、5%和10%的显著水平下的临界值,从图8.1中可以看出ADF统计的检验值为-3.117,其绝对值小于10%的显著水平的临界值–3.2856的绝对值。

同时趋势值的T统计来看,在5%的水平下显著。

注意,这里的T统计量不同于我们在做最小二乘时用的T统计值。

这些T统计检验的临界值在Fuller(1976)中给出.从上面的分析我们可以认为该序列为非平稳的序列,且该序列有趋势项和常数项。

在下文中我们会进行一步介绍只含常数项的和常数项与趋势项均不包括的ADF检验的过程。

在上面分析的基础上,我们回到图8.1的窗口,检验lincome差分一阶的平稳性。

在图8.1中的Test for unit root In中选差分一阶,同时在Include in test equation 中选取含趋势项和常数项这一项,我们同样根据AIC和SC最小来选择滞后两期。

此时会出现如下图8.3的结果:图8.3从上图中可以看出ADF的绝对值小于5%水平下的临界值的绝对值,大于10%的检验值的绝对值。

但此时趋势项的T检验值不明显。

所以我们回到图8.1的窗口,在Include in test equation中选取含常数项这一项。

其结果如下图8.4所示,结果显示ADF的绝对值为3.4546大于5%水平下的临界值的绝对值,此时常数项的T检验值为3.34572,大于在显著水平为5%水平下的T临界值为2.61,所以常数项T检验值很明显。

我们认为lincome序列差分一阶后为平稳的。

值得注意的是,我们在此选择10%为临界值来判断非平稳的情况,而选择5%的临界值来判断平稳的情况,也就是,当ADF检验值的绝对值大于5%水平下的临界的绝对值。

图8.4同时我们也可以用命令来执行单位根检验,格式如下:uroot(lags,options,h) series_name其中,lags指式中滞后的阶数,options中可以选三个c、t和n,其中c代表含趋势项,t代表含趋势项和常数项,n代表不含趋势项也不含常数项。

H表示采用pp检验,series_name即为序列名。

DF检验相当于ADF检验中的不含趋势项的常数项的情况。

我们在此不再叙述。

2、协整检验。

在上面的例子中我们分析出城镇居民可支配收入为一阶单整序列,同时我们采用同样的分析方法,可知城镇居民的人均消费支出也为一阶单整。

由此,可以对序列进行协整估计。

用变量lgdp对变量lm2进行普通最小二乘回归,在主窗口命令行中输入:ls lconsume c lconsume(-1) lincome回车得到回归模型的估计结果,如图8.5所示。

图8.5此时系统会自动生成残差,我们令残差为ecm,命令如下:ecm=resid对残差项进行单位根检验,滞后期为1,结果如表8.2所示,从表中可以看出,残差序列为平稳序列,该协整关系成立。

表8.2 ADF Test Statistic -2.831448 1% Critical Value* -2.67565% Critical Value -1.957410% Critical Value -1.62383、误差修正模型。

上面的分析可以证明序列lconsume、lincome及lconsme(-1)之间存在协整关系,故可以建立ecm(误差修正模型)。

先分别对序列lconsume、lincome及lconsme(-1)进行一阶差分,然后对误差修正模型进行估计。

在主窗口命令行中输入:ls d(lconsume) c d(lincome) d(lconsume(-1)) ecm(-1)此时的常数项系数不明显,我们去掉常数项后再进行回归,结果如下图8.6所示图8.6从上式可以看出上式中的T检验值均显著,误差修正项的系数为-0.252,这说明长期均衡对短期波动的影响不大。

下面我们短期会给出另一种估计方式。

我们可以直接进行估计,命令为:ls lconsume c lincome lconsume(-1) lconsume(-2) lincome(-1)结果如下图8.7所示:图8.7比较两种估计方法的结果,可知,第二种估计方法的拟合优度要好于第一种的拟合优度。

但第一种方法似乎比第二种方法更能说明经济问题,因为没有差分的模型表现的是长期的均衡关系,而差分后的方程则反映了短期波动的决定情况,其中的误差项反映了长期均衡对短期波动的影响。

注意,我们同样可以根据前面的(8.1)、(8.2)及(8.3)式,把第一种方法通过代数变换,转换成第二种形式,在此我们省略了变换过程。

相关文档
最新文档