菲律宾国家输电网新能源消纳能力分析
浅析中国企业在菲律宾能源部门的投资机会

浅析中国企业在菲律宾能源部门的投资机会近年来,随着中国企业对海外投资的不断加强和菲律宾能源市场的逐步开放,中国企业在菲律宾能源部门的投资机会也变得越来越广阔。
本文将从菲律宾能源市场的发展现状入手,对中国企业在该领域的投资机会进行浅析,以期为中国企业进一步扩大在菲律宾能源市场的投资提供参考依据。
一、菲律宾能源市场的发展现状菲律宾是一个人口众多的发展中国家,能源消费量一直保持着快速增长的态势。
虽然菲律宾拥有丰富的能源资源,但是在国内生产和消费方面却仍然存在一定的局限性。
目前,菲律宾国内的能源产业仍然主要以煤炭、天然气和油气为主,其它新能源如太阳能、风能等发展不够成熟,占比较低。
不过,随着全球环保理念的逐步普及和政府对本土清洁能源的大力支持,菲律宾新能源市场正逐渐走向成熟。
根据菲律宾能源部门的最新统计数据显示,2019年菲律宾的电力需求已经大幅上升至1.2万兆瓦,而该国的总发电能力仅能满足75%的电力需求,使得电力短缺成为菲律宾经济发展的瓶颈之一。
由于国内储备有限,菲律宾政府非常重视吸引外国投资者前来开发国内的能源资源,并相继制定了多项法规对能源市场进行开放和鼓励投资,为中国企业抢夺这块蛋糕提供了更多的机会。
二、中国企业在菲律宾能源部门的投资机会1.投资天然气天然气一直是菲律宾的主要能源之一,同时菲律宾的天然气储备也比较丰富,其中,西非部分地区尤其是棕榈油和谷物主要产区的棕榈油和谷物产业所产生的废弃物都可以作为天然气的原料。
中国企业在此方面可以考虑通过依托现有的港口门户设施和互联直接投资、参与菲律宾国内的天然气储备形成的产品当中,加快建立起自己的营销网络和产业链。
2.投资清洁能源近年来,随着全球环境保护理念的不断普及,菲律宾政府开始大力推行清洁能源发展计划,力图通过促进清洁能源产业发展来改善国内的能源供需矛盾。
而中国企业在此领域的投资机会也将异常巨大。
目前菲律宾已经开始大力推广“绿色经济”,相继兴建了多个太阳能和风能发电站,可以增加清洁能源的供给量。
大规模新能源并网的新能源消纳能力和消纳空间方法研究及应用

第55卷 第1期2024年1月太原理工大学学报J O U R N A L O F T A I Y U A N U N I V E R S I T Y O F T E C HN O L O G YV o l .55N o .1 J a n .2024引文格式:刘红丽,张立伟,李佳,等.大规模新能源并网的新能源消纳能力和消纳空间方法研究及应用[J ].太原理工大学学报,2024,55(1):120-126.L I U H o n g l i ,Z HA N G L i w e i ,L I J i a ,e t a l .R e s e a r c h a n d a p p l i c a t i o n o f n e w e n e r g y a b s o r p t i o n c a p a c i t y an d a b -s o r p t i o n s p a c e m e t h o d o f S h a n x i p o w e r g r i d b a s e d o n l a r g e -s c a l e n e w e n e r g y g r i d [J ].J o u r n a l o f T a i y u a n U n i v e r -s i t y o f T e c h n o l o g y,2024,55(1):120-126.收稿日期:2023-05-15;修回日期:2023-07-06第一作者:刘红丽(1985-),高级工程师,主要从事输电网规划㊁新能源消纳计算及新能源接入评审等研究,(E -m a i l )l i u h o n gl i f r i e n d @126.c o m大规模新能源并网的新能源消纳能力和消纳空间方法研究及应用刘红丽,张立伟,李 佳,李旭霞,梁 燕,王凯凯(国网山西省电力公司经济技术研究院,太原030002)摘 要:ʌ目的ɔ随着双碳目标的不断推进,新能源迎来了井喷式发展,新能源消纳能力和消纳空间成为社会各界关注的问题㊂针对现有新能源消纳能力和消纳空间研究中,消纳措施比较单一且多注重理论研究,适用性不强这一弊端,提出了具体的方法和流程㊂ʌ方法ɔ采用时间序列生产模拟方法,基于全景电力系统运行模拟分析平台(N E O S ),构建了大规模新能源并网的新能源消纳能力和消纳空间方法和流程,研究测算了山西省 