用配方法解一元二次方程
21.2.1用配方法-解一元二次方程

(1)方程 x 2 0.25的根是 X1=0.5, x2=-0.5
(2)方程 2 x 18 的根是 X1=3, x2=—3
2
(3) 方程 (2 x 1)Leabharlann 2 9的根是 X1=2, x2=-1
解下列方程:
1、9x2=9
x1=1, x2=-1
2、 (x+5)2=9
x1=-2, x2=-8
3、16x2-13=3
x1=1, x2=-1
4、(3x+2)2-49=0
x1=-3, x2=5/3
5、2(3x+2)2=2
x1=-3, x2=-1/3
6、81(2x-5)2-16=0
x1=49/18, x2=41/18
a 2ab b (a b)
2 2
2
4 22 完成填空: 1、x2-4x+___=(x-__)
-4x=2xb
6 2 12x=2xb 2、x2+12x+___=(x+__) 36 4 2 3、y2-8y+___=(y-__) 16 4、x2+1/2x+___ 1/16 =(x+___) 1/4 2
思考:你所填写的b、b2与一次项 的系数有怎样的关系?
(1)x² +10x+
(2)x² -12x+
2
a
这种方 程怎样 解?
的形式.(a为非负常数)
把一元二次方程的左边配成一个 完全平方式,然后用开平方法求解,这 种解一元二次方程的方法叫做配方法.
(1)x2+8x+ 16 =(x+4)2 (2)x2-4x+ 4 =(x- 2 )2 6 + 9 =(x- 3 )2 (3)x2-___x
用配方法解一元二次方程

用配方法解一元二次方程
1.解方程:x2+4x﹣1=0.
【思路点拨】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.
【答案与解析】
解:∵x2+4x﹣1=0
∴x2+4x=1
∴x2+4x+4=1+4
∴(x+2)2=5
∴x=﹣2±
∴x 1=﹣2+,x2=﹣2﹣.
【总结升华】配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
举一反三:
【变式】用配方法解方程.
(1)x2-4x-2=0; (2)x2+6x+8=0. 【答案】(1)方程变形为x2-4x=2.
两边都加4,得x2-4x+4=2+4.
利用完全平方公式,就得到形如(x+m)2=n的方程,即有(x-2)2=6.
解这个方程,得x-2=或x-2=-.
于是,原方程的根为x=2+或x=2-.
(2)将常数项移到方程右边x2+6x=-8.
两边都加“一次项系数一半的平方”=32,得x2+6x+32=-8+32,
∴ (x+3)2=1.
用直接开平方法,得x+3=±1,
∴ x=-2或x=-4.。
《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1
x
=
.
4
16
3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )
九年级数学配方法解一元二次方程

拦住一辆面包车,然后出示了警官代谢说,我是警察,想搭你的车。司机打量了一下他全身的警服,并没看他的代谢件,就痛快地说,上来吧。 上车后,通过交谈,才知道司机是黎鸣家所在的镇街上的,在镇政府旁边开了一家饭馆,每隔几天开车去县城买一次菜。到了镇上后,司机主
动说,你离家还远,我送你吧。从镇上到村里三公里的路程,步行需要半个小时,而坐车,五分钟就到家门口了,省了他以前的步行之苦。 第一次搭车,黎鸣觉出了搭车的好处,方便快捷,省时省力。自此,每次回家,他都在县城搭车,而且每次都能如愿。这更使他感觉到了当警察的
黎鸣是个优秀的青年,为人诚实,懂礼貌;孝顺母亲,工作出色;二是黎鸣的违规行为并不严重,通过对他的约谈、警示,黎鸣已经认识到错误,不必再处分。事实代谢明“黎鸣从此再也没有搭过车”。这样人性化处理,体现了领导者的通情达理、体察民情,起到了保护、 鞭策作用。
例2:不认同。一方面,原则、制度必须遵守,人情不能超越法纪。因人而异的处理会导致不公。另一方面,千里之堤溃于蚁穴,如果因为情节轻微而不加以重视,就有可能会使一些违纪者产生侥幸心理,进而一犯再犯,最终走到无法挽救的地步。文中黎鸣起先在县城搭车,后来逐渐发
x=
=
=.
(t1= ,t2= - )
即 x1= -2 , x2= .
例 用公式法解方程: x2 – x - =0
解:方程两边同乘以 3
得 2 x2 -3x-2=0
a=2,b= -3,c= -2.
∴b2-4ac=(-3) 2-4×2×(-2)=25.
∴x=
=
= 即 x1=2,
x2= -
求根公式 : X=
记。 ③晨曦微亮,不必急于晨起,和衣而坐,望向邻近的窗棂,你会惊喜地发现,整个窗玻璃上冰窗花葳蕤①如春,轻轻地凑近鼻息,似乎能嗅出冰窗花散发着馥郁的馨香,冰洁,剔透,令人心灵震颤。手指轻轻抚摸上去,冰窗花棱角分明,如一朵朵雪花,被夜神的手指悄悄安抚上去,
配方法解一元二次方程的步骤

