一元二次方程解法(配方法案例)

合集下载

配方法解一元二次方程

配方法解一元二次方程

所以 4 秒后△PBQ 的面积为 16 cm2 。
实际问题
2. 某小区为了美化环境,将花园的布局做 了如下调整:将一个正方形小花园每边扩大2 m 后,改造成一个面积为100 m2 的大花园,那么 原来小花园的边长是多少? 设原来小花园的边长 x m, 则有 (x+2)2 = 100
根据平方根的意义,得 x+2=±10 x 即 x1 8,2 12 (不合题意,舍去) 所以原来小花园的边长是 8 m 。
2. 下列解方程 x2-10x -36 = 0的过程 正确吗?如果不正确,请指出错误的地方。 解:移项,得 x2-10x = 36
配方 x2-10x +25 = 36
(x-5)2 = 36
×
开平方,得 x-5 =±6
∴ x1 = 11 , x2 =-1
配方法解 方程,应在方 程两边同时加 上一次项系数 一半的平方。
2、先化简,再求值:
其中a是方程x² +3x+1=0的根.
3、关于x的二次三项式:x² +2mx+4-m² 是一个完全平方式,求:m的值. 4、利用配方求2x² -x+2的最小值.
5、三角形两边的长是3,8,第三边是方程 x² —17x+66=0的根,求:此三角形的周长.
5. 某数学兴趣小组对关于 x 的方程
m 1 x
m 2 1
m 2 x 1 0
提出了下列问题。 (1)若使方程为一元二次方程,m 是否存在? 若存在,请求出 m 并写出此方程。 (2)若使方程为一元一次方程,m 是否存在? 若存在,请求出 m 并写出此方程。
m 1 x
m 2 1
m 2 x 1 0
解: 2 x 1 5

用配方法解一元二次方程优秀教案

用配方法解一元二次方程优秀教案

(3)配方:
法的基本步骤。
(4)求根。
作业布置
习题 8.5:1、2 题。
7/7
【第一课时】
教学目标 教学重点
一、知识与技能 认识形如 x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c 为常数)类型的方
程,并会用直接开平方法解。 二、过程与方法
培养学生准确而简洁的计算能力及抽象概括能力。 三、情感、态度与价值观
通过两边同时开平方,将二次方程转化为一次方程,向学生渗透数学新知 识的学习往往由未知(新知识)向已知(旧知识)转化,这是研究数学问题常 用的方法,化未知为已知。
(二)新授:
1.例题讲析: 例 3:解方程:3x2+8x-3=0
分析:将二次项系数化为 1 后,用配方法解此方程。 解:两边都除以 3,得:x2+83x-1=0 移项,得:x2+83x=1 配方,得:x2+83x+(43)2=1+(43)2(方程两边都加上一次项系数
一半的平方) (x+43)2=(53)2 即:x+43=±53 所以 x1=13,x2=-3
7 2
,x2=-
7 2
解法 2: 4x2-7=0 (2x)2=7
2x=± 7
x1=
7 2
,x2=-
7 2
解法 3: 4x2-7=0
四、巩固应用 五、深化提高 六、小结
这里的 x 既可以是字母,单项式, 也可以是含有未知数的多项式。换言之: 只要经过变形可以转化为 x2=a(a≥0)形式 的一元二次方程都可以用直接开平方法 求解。
(1)9( );5( );
49 (2) 25 ( );8( );
3 (3)24( ); 16 ( );

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1

x

=
.


4
16

3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )

1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法考点一.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.考点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.题型1:配方法解一元二次方程1.用配方法解一元二次方程2620x x -+=,此方程可化为( )A .2(3)7x -=B .2(3)11x -=C .2(3)7x +=D .2(3)11x +=【答案】A 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.2222()a ab b a b ±+=±【解析】解:2620x x -+=Q ,262x x \-=-,则26929x x -+=-+,即()237x -=,故选:A .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.2.用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( )A .103B .73C .2D .433.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t æö-=ç÷èøD .23420x x --=化为221039x æö-=ç÷èø【答案】B【分析】根据配方的步骤计算即可解题.【解析】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确,故选:B【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化1;第二步移项,把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完全平方式;第五步,直接开方即可.4.关于y 的方程249996y y -=,用___________法解,得1y =__,2y =__.【答案】 配方 102 98-【分析】利用配方法解一元二次方程即可得.【解析】249996y y -=,24499964y y -+=+,2(2)10000y -=,2100y -=±,1002y =±+,12102,98y y ==-,故答案为:配方,102,98-.【点睛】本题考查了利用配方法解一元二次方程即可得,熟练掌握配方法是解题关键.5.用配方法解方程ax 2+bx +c =0(a ≠0),四个学生在变形时得到四种不同结果,其中配方正确的是( )A .2224()24b ac b x a a -+=B .2224()22b b ac x a a -+=C .2224()24b b ac x a a -+=D .2222()22b b ac x a a ++=6.用配方法解方程22103x x -+=,正确的是( )A .212251()1,,333x x x -===-B .224(),39x x -==C .238(29x -=-,原方程无实数解D .2()1839x -=-,原方程无实数解7.用配方法解下列方程:(1)2352x x -=;(2)289x x +=;(3)212150x x +-=;(4)21404x x --=;(5)2212100x x ++=;(6)()22040x px q p q ++=-³.8.ABC D 的三边分别为a 、b 、c ,若8+=b c ,21252bc a a =-+,按边分类,则ABC D 是______三角形【答案】等腰【分析】将8+=b c ,代入21252bc a a =-+中得到关系式,利用完全平方公式变形后,根据非负数的性质求出a 与c 的值,进而求出b 的值,即可确定出三角形形状.【解析】解:∵8+=b c ∴8b c =- ,∴()288bc c c c c =-=-+,∴2212528bc a a c c =-+=-+,即2212361680a a c c -+++-=,整理得:()()22640a c -+-=,∵()260a -³,()240c -³,∴60a -=,即6a =;40c -=,即4c =,∴844b =-=,则△ABC 为等腰三角形.故答案是:等腰.【点睛】此题考查了配方法的应用,非负数的性质,以及等腰三角形的判定,熟练掌握完全平方公式是解本题的关键.9.如果一个三角形的三边均满足方程210250x x -+=,则此三角形的面积是______10.已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【解析】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.题型3:配方法的应用2-比较整式大小与求值问题11.若M =22x -12x +15,N =2x -8x +11,则M 与N 的大小关系为( )A .M ≥NB .M >NC .M ≤ND .M <N 【答案】A【解析】∵M=22x -12x +15,N=2x -8x +11,∴M-N=222222(21215)(811)2121581144(2)x x x x x x x x x x x -+--+=-+-+-=-+=- .∵2(2)0x -³,∴M-N ³0,∴M ³N.故选A.点睛:比较两个含有同一字母的代数式的大小关系时,当无法直接比较两者的大小关系时,可以通过求出两者的“差”,再看“差”的值是“正数”、“负数”或“0”来比较两者的大小.12.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定【答案】A【分析】把x =a 代入3个方程得出a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,3个方程相加即可得出(a +b +c )(a 2+a +1)=0,即可求出答案.【解析】把x =a 代入ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0得:a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,相加得:(a +b +c )a 2+(b +c +a )a +(a +b +c )=0,13.已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-14.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【分析】把二次三项式进行配方即可解决.【解析】配方得:226(3)9x x c x c -+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴90c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.15.无论x 、y 取任何实数,多项式x 2+y 2-2x -4y+16的值总是_______数.