十四五 和 十五五 新能源消纳能力,在此基础上采取消纳综合措施将其新能源利用率提升至95%以上,提高了新能源消纳能力㊂ʌ结果ɔ在新能源利用率95%的基础上,针对新增不同风光比例㊁不同投产时序㊁不同新能源利用率和不同年份分别测算了各种情景下新能源消纳空间,指导山西省新能源规划,助力双碳目标落地㊂关键词:新能源利用率;消纳能力;消纳空间;调峰能力;消纳综合措施中图分类号:T M 715;T M 743 文献标识码:AD O I :10.16355/j .t yu t .1007-9432.20230393 文章编号:1007-9432(2024)01-0120-07R e s e a r c h a n d A p p l i c a t i o n o f N e w E n e r g y A b s o r p t i o n C a p a c i t y a n d A b s o r pt i o n S p a c e M e t h o d o f S h a n x i P o w e r G r i d B a s e d o n L a r g e -s c a l e N e w E n e r g y Gr i d L I U H o n gl i ,Z H A N G L i w e i ,L I J i a ,L I X u x i a ,L I A N G Y a n ,W A N G K a i k a i (E c o n o m i c a n d T e c h n i c a l R e s e a r c h I n s t i t u t e o f S E P C o f S G C C ,T a i yu a n 030002,C h i n a )A b s t r a c t :ʌP u r po s e s ɔW i t h t h e c o n t i n u o u s p r o m o t i o n o f t h e d u a l c a r b o n g o a l ,n e w e n e r g y h a s u s h e r e d i n e x p l o s i v e d e v e l o p m e n t ,a n d t h e c a p a c i t y a n d s p a c e f o r n e w e n e r g y c o n s u m pt i o n h a v e b e c o m e a c o n c e r n f o r a l l s e c t o r s o f s o c i e t y .I n t h e r e s e a r c h o n e x i s t i n g n e w e n e r g y c o n s u m pt i o n c a p a c i t y a n d s p a c e ,t h e c o n s u m p t i o n m e a s u r e s a r e r e l a t i v e l y s i n gl e a n d f o c u s m o r e o n t h e o r e t i c a l r e s e a r c h ,w h i c h i s n o t a p p l i c a b l e ,p r o p o s e s pe c if i c m e t h o d s a n d p r o c e s s e s .ʌM e t h o d s ɔI n t h i s a r -t i c l e t h e t i m e s e r i e s p r o d u c t i o n s i m u l a t i o n m e t h o d w a s a d o p t e d t o b u i l d a n e w e n e rg y c o n s u m p -t i o n c a p a c i t y a n d c o n s u m p t i o n s p a c e m e th o d a n d p r o c e s s f o r l a r g e -s c a l e n e w e n e r g y gr i d c o n n e c -t i o n o n t h e P a n o r a m i c P o w e r S y s t e m O p e r a t i o n S i m u l a t i o n A n a l y s i s P l a t f o r m.