配方法解一元二次方程的步骤
一元二次方程在日常学习中一般用"齐次二次方程ax^2+bx+c=0"的形式表示,是数学中的一类典型方程,它是一类非常重要的方程,在几何、物理等学科中有着广泛的应用。
想要求解一元二次方程,必须遵循以下几个步骤:
第一步:计算方程的判别式。
对于一元二次方程的判别式的计算公式为:
D=b2-4ac。
将此式中的a,b,c的值代入判别式,可以确定此一元二次方程拥有的根的特性。
其中,若D=0,说明此一元二次方程有两个相等的实数根;若D>0,说明此一元二次方程有两个不等的实数根;若D<0,说明此一元二次方程没有实数根。
第二步:根据上一步计算出的D,计算一元二次方程的根。
若D=0,则该方程有两个相等的实数根,这时候需要用一元二次方程的根的计算公式:x=-b/2a 求解出该方程的两个实数根。
若D>0,则该方程有两个不等的实数根,这时候需要用一元二次方程根的计算公式:x1=(-b+√D)/2a 以及 x2=(-b-√D)/2a 求解出该方程的两个实数根。
若D<0,则该方程没有实数根,但是可以在复数域解出根。
经过以上两步,就可以求解出一元二次方程的所有实数根或复数根。
一元二次方程的求解可以通过上面的方法解出,且是此类方程中求根最常用的求解方法。
它的灵活求解的技巧,使其在实际应用中得到广泛的应用,并取得了较好的效果。
一元二次方程解法-配方法

04 一元二次方程的配方法练 习
练习题一:简单的一元二次方程
总结词
方程
通过简单的方程,熟悉配方法的基本 步骤。
$x^2 - 6x + 9 = 0$
解法
将常数项移到等号右边,得到 $x^2 6x = -9$。为了使用配方法,我们需要 使左边成为一个完全平方三项式,所以 在方程的两边加上9(即一次项系数的 一半的平方),得到 $x^2 - 6x + 9 = 0$。现在左边是一个完全平方项,可 以写为 $(x-3)^2 = 0$。最后,我们通 过直接开平方法得到解 $x_1 = x_2 = 3$。
THANKS FOR WATCHING
感谢您的观看
配方
开方
化简
将方程左边化为一个完 全平方项,右边为一个
常数。
对方程两边同时开方, 得到一元一次方程的解。
解出一元一次方程的解 后,将其代入原方程进 行化简,得到最终解。
配方法解一元二次方程的实例
实例1
解方程 $x^2 - 6x + 9 = 0$,通过 配方得到 $(x - 3)^2 = 0$,解得 $x_1 = x_2 = 3$。
ห้องสมุดไป่ตู้注意开方的正负号
在开方时需要注意根的正 负号,以保证解的合理性。
注意解的检验
解出一元一次方程后,需 要将解代入原方程进行检 验,以确保解的正确性。
03 一元二次方程的配方法扩 展
配方法的推广
适用于所有一元二次方程
配方法不仅适用于标准形式的一元二 次方程,即$ax^2 + bx + c = 0$, 还可以应用于其他形式的一元二次方 程。
一元二次方程解法-配方法
目 录
• 一元二次方程的配方法概述 • 一元二次方程的配方法应用 • 一元二次方程的配方法扩展 • 一元二次方程的配方法练习
九年级数学配方法解一元二次方程