【答案】正【解析】x 2+y 2-2x -4y +16=(x 2-2x +1)+(y 2-4y +4)-1-4+16=(x -1)2+(y -2)2+11,由于(x -1)2≥0,(y -2)2≥0,故(x -1)2+(y -2)2+11≥11,所以x 2+y 2-2x -4y +16的值总是正数.故答案为正.点睛:要证明一个式子的值总是正数,可以用配方法将式子写成多个非负数之和与一个正数的和的形式即可证明.16.不论x ,y 为什么数,代数式4x 2+3y 2+8x ﹣12y +7的值( )A .总大于7B .总不小于9C .总不小于﹣9D .为任意有理数【答案】C【分析】先将原式配方,然后根据偶次方的非负性质,判断出代数式的值总不小于−9即可.【解析】解:4x 2+3y 2+8x ﹣12y +7=4x 2+8x +4+3y 2−12y +3=4(x 2+2x +1)+3(y 2−4y +1)=4(x +1)2+3(y 2−4y +4−4+1)=4(x +1)2+3(y −2)2−9,∵(x +1)2≥0,(y −2)2≥0,∴4x 2+3y 2+8x ﹣12y +7≥−9.即不论x 、y 为什么实数,代数式4x 2+3y 2+8x ﹣12y +7的值总不小于−9.故选:C .【点睛】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.解决本题的关键是掌握配方法.17.若12123y z x +--==,则x 2+y 2+z 2可取得的最小值为( )A .3B .5914C .92D .618.关于代数式12a a ++,有以下几种说法,①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a =③若2a >-,则12a a ++存在最小值且最小值为0.在上述说法中正确的是( )A .①B .①②C .①③D .①②③19.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =.这个公式也被称为海伦—秦九韶公式.若3p =,2c =,则此三角形面积的最大值是_________.20.已知y=x,y均为实数),则y的最大值是______.21.已知152a b c +--=-,则a b c ++=____________22.已知212y x x c =+-,无论x 取任何实数,这个式子都有意义,则c 的取值范围_______.【答案】c <−1【分析】将原式分母配方后,根据完全平方式的值为非负数,只需−c−1大于0,求出不等式的解集即可得到c 的范围.【解析】原式分母为:x 2+2x−c =x 2+2x +1−c−1=(x +1)2−c−1,∵(x +1)2≥0,无论x 取任何实数,这个式子都有意义,∴−c−1>0,解得:c <−1.故填:c <−1【点睛】此题考查了配方法的应用,以及分式有意义的条件,灵活运用配方法是解本题的关键.23.(1)设220,3a b a b ab >>+=,求a b a b+-的值.(2)已知代数式257x x -+,先用配方法说明:不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?24.选取二次三项式2(0)ax bx c a ++¹中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(4)x x x x -+=+-或2242((4x x x x -+=+-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.25.若实数x ,y ,z 满足x <y <z 时,则称x ,y ,z 为正序排列.已知x =﹣m 2+2m ﹣1,y =﹣m 2+2m ,若当m 12>时,x ,y ,z 必为正序排列,则z 可以是( )A .m 14+B .﹣2m +4C .m 2D .1A.甲B.乙C.丙D.丁故选:D .【点睛】本题考查了解一元二次方程,掌握配方法是解题的关键.7.代数式243x x -+的最小值为( ).A .1-B .0C .3D .5【答案】A【分析】利用配方法对代数式做适当变形,通过计算即可得到答案.【解析】代数式()2224344121x x x x x -+=-+-=--∵()220x -³,∴()2211x --³-即代数式2|431x x -+³-,故选:A .【点睛】本题考查了完全平方公式和不等式的知识;解题的关键是熟练掌握完全平方公式和不等式的性质,从而完成求解.8.已知625N m =-,22M m m =-(m 为任意实数),则M 、N 的大小关系为( )A .M N<B .M N >C .M N =D .不能确定【答案】B 【分析】求出M N -的结果,再判断即可.【解析】根据题意,可知()22226258169490M N m m m m m m -=--+=-++=-+>,所以M N >.故选:B .【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.9.若22242021p a b a b =++++,则p 的最小值是( )A .2021B .2015C .2016D .没有最小值【答案】C【分析】将等式右边分组,配成两个完全平方式,即可根据平方的非负性进行解答.【解析】解:22242021p a b a b =++++2221442016a ab b =++++++()()2221442016a ab b =++++++()()22120162a b ++=++,∵()210a +³,()220b +³,∴p 的最小值为2016,故选:C .【点睛】本题主要考查了配方法的应用,解题的关键是将原式分组配方.10.新定义:关于x 的一元二次方程21()0a x m k -+=与22()0a x m k -+=称为“同族二次方程”.如22021(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”,那么代数式22021ax bx ++能取的最小值是( )A .2013B .2014C .2015D .2016【答案】D【分析】根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【解析】解:22(1)10x -+=Q 与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x \++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a \++-+=+-+++,∴42(2)83b a a -=-+ìí=+î,解得:510a b =ìí=-î.∴()22220215102021512016ax bx x x x ++=-+=-+\当1x =时,22021ax bx ++取最小值为2016.故选:D .【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.二、填空题11.将一元二次方程2410x x -+=变形为()2x h k +=的形式为______三、解答题。