ʌF i n d i n gs ɔT h e n e w e n e r g y c o n s u m p t i o n c a p a c i t y o f S h a n x i P r o v i n c e d u r i n g th e 14t h a n d 15t h F i v e Y e a r P l a n s w a s e s t i m a t e d .O n t h e b a s i s .B a s e d o n t h i s ,c o m p r e h e n s i v e c o n s u m pt i o n m e a s u r e s w e r e t a k e n t oi n c r e a s e i t s n e w e n e r g y u t i l i z a t i o n r a t e t o o v e r95%,i m p r o v i n g t h e n e w e n e r g y c o n s u m p t i o n c a-p a c i t y.O n t h e b a s i s o f a n e w e n e r g y u t i l i z a t i o n r a t e o f95%,t h e n e w e n e r g y c o n s u m p t i o n s p a c e u n d e r v a r i o u s s c e n a r i o s w a s c a l c u l a t e d f o r d i f f e r e n t p r o p o r t i o n o f n e w l y a d d e d w i n d a n d s o l a r p o w e r,d i f f e r e n t p r o d u c t i o n t i m i n g,d i f f e r e n t n e w e n e r g y u t i l i z a t i o n r a t e s,a n d d i f f e r e n t y e a r s, g u i d i n g t h e n e w e n e r g y p l a n n i n g o f S h a n x i P r o v i n c e a n d a s s i s t i n g i n t h e i m p l e m e n t a t i o n o f t h e d u a l c a r b o n t a r g e t.K e y w o r d s:n e w e n e r g y u t i l i z a t i o n r a t e;a b s o r p t i o n c a p a c i t y;c o n s u m p t i o n s p a c e;p e a k s h a v i n gc a p a b i l i t y;c o m p r e h e n s i v e m e a s u r e s f o r c o n s u m p t i o n2021年3月,习近平总书记在中央财政委员会第九次会议上强调,要深化电力体制改革,建立以新能源为主体的新型电力系统㊂国家发展和改革委员会㊁国家能源管理局以及能源和电力行业提议建立一个适合发展高比例可再生能源的新电力系统[1]㊂电力行业的 碳达峰,碳中和 和进度对双碳目标的实现和影响较大,因此必须加快构建以新能源为主体的新型电力系统[2]㊂基于新能源为主体的新型电力系统体系构建中,风电和光伏发电将会迎来发展的挑战和机遇[3]㊂弃风弃光的根源,是一定区域内的 新能源电源 建设速度超出消纳能力[4-5]㊂截止2022年底,山西省已投运新能源装机规模已超过负荷,而山西省 十四五 和 十五五 新能源仍保持高速增长㊂若继续维持国家电网95%利用率目标[5],则需研究电网新能源消纳能力㊂目前,张富强等[6]采用精细化小时级的时序生产模拟模型量化评估了火电灵活性改造㊁需求侧响应等提升风电消纳水平的系统灵活性措施的经济性;杨策等[7]提出了电力系统容量分布概率模型,并在此基础上考虑新能源合理弃电的系统灵活性评价方法;程瑜等[8]针对新能源汇集外送场景,提出了面向新能源消纳的灵活性资源与电网协同规划方法㊂整体来看,现有的研究更多关注于如何通过不同技术手段提升新能源利用率,而并未关注具体如何将新能源利用率提升至目标值㊂与此同时,随着新能源装机规模的不断增长以及调峰资源的消耗,社会各界对新能源95%利用率目标值存疑㊂新能源合理利用率定义为使全社会电力供应成本最低的新能源利用率水平[9]㊂早在2017年,王耀华等[10]首次在中长期扩展规划中探索新能源 