这包比上次那包甜。”
? 阿嬷的俭约,有时近乎刻苦。每一回陪她买菜,我总要生闷气,她看我拿钱出手快,也不高兴。两个时代的价值观一旦面对面,就算亲若血缘也会争执不已,所有的家庭问题关键不就在这儿?阿嬷坚持买最便宜的菜,七口之家一日的菜钱只用七
十元,不能不算奇迹--半斤豆芽炒韭十元,一条苦瓜熬汤八元,一把菠菜清炒十元,两块豆腐红烧十元,一条吴郭鱼烧酱二十元,半斤鸡蛋煎菜辅菜十元。当我们各组逛完市场在候车亭相见,她见我手上提的是最贵的水果,加上一大捧鲜花时,庭训就要开始了:
一粒吃又揣了一粒在口袋,再将它放回原处,装作啥事都不知晓。过不了几日,便会听到她的抱怨:“半包软糖仔那是你们阿姑买给我的,放在棉被堆里也给你们偷拿去呷。看看,剩三粒,比日本仔还野!夭鬼囡仔,我藏到无路啰!--喏,敏嫃,剩这粒给你。”
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
? “莫
彩钱!哼(不屑的声调),买那个花干啥?看没三天就谢去,你拢免呷饭静静坐住看,就会饱啊?你买那把花的钱,我买一甲地的菠宁菜还有剩!” “看‘水’呀,瘄内插一盆花‘水’呀!” “‘水’去壁!人说‘猪仔牵去唐山还是猪’,你这已经讲不变了!”
?
阿嬷的老磨功,我是及不上的。她能够把市场的每一条曲巷壁缝都探摸得如视掌纹,找出卖价最便宜的摊贩,使自己永远不在钱字上吃闷亏,这些技巧很顶有心理学修养的,她说:
阿嬷还是每日梳一个紧紧的髻。 我问阿嬷:“你几岁的时头壳上有白头毛?” 她说:“谁会记住这,大概是嫁给你阿公以后,抑是你阿公死了后?做啥?” 我说:“我有白头毛了。” 尚未发生 ? 四月当然不是残酷的季节。孩童在草地上踢足球,球追孩子,孩子追球。
配方法求解一元二次方程