21.2.1解一元二次方程配方法教案

21.2.1解一元二次方程配方法教案
b.将方程两边同时加上一次项系数一半的平方,使左边变为完全平方公式;
c.根据完全平方公式,将左边分解为两个一次因式的乘积;
d.分别令每个一次因式等于0,求出方程的解。
3.应用配方法解决实际问题,并检验解的正确性。
本节课将结合具体例题,让学生在实际操作中掌握配方法解一元二次方程的方法。
二、核心素养目标
其次,学生在将实际问题抽象成数学模型时遇到了困难。在实践活动和小组讨论中,我鼓励学生积极思考,尝试将生活问题转化为一元二次方程。通过这个过程,我发现学生们在解决问题的过程中逐渐学会了如何建立数学模型。今后,我可以通过提供更多类型的问题,帮助学生进一步掌握这一技能。
在小组讨论环节,我观察到学生们在交流中互相启发,共同解决问题。这种合作学习的方式不仅提高了学生的沟通能力,还让他们在实际应用中加深了对配方法的理解。不过,我也注意到一些学生在讨论中不够积极主动,我需要思考如何更好地调动这部分学生的参与性。
-重点二:详细讲解配方法的四个步骤,特别是如何将方程转化为完全平方公式的过程。
-重点三:通过具体例题,展示如何应用配方法求解一元二次方程,并检验解的正确性。
-重点四:强调配方法在解决实际问题中的重要性,并培养学生的数学建模能力。
举例:在讲解配方法时,重点强调如何将一般的一元二次方程转化为(x + m)^2 = n的形式,以及如何求解出x的两个值。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元二次方程——配方法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”(如购物时如何分配预算)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程配方法的奥秘。

一元二次方程配方法例题20道

一元二次方程配方法例题20道

一元二次方程配方法例题20道例题 1: 求解方程:x^2 - 5x + 6 = 0解法: 分解因式:(x - 2)(x - 3) = 0,所以 x = 2 或 x = 3。

例题 2: 求解方程:x^2 - 8x + 15 = 0解法: 分解因式:(x - 3)(x - 5) = 0,所以 x = 3 或 x = 5。

例题 3: 求解方程:x^2 + 7x + 12 = 0解法: 分解因式:(x + 3)(x + 4) = 0,所以 x = -3 或 x =-4。

例题 4: 求解方程:x^2 - 10x + 25 = 0解法: 分解因式:(x - 5)^2 = 0,所以 x = 5。

例题 5: 求解方程:x^2 + 6x + 8 = 0解法: 分解因式:(x + 2)(x + 4) = 0,所以 x = -2 或 x =-4。

例题 6: 求解方程:x^2 - 4x - 5 = 0解法: 分解因式:(x - 5)(x + 1) = 0,所以 x = 5 或 x = -1。

例题 7: 求解方程:x^2 - 2x - 3 = 0解法: 分解因式:(x - 3)(x + 1) = 0,所以 x = 3 或 x = -1。

例题 8: 求解方程:x^2 + 5x - 6 = 0解法: 分解因式:(x - 1)(x + 6) = 0,所以 x = 1 或 x = -6。

例题 9: 求解方程:x^2 - 7x + 12 = 0解法: 分解因式:(x - 3)(x - 4) = 0,所以 x = 3 或 x = 4。

例题 10: 求解方程:x^2 + 8x + 15 = 0解法: 分解因式:(x + 3)(x + 5) = 0,所以 x = -3 或 x =-5。

例题 11: 求解方程:x^2 - 9x + 20 = 0解法: 分解因式:(x - 4)(x - 5) = 0,所以 x = 4 或 x = 5。

例题 12: 求解方程:x^2 + 4x + 3 = 0解法: 分解因式:(x + 1)(x + 3) = 0,所以 x = -1 或 x =-3。

一元二次方程的解法(配方法)

一元二次方程的解法(配方法)
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
在下列横线上填上适当的数