合理弃能 问题,计算电力系统安全经济发展下的新能源规划合理弃能率及该弃能率下的系统规划成本㊂高雷等[11]从全社会综合用电成本的角度出发,结合可再生能源消纳责任权重目标的实现,提出一种综合考虑新能源开发成本和系统消纳成本的新能源合理弃电率计算方法㊂与此同时,衍生出了新能源可接纳能力即消纳空间㊂王守相等[12]提出了一种基于D E A评价的电动汽车充电桩与分布式电源多阶段协同规划方法㊂曹南君等[13]基于辽宁省电网现状网架结构,提出 基于层次分析模糊 的规划方法㊂这些理论方法的提出对研究新能源消纳能力和消纳空间有一定的指导,但是没有一个系统的计算新能源消纳能力和消纳空间的方法及流程,在实际使用中仍有很多局限㊂本文创新性地提出一种适合大规模新能源并网的新能源消纳能力和消纳空间研究方法及流程,该方法及流程采用全景电力系统运行模拟分析平台(N E O S),应用混合整数优化模型计算在一定利用率下新能源消纳能力㊂而后结合新能源装机规模发展目标和已下达新能源装机规模合理确定新增风光装机比例,按相应比例来增加新能源装机规模,以确定在某个利用率下新能源消纳空间㊂最后计算山西省 十四五 末和 十五五 末新能源消纳能力及需采取的消纳综合措施,基于95%利用率,计算不同利用率下新能源消纳空间㊂1新能源电力系统生产模拟法1.1新能源最大可消纳电力系统t时刻最大可消纳新能源电力P a(t)满足下式:P a(t)=P l(t)+P t(t)-ðN i P g,i,m i n.(1)式中:P l(t)为t时刻的负荷功率;P t(t)为t时刻的联络线外送功率,送出为正;P g,i,m i n为系统内第i台常规机组的最小技术出力;N为系统中所有常规机组的台数㊂其中,联络线功率必须满足通道能力的约束:P t,m i n(t)ɤP t(t)ɤP t,m a x(t).(2)式中:P t,m a x(t)㊁P t,m i n(t)是联络线在t时刻输送功率的最大值限制和最小值限制㊂121第1期刘红丽,等:大规模新能源并网的新能源消纳能力和消纳空间方法研究及应用1.2 N E O S软件模型本文采用全景电力系统运行模拟分析平台(N E O S),应用混合整数优化模型,该平台具有求解精度高,易求得最优解,多区域情况下可较好地安排区域间断面电力交换㊂该模型目标在满足系统需求的情况下,寻求运行期内系统总费用最小,Z表示c 总成本,目标函数(m i n Z)[14]为:m i n Z=I+S+F+V+φ+E m i+D e m.(3)式中:I表示运行期内总燃料成本;S表示运行期内启停成本;F表示运行期内系统固定运行费用;V表示运行期内系统变动运行费用;φ表示运行期系统不供电量损失;E m i表示运行期系统排放成本,D e m 表示运行期需求侧响应成本㊂1)燃料费用的计算㊂燃料费用与发电量成正比,包括煤电㊁气电㊁核电和生物质4类燃料费用:I=ðt E c l B c l,t+E g s B g s,t+E n c B n c,t+E b o B b o,t.(4)式中:E代表燃料价格(包含运输成本);B代表燃料消耗,g/(k W㊃h),c l㊁g s㊁n c㊁b o分别表示煤电㊁气电㊁核电和生物质燃料,t表示对应的时刻㊂气㊁核㊁生物质发电燃料消耗与发电量按照线性关系建模,m为单位燃料耗率:B=m P t.(5)2)启停费用的计算㊂启停费用与启停次数成正比,包括煤电㊁气电㊁核电和生物质发电的启停费用;d为单次启停费用,元/次,公式如下所示:S=ðd(1-U t-1)U t.(6)其中,U表示机组开机状态,U=1代表开机,U=0代表关机;U t-1代表t-1时刻的机组状态,U t代表t时刻的机组状态,仅在机组U t-1到U t开机状态由关机变为开机时计算启动成本㊂3)固定运行费用的计算㊂与发电量无关的年运行维护费用,所有电源及输电线路均有固定运行成本,不影响优化结果㊂h 为单位千瓦固定运行费用,元/k W;N为装机容量, k W:F=ðh i N i.(7)4)变动运行费用的计算㊂与发电量成正比,z为变动运行费用系数,元/ (k W㊃h):V=ðt z P t.