配方法求解一元二次方程(原创实用版4篇)目录(篇1)1.一元二次方程的一般形式2.配方法的原理3.配方法的步骤4.配方法的应用举例5.结论正文(篇1)一元二次方程的一般形式为 ax + bx + c = 0,其中 a、b、c 为常数,且 a ≠ 0。
一元二次方程的求解方法有很多,其中配方法是一种比较常见的方法。
配方法的原理是将一元二次方程的二次项与一次项通过配方转化成完全平方的形式,从而将一元二次方程转化为一元一次方程,进而求解。
配方法的步骤如下:1.将常数项移到等式右边,得到 ax + bx = -c。
2.计算一次项系数 b 的一半,即 b/2,然后将其平方加到等式两边,得到 ax + bx + (b/2) = -c + (b/2)。
3.将等式左边化简成完全平方的形式,即 (x + b/2) = c - (b/2)。
接下来,我们可以通过开平方的方法求解 x 的值。
如果 c - (b/2) 是一个完全平方数,那么方程有实数解;如果 c - (b/2) 不是完全平方数,那么方程无实数解。
配方法的应用举例:求解方程 x - 3x + 2 = 0。
1.将常数项移到等式右边,得到 x - 3x = -2。
2.计算一次项系数 -3 的一半,即 -3/2,然后将其平方加到等式两边,得到 x - 3x + ( -3/2 ) = -2 + ( -3/2 )。
3.将等式左边化简成完全平方的形式,即 (x - 3/2) = 1/4。
对方程两边开平方,得到 x - 3/2 = ±1/2,解得 x1 = 2,x2 = 1。
因此,方程 x - 3x + 2 = 0 的解为 x1 = 2,x2 = 1。
总之,配方法是一种有效的求解一元二次方程的方法,适用于各种形式的一元二次方程。
目录(篇2)1.配方法求解一元二次方程的概述2.一元二次方程的标准形式3.配方法的具体步骤4.配方法求解一元二次方程的实例5.结论正文(篇2)一、配方法求解一元二次方程的概述配方法是一种求解一元二次方程的数值方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用配方法解一元二次方程
目标
1、理解配方法,会用配方法简单系数的一元二次方程。
2、了解配方法解一元二次方程的基本步骤,即化一元二次方程为一元一次方程
重点
用配方法解形一元二次方程,使一元二次方程转化为(ax+b)2=k 这样的形式。
难点
使用配方法使一元二次方程转换为左边平方右边数的形式。
过程
一、导入
有这么一个方程,x2+2x-3=0,我们怎么解这个方程呢,能使用前面学过的直接开方法解一元二次方程吗?能不能把这个方程转化为左边完全平方式右边数的形式呢?
新知讲解
我们学过完全平方式:a2±2ab+b2=(a±b)2,很明显,这个式子左边是整式,右边是一个完全平方式。
本课开始时我们提到的一元二次方程x2+2x-3=0,如果把x2+2x变成一个完全平方式,使其余的数放在等号的右方。
那就回到了我们上一节课学过的直接开平方法解一元二次方程。
把x2+2x的后面加1得x2+2x+1,这是一个完全平方式,即:x2+2x+1=(x+1)2,于是我们得到了一个关于x的完全平方式。
由
于加了1,后面要减去1,因此,原方程可以转化为x2+2x+1-1-3=0,前三项是一个完全平方式,后两项合并为-4。
原方程转化为:
(x+1)2-4=0。
到这里就把方程转化成了左边平方,右边数字的形式了:(x+1)2=4,这个方程可以用直接开方法求解。
注意,我们添加的数字是x的系数一半的平方。
例1、把下列式子转化成完全平方式。
(1)x2+6x-16= x2+2x___+(____)2-(____)2-16
(2)x2-2x-1= x2-2x___+(____)2-(____)2-1
解:
(1)x2+6x-16= x2+2·x·+()2-()2-16
(2)x2-2x-1= x2-2·x·+()2-()2-1
例2、根据上例解下列方程
(1)x2+6x-16=0 (2)x2-2x-1=0
解:(1)x2+6x-16=0
等号左边加、减x系数的一半的平方得:x2+2·x·+()2-()2-16=0 前三项写成完全平方式:(x+)2-9-16=0
移项得:(x+)2=25
用直接开方法得:x+3=±5
解得:x1=2, x2=-8
解:(2)x2-2x-1=0
等号左边加、减x系数的一半的平方得:x2-2·x·+()2-()2-1=0 前三项写成完全平方式:(x-)2-1-1=0
移项得:(x-1)2=2
用直接开方法得:x-1=±
解得:x1=+1, x2=-+1
例2、解方程2x2+4x-16=0
分析:这个一元二次方程的二次项系数不为“1”,先化为“1”,只需乘以即可,再用配方法解这个一元二次方程。
解:原方程左右两边同时乘以得:x2+2x-8=0
等号方程左边加、减x系数一半的平方得:x2+2x+()2-()2-8=0 前三项写成完全平方的形式:(x+)2-1-8=0
移项得:(x+)2=9
用直接开方法得:x+=±
解得:x1=, x2=-4
二、练习
解下列方程
(1)x2+2x-3=0 (2)x2-2x-99=0
(3)2x2-7x-4=0
四、作业
习题2.1A组
P41 T2、T3。