(1) x2 2x __1_2__ (x __1_)2
(2) x2 8x __4_2__ (x__4_)2
注意:配方时, 等式两边同时加上的是 一次项系数一半的平方.
2.用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方; 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
P 1、书 93习题4.2 2
P 2、《数学补充习题》 50
(1)x 2 12 x 9 (2)x2 x 1 (3) x2 4x 3 0(4)x2 2x 1 0
(5)x2 3x 5 0
配方时, 等式两边同时加上的是一 次项系数一半的平方
问题解决
群益中学教学楼前正在建造一长方形花园,
x x 要求长比宽多10m,面积是 200m2 ,若设
3、预习配方法解一元二次方程第2课时
x2 6x 32 4 32
左边写成完全平方的形式
(x 3)2 5
开平方
变成了(x+h)2=k 的形式
x3 5
x3 5,x3 5 得: x1 3 5, x2 3 5
以上解法中,为什么在方程 x2 6x 4
两边加9?加其他数行吗?
把一元二次方程的左边配成一个完全平方式, 然后用开平方法求解,这种解一元二次方程的 方法叫做配方法.
解一元二次方程的基本思路
降次
二次方程
一次方程
把原方程变为(x+h)2=k的形式 (其中h、k是常数)。

一元二次方程的解法--配方法

一元二次方程的解法--配方法

x2 6x 7 0

这种方
形 为
程怎样 解?
• • • • 2 a 的形式.(a为非负常数)
; 财务管理培训/html/hometopfenlei/topduanqipeixun/duanqipeixun4/