(8)5)系统不供电量损失计算㊂N E O S处理系统缺电损失时,假设每一个地区有一个虚拟电厂,此类电厂的装机容量没有限制,可以任意承担工作位置,其发电成本由用户根据该地区的电量不足损失给定,不同地区在不同时段上取值均可不同:φ=ðw t P n s,t.(9)式中:w t为t时刻单位缺电成本;P n s,t为t时刻缺电电量㊂6)排放成本的计算㊂E m i表示运行期系统排放成本,煤电㊁气电㊁生物质发电考虑排放成本,与发电量成正比,考虑二氧化碳㊁硫化物㊁氮氧化物㊁烟尘4类排放成本㊂o为污染物单位排放费用系数,元/g;b为排放系数,g/ (k W㊃h):E m i=ðt o b P t.(10)7)需求侧响应成本计算㊂D e m表示运行期需求侧响应成本,由用户给定㊂在该模型中,新能源发电边际成本为0或极低,寻找电力供应总成本最优解的过程,也就是新能源尽可能消纳的过程,但反过来并不一定成立㊂约束条件包括:1)逐时刻电力平衡㊂2)逐时刻旋转备用必须满足系统备用率要求㊂3)机组/线路出力功率必须在上下限约束范围内㊂4)单位时间内机组/线路出力变化率需满足爬坡能力约束㊂5)火电机组必须满足最小连续关停/开启时间后才能再次开启/关停㊂6)可调节水电出力大于强迫出力㊂7)可调节水电日/月/季/年电量小于等于平均出力与装机容量和时段数之积㊂8)可调节水电出力小于期望出力㊂9)抽水蓄能/储能库容/电量必须维持在允许范围内㊂10)抽水蓄能库容/储能电池电量每日回到初始状态㊂11)光热日电量小于可发电量㊂12)线路运行模式分为定曲线㊁自有优化㊁仅可正向㊁仅可反向4类㊂13)保证机组利用小时小于或大于预先给定值㊂14)可强制某台机组在某时刻处于开机状态㊂15)需求侧响应可响应规模和时间维持在允许范围内㊂2新能源消纳能力和消纳空间评估方法及流程新能源消纳能力指标η为新能源利用率,计算公式如下所示:η=P fP f+P qˑ100%.(11)221太原理工大学学报第55卷式中:P f 表示新能源实际发电量;P q 表示新能源实际弃电量㊂首先在现有措施下计算新能源利用率,若结果低于国家电网新能源利用率目标值95%,则采取消纳综合措施将利用率提高至95%;若结果高于目标值,则按新增风光比例增加新能源装机规模将其降低为95%,增加的新能源装机规模则为该利用率下新能源消纳空间㊂然后,可依据此方法根据新能源目标值确定不同利用率新能源消纳空间㊂具体评估流程如图1所示:结束确定计算模型边界,搭建新能源消纳计算模型设定新能源利用率目标值95%开始NEOS 计算增加新能源装机规模(确定基础消纳空间)增加调峰能力(确定需增加调峰规模)计算结果与95%比较确定该模型为基础模型(95%)确定目标值新能源利用率=<≥确定新增新能源装机风光比例增加新能源装机规模NEOS 计算增加新能源装机规模减少新能源装机规模计算结果与目标值比较确定该模型为目标值模型,将该模型与基础模型新能源装机规模相减即得到目标值利用率下新能源消纳空间=<≥图1 新能源消纳能力及消纳空间评估流程F i g .1 P r o c e s s o f n e w e n e r g y a b s o r p t i o n c a p a c i t ya n d ab s o r p t i o n s pa c e a s s e s s m e n t 由图1可见,新能源消纳能力为第一次N E O S软件的计算结果,若计算结果小于95%,则说明该电网无新能源消纳空间,通过增加调峰能力,例如增加电化学储能㊁火电灵活性改造规模㊁需求侧响应规模等调峰措施,可将新能源利用率提高至95%.若计算结果大于95%,则说明该电网仍然可以接纳新能源,通过增加新能源装机规模,将新能源利用率降低至95%,所增加的新能源装机规模即为该电网新能源消纳空间㊂电网新能源消纳空间受新增风光新能源比例和新能源投运时间两个因素影响㊂鉴于风电㊁光伏出力的特性特点,风电项目全天均有出力且最大出力多数集中在午夜时刻,而光伏仅在白天有出力且最大出力集中在午间时刻,根据近年来新能源消纳能力发现午间时刻新能源最难消纳,因此新能源消纳空间更多地受光伏制约,新增风光新能源比例直接影响新能源消纳空间㊂而新能源年初投产和年内均匀投产新能源项目的出力不一样,亦会影响新能源消纳空间㊂两个因素的影响在本文新能源消纳空间仿真结果中有所体现,两个影响因素介绍如下:一是与所增加风光新能源比例β有关,该比例的确定原则上是结合各省新能源装机规模发展目标和已下达新能源装机规模,取其风光各自差值,按差值比例来增加新能源装机规模㊂计算公式如下所示:β=Q P W -Q R WQ P S -QR S.(12)式中:Q P W表示风电规划发展目标装机规模,Q P S 表示光伏规划发展目标装机规模,Q R W 表示已下达风电装机规模,Q R S 表示已下达光伏装机规模㊂二是与所增加风光新能源投入时间有关系,年初投新能源消纳空间偏保守,若按光伏9月30日,风电年中6月30日或年底则偏乐观,若有特殊规定则可按所需来投计㊂应用该方法,将第一次新能源利用率计算至95%的新能源装机规模设为Q 1,按设定目标新能源利用率η2计算相应利用率下新能源装机规模Q 2,新能源消纳空间Q =Q 2-Q 1.该新能源消纳能力及消纳空间评估流程具有普遍适用性㊂3 山西电网新能源消纳能力和消纳空间仿真3.1 边界条件本文以山西电网2025年和2030年为研究水平年,山西电网为一个消纳分区㊂2025年㊁2030年山西省全社会最大负荷分别为4930万k W ㊁6200万k W ,全社会用电量3030亿k W ㊃h ㊁3780亿k W ㊃h .剔除外送机组,4种研究情景边界见表1.3.2 新能源消纳能力仿真3.2.1 2025年新能源消纳能力仿真根据边界条件计算,2025年火电灵活性改造装机2752万k W (释放调节能力550万k W ),在现有措施下新能源利用率均在90%~91%,新增需求侧响应规模246万k W (需求侧响应5%),同时新增新型储能规模400万k W (充电时长2h ),可将新能源321 第1期 刘红丽,等:大规模新能源并网的新能源消纳能力和消纳空间方法研究及应用利用率提高至95%以上,具体结果见表2.表1 省内自用电源装机T a b l e 1 P r o v i n c i a l i n s t a l l a t i o n o f s e l f -u s e p o w e r s u p p l y单位:104k W类型2025年基础敏感2030年基础敏感水电224224494494常规水电104104104104抽水蓄能120120390390火电6618661866186618煤电6163616361636163气电355355355355生物质100100100100核电0000风电2900332139003900光伏4500434475007500表2 2025年新能源消纳能力T a b l e 2 N e w e n e r g y a b s o r p t i o n c a p a c i t yi n 20252025年不同情景基准情景现有措施额外措施敏感情景现有措施额外措施新能源利用率/%90.695.890.595.9需求侧响应比例/%-5-5需求侧响应规模/104k W-246-246灵活性改造规模/104k W 2752275227522752改造释放调节能力/104k W 550550550550新型储能规模/104k W-400-400储能平均时长/h-2-23.2.2 2030年新能源消纳能力仿真根据边界条件计算,2030年火电灵活性改造装机3825万k W (释放调节能力765万k W ),需求侧响应规模310万k W (需求侧响应5%),新型储能规模490万k W (充电时长2h ).现有措施下新能源利用率均在91%~92%,新增需求侧响应规模124万k W (需求侧响应2%),需求侧响应规模达434万k W (需求侧响应7%),同时新增储能1010万k W(充电时长2h ),新型储能规模达1500万k W (充电时长2h ),可将新能源利用率提高至95%以上㊂具体结果见表3.表3 2030年新能源消纳能力T a b l e 3 N e w e n e r g y a b s o r p t i o n c a p a c i t yi n 20302030不同情景基准情景现有措施额外措施敏感情景现有措施额外措施新能源利用率/%91.195.391.195.3需求侧响应比例/%5757需求侧响应规模/104k W 310434310434灵活性改造规模/104k W 3825382538253825改造释放调节能力/104k W 765765765765新型储能规模/104k W49015004901500储能平均时长/h-2-2由表2和表3可见,十四五 末和 十五五 末,山西省新能源消纳能力低于标准值在现有措施下无新能源消纳空间㊂需通过采取需求侧响应㊁配置储能和增加火电灵活性改造规模等措施提高新能源消纳能力㊂3.3 新能源消纳空间仿真在上述2025年和2030年基础情景额外措施方案下,按照风㊁光为1ʒ3的比例增加新能源装机规模㊂2025年和2030年敏感情景额外措施方案下,按照风㊁光为1ʒ5.5的比例增加新能源装机规模,将新能源利用率分别控制在90%㊁85%㊁80%水平,测算不同新能源消纳能力下的新能源消纳空间㊂3.3.1 新增新能源逐月均匀分布此种方式下新能源消纳空间偏乐观,具体结果见表4.