赴成吉思汗陵。第二天早上,成陵的主殿上野鸽子翻飞环绕,它们喜欢这里,老祖宗也喜欢它们。主殿穹隆高大,色调是蓝白这样的纯色,蒙古人喜欢的两种色彩。后来,我从远近很多角度看成陵的主殿,它安详,和山势草木土地天空和谐一体,肃穆,但没有凌驾天地的威势。从陵园往 下面看,河床边上有一排餐饮的蒙古包,门口拴马。天低荒漠,平林如织。此时心情如同唱歌的心情,不是唱“草原上升起不落的太阳”,而如“四季”—— 春天来了,风儿到处吹,土地苏醒过来。本想留在春营地,可是路途太远,我们催马投入故乡怀抱。 民歌有意思,留在春营地和 路途太远有什么关系呢?让不矛盾的矛盾,为归乡找了一个理由。 还有一首民歌《飞快的枣红马》,词曰:“骑上我飞快的枣红马,顺着山坡跑下去。可爱的姑娘索波达,挑着木桶走了上来。”这个词,你说说,不是电影的分镜头剧本吗?画面闪回。但人家是词,唱的就是这个。什么 爱呀之类在这里没有。不是说词越干净越好,是说“爱”这个东西要藏着。草芽藏在泥土里露头张望,是爱。把“爱”挂嘴边,大大咧咧走街串巷唱,已经不是“爱”,是吆喝。 有一次,内蒙广播合唱团在中山音乐堂演出。起初,他们不知观众是什么人,反正是人和在的人,唱。第一 首歌、第二首歌,观众还安静,响着高雅艺术场所应有的节制的掌声。从第三首歌开始,场上哗动,或说骚乱,人们站起来高喊点歌,有人拥到台前观看。艺术家有些慌乱,当他们听到众人齐声合唱,看到台下的人一边唱一边擦眼泪的时候,才明白: ——他们是到内蒙古插队的知青。 知青听到《孤独的白驼羔》,听到《陶爱格》和《达古拉》回到耳边,终于坐不住了。他们的嗓子不归自己管了,加入合唱。人审美,其实是回头看自己的命运。对他们来说,辽阔的草原、冬夜、茫茫雪地、马群、干牛粪炊烟的气味、蒙古语、房东妈妈,都在歌声中次第出现,没有一样 遗落。是什么让他们泪水难当?是他们的青春。青春贯穿其中,他们为自己偷洒一滴泪。 演出结束,知青们冲到后台,不让演员走,掣他们胳膊请吃饭。后来,大家到一处宽敞的饭店唱了一夜。 在成陵边上,我们喝完奶茶从屋里出来,同行的张新化请一位牵马的蒙古老太太唱歌。她不 唱,说“你们骑马吧。” 新化说,“我们不骑马,听你唱也给钱。” 她说:“不行。”不骑马,光唱歌就收人家钱,那不行。 我们说,你牵马走,我们在后边跟着你走,听你唱歌。老太太不同意,不骑马怎么收你钱?结果是,我们骑上马,白发苍苍的老太太牵马在前面走。年龄像我 母亲一样的老太太,在沙土地上牵马行走,唱:“西北方向升起黑云,是不是要下雨了?我心里像打鼓一样不安稳,是不是达古拉要和我离分?” 马走着,宽大的腹肋在我腿间挪移,不得劲儿。老太太边唱边议论“苦啊,真苦。”我以为她说嘴里味道,后知说歌词。她说:“亲人离开 亲人,多苦啊!” 苦啊。我们骑着马走了一大圈儿。老太太的歌声在沙土地上,在灌木和干涸的河道上面环绕。她声音不亮,岁数大,呼吸不行了,却是原汁原味。一只小狗在马前跑,离马蹄子不远停下,再跑,我担心马踩着它。它停下必抬头看我一眼,不知道在看什么。 财富离幸福 有多远? 贫穷离幸福很远,财富离幸福仍然很远。臻此,前者需要机遇及韧力,藉外力者多。后者则需要仰仗心灵的纯洁和情操的醇厚,靠内力实现。 ? (一) ? 赚钱以及把钱花出去所获得的,有时只是一种方便,而非幸福。 ? 譬如买车与备手机,好处是把一个人很快地从甲地运到 乙地及至庚地辛地,还能及时和很多人谈话。简言之,可以多办事,但不一定和幸福有关。坐车幸福吗?如果不论效率,与在家里坐沙发无甚差别。打手机更谈不上幸福,它不是抽烟与吃饺子。虽然有人站在马路上欣欣然以手机通话,仿佛幸福。 有人不想多办事,也不想到哪儿去 以及跟别人谈话,这样会妨碍他们宁静(实际是幸福)的生活,不如书与琴棋有用。毛主席做了许多事情,但必定不是拼命打手机及开车游走所成,乾坤在手岂不比爱立信在手更好?就是羊毫在手糖块在手及至小人书在手也比方向盘在手更愉快安全。因为前者是享受,后者是劳役或伪享 受,与幸福无关。 (二) 人有时不知道自己到底要什么。 如果把一个人的消费愿望摊开,广告引导占三成,如名牌之类;模仿他人占三成,譬如对中产阶级生活方式自觉不自觉的模仿;还有三成是实践童年以及青少年时期未遂之愿,在此,潜意识发生作用;人本能的满足只 占一成,饮食男女而已。 于是,日日杯觥交错并不幸福,因为广告引导与追随潮流所满足的只是转瞬即逝的虚荣心,明他已经成了某种人,譬如富人,明完了也就完了,无它。而满足童年的愿望属于今天多吃几个包子填充往年某日的饥饿,满足的只是一种幻像。而本能的满足,只 需一箪食、一瓢饮、一位贤惠的女人和一张竹榻。 但人们不甘心于简朴,虽然简朴离真理近而离虚荣远。人用力明自己是重要的,于是以十分的努力去满足一分的愿望,然而这与幸福无关。 (三) ? 如果有钱并有闲,想从食色层面提升并扩展自己的幸福,需要文化的介入。尼采 说:“我发现了一种幸福——歌剧!”对与古典音乐无缘的人,歌剧则不是幸福,你无法领受《图兰朵》中“今夜无人入睡”带来视听圣餐。明仁天皇迷恋海洋微生物,丘吉尔迷恋油画,爱因斯坦迷恋小提琴,是大幸福,也是文化上的幸福。他们也是有钱的人,但倘无文化也只能蹈入口 腹餍之途。 ? 一些有钱人易烦恼,因为他们的消费与性格有关,与文化无关;与面子有关,与愉快无关;与时尚有关,与需要无关。 (四) ? 不久前,我假道太行山区远游,见到那里的农人希望到年底能添一头驴或牛,以帮助运输或种地。到了县城,酒桌上争就当科长或两室一厅的 住房。在,听朋友交流打高尔夫球的体会。而到了深圳,几位巨富比较各自的健康状况,甘油三脂,高密度脂蛋白胆固醇(HDL),后者在每公升血液中多一毫克,心肌梗塞的发生率会下降3%。 ? 我想到,太行山农人的甘油三脂和HDL一定最让深圳的富豪倾心。这样,又想起海因里 希·伯尔那篇一个渔夫在海边晒太阳,有游客劝他工作等等的小说。人的努力常常会使目标回到原地,换句话说,人也许不知道自己的幸福在哪里。 有时,人只为温饱而工作,没有办法去为幸福而谋划,因为谋划的结果大多是财富或满足,离幸福仍然很远。 ? 其实幸福太简单,简 单到我们承担不了。 (五) ? 为什么穷人离幸福很近? ? 如同朴素离美很近那样,穷人的愿望低而单纯。人在风雪路上疾走,倘遇暖屋烤火,是一种幸福。把汗湿的鞋垫抻出来,手脚并感炉火的温暖,与封侯何异?这时,倘有一杯热茶与点心,更让人喜出望外。这样的例子太多,如 避雨之乐,推重载之车上坡幸无顶风之乐,在街头捡一张旧报纸读到精妙故事之乐,在快餐店吃饭忽闻老板宣布啤酒免费之乐,走夜路无狼狗尾随之乐。穷人太容易快乐了,因为愿望低,“望外”之喜于是多多。有钱人所以享受不到这些货真价实的幸福,是因为此类幸福需要风雪、推车、 捡报纸以及走夜路这些条件。 ? 穷人的幸福差不多是以温饱不逮为前提的,满足了温饱,幸福却变得悭吝,它的价值又升高了。 ? 除非你有意过一种简单的生活。 (六) 贫穷离幸福很远,财富离幸福仍然很远。臻此,前者需要机遇及韧力,藉外力者多。后者则需要仰仗心灵的纯 洁和情操的醇厚,靠内力实现。 蝴蝶一如梦游人 ? 会飞的生灵里,蝴蝶一如梦游人。它好像不知住哪儿飞,断断续续。鲍罗丁有一首曲子叫《我的生活》,什么样的生活,醉醺醺,有一点混乱,甜蜜忧伤各半,如蝴蝶。 ? 蝴蝶蹁跹,像找丢失的东西。仔细看,它啥东西都没丢,触须、 肚子和翅膀是它的全部家当。它飞,一跳一跳,像人跺脚。也许,它视陆地为海洋,怕浪花打湿衣袂。 ? 蝴蝶有大梦,伏落灌木的时候,其实在工作。梦里飞里,直至被露水凉醒。诺瓦利斯说:“如果在梦中梦见自己做梦,梦就快醒了。”它梦见城市的水泥地面长满卷心菜和十字花科 椰菜,楼顶冒出清泉,空气变好了。蝴蝶对空气很挑剔,它的肺太纤弱。蝴蝶梦到月亮跟太阳商量,替值一个白班。月色昼夜相连,雾一般的蝴蝶弥漫城市上空,如玉色的落叶,却无声息。 人愿把蝴蝶想象为女性,正如可以把鸟类想象为男性。鸟儿高飞,一如士兵。蝴蝶一生都在草地 灌木中。蝴蝶假如不怯生,从敞开的窗飞进人类的家里,那么—— 落在酣睡的孩子的额上,有如天使的祝福。 落书页上,好像字句开出素白的花。 落碗边,仿佛里面装满泉水。 ? ?落鞋上,这双鞋好像刚刚走过长满鲜花的草地。 ? 落于枕旁,人梦见青草像一片流水淹没大地。 ? 蝴蝶落在墙上的竹笛上,笛孔屏息,曲牌在一厢排起了队:平沙落雁、阳关三叠、大起板、鹧鸪飞。 蝴蝶飞过人的房间,看人的床辅、厨房、牙刷和眼镜,缓缓飞出窗外,接着梦游。 春天是做梦的季节,边飞边梦,蝴蝶就像年青人。 黄金不用是废铁 ? 讲个故事吧。 有一个老汉勤 劳致富。他种的粮食,自用之外卖钱,再把钱换成黄金。这些金子放丰一只瓦罐里,摆在屋檐下面。老汉累的时候,或者需要娱乐的时候,背着手看这些金锭,它们闪闪发光,像歌颂老汉的不凡。 当然,喜欢黄金的人并不只老汉一个人,别人也喜欢。别人不想经历种粮食、卖粮食、换 钱再买黄金这么复杂的历程,把老汉的偷走了。 黄金没了,老汉就哭。他没想到别人用偷的方法积累黄金。他觉得自己的粮食啊,汗水啊,青春啊,特别是黄金,都让这个人偷走了。悲声惊动了邻居,大伙儿围成一圈儿,听老汉哭。 ? 一位邻居说:这些黄金你用过吗?用的意思是打 个戒指,或者换一头小毛驴替代劳动,也包括送给别人施善。 老汉说:没有。 邻居说:没用过,你哭什么? ? 老汉说什么话?没用过就不疼吗?没用过就没有价值吗? ? ?邻居说:嗨,没用过的东西就跟没有东西是一样的。黄金对你来说,用处只在看。别哭啦,你可以看其他的东 西,比如花、比如天空的云彩。还有,你拿几块镀金的元宝放在罐子里,不也好看吗? 老汉止住了哭泣。他不赞成邻居的话,但这一番话让他无法反驳,只好认为自己不曾有过黄金,别人也未曾偷走它。 故事就是这样,不一定真正发生过,但有一点儿趣味。一个有才能的人不运用才 能,就贫穷如老汉,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.理解一元二次方程的解法——配方法.
过程与方法:1经历探索利用配方法解一元二次方程的过程,让学生体会转化的数学思想。
情感与态度:启发学生学会分析、观察、寻找解题思路,提高学生解决问题的能力。
教学重点
利用配方法解一元二次方程
教学难点
把一元二次方程通过配方转化为(x十m) =n(n 0)的形式.
教学方法
(1)x1=5+ x2=5-
(2)x1=-3+
x2=-3-
这节课我们研究了一元二次方程的解法:
(1)直接开平方法.
(2)配方法.
5、配方法:通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二闪方程的方法称为配方法。
三、课堂练习
课本p49随堂练习1
1.解下列方程
(1) x 一l0x十25=7;(2) x 十6x=1.
四、课时小结
五、课后作业
(一)课本p49习题2.3 l、2
(二)1.预习内容p49—p52
板书设计:
直接开平方法
2、解方程的基本思路(配方法)
如:x2+12x-15=0转化为
(x+6)2=51
两边开平方,得
x+6=±
∴x1=―6 x2=――6(不合实际)
3、配方:填上适当的数,使下列等式成立:
(1)x2+12x+ =(x+6)2
(2)x2―12x+ =(x― )2
(3)x2+8x+ =(x+ )2
从上可知:常数项配上一次项系数的一半的平方。
2解方程的基本思路配方法12x150转化为x651两边开平方得x6因此解一元二次方程的基本思路是将方程转化为xm的形式它的一边是一个完全平方式另一边是一个常数当n0两边开平方便可求出它的根
一元二次方程解法——配方法的教学案例
南指挥镇中学王新力
课题
2.2、配方法(一)
课型
新授课
Hale Waihona Puke 教学目标知识与技能:1.会用开平方法解形如(x十m) =n(n 0)的方程.
讲练结合法
教学后记
教学内容及过程
学习活动
一、复习:
1、解下列方程:
(1)x2=4(2)(x+3)2=9
2、什么是完全平方式?
利用公式计算:
(1)(x+6)2(2)(x-)2
注意:它们的常数项等于一次项系数一半的平方。
3、解方程:(梯子滑动问题)
x2+12x-15=0
二、解:x 十12x一15=0,
1、引入:像上面第3题,我们解方程会有困难,是否将方程转化为第1题的方程的形式呢?
配方法
例题
练习
小结
(1)x=土2.
(2)
x十3=士3,
x十3=3或x十3=一3,
x =0,x =一6.
这种方法叫直接开平方法.
(x十m) =n(n 0).
因此,解一元二次方程的基本思路是将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边开平方便可求出它的根。
4、讲解例题:
例1:解方程:x2+8x―9=0
分析:先把它变成(x+m)2=n(n≥0)的形式再用直接开平方法求解。
解:移项,得:x2+8x=9
配方,得:x2+8x+42=9+42(两边同时加上一次项系数一半的平方)
即:(x+4)2=25
开平方,得:x+4=±5
即:x+4=5,或x+4=―5
所以:x1=1,x2=―9
相关文档
最新文档