表4 逐月均匀分布新能源消纳空间T a b l e 4 N e w e n e r g y c o n s u m p t i o n s p a c e e v e n l yd i s t r i b u te d m o n t h b y mo n t h 单位:104k W 年份额外措施不同利用率下的新能源消纳空间/%9085802025基准情景风电81815072040光伏245941506120合计327756578160敏感情景风电4207801140光伏231042846270合计2730506474102030基准情景风电85018002700光伏255054008100合计3400720010800敏感情景风电49510001500光伏250055008250合计299565009750由表4可见,新能源利用率每降低5%,2025年和2030年基础情景额外措施下新能源消纳空间分别增加约2700万k W ㊁3600万k W ;2025年和2030年敏感情景额外措施下新能源消纳空间分别增加约2500万k W ㊁3200万k W.3.3.2 新增新能源在月初投运此种方式下新能源消纳空间偏保守,具体结果见表5.由表5可见,新能源利用率每降低5%,2025年和2030年基础情景额外措施下新能源消纳空间分别增加约1500万k W ㊁2000万k W ;2025年和2030年敏感情景额外措施下新能源消纳空间分别增加约1400万k W ㊁1700万k W.4 结束语本文构建了新能源消纳能力和消纳空间方法和流程,并将其应用于山西电网新能源消纳能力和消421太原理工大学学报 第55卷表5 月初投运新能源消纳空间T a b l e 5 N e w e n e r g y c o n s u m p t i o n s p a c e a t t h e b e g i n n i n g单位:104k W年份额外措施不同利用率下的新能源消纳空间/%9085802025基准情景风电4407901150光伏132023703450合计176031604600敏感情景风电240440640光伏132024203520合计1560286041602030基准情景风电50010001500光伏150030004500合计200040006000敏感情景风电250560800光伏137530804400合计162536405200纳空间的测算㊂经测算,1)在新能源利用率95%情景下,山西省 十四五 和 十五五 无新能源消纳空间,需采取增加火电灵活性改造规模㊁需求侧响应规模和配置储能规模㊂2)新能源利用率每降低5%,新增风光比例越高,新能源消纳空间越大,风光比例1ʒ3较风光比例1ʒ5.5增加规模约150~350万k W.3)新能源利用率每降低5%,逐月投运较月初投运新能源消纳空间大,增加约1100~1600万k W.4)新能源利用率每降低5%,新能源逐月投运新能源消纳空间增加约2500~3600万k W ;月初投运新能源消纳空间增加约1400~2000万k W.本文的新能源消纳能力及消纳空间方法和流程具有普遍适用性,可应用于全国各省及省内各地市㊂参考文献:[1] 韩肖清,李廷钧,张东霞,等.双碳目标下的新型电力系统规划新问题及关键技术[J ].高电压技术,2021,9:3036-3046.H A N X Q ,L I T J ,Z H A N G D X ,e t a l .N e w p r o b l e m s a n d k e y t e c h n o l o g i e s o f n e w p o w e r s y s t e m p l a n n i n g un d e r d u a l -c a r b o n t a r g e t [J ].H i g h V o l t a g e T e c h n o l o g y,2021,9:3036-3046.[2] 赵风云.在电源投资环节引入市场化机制助力新型电力系统实现双碳目标[J ].中国电业,2021(5):34-35.Z HA O F Y.T h e i n t r o d u c t i o n o f m a r k e t -o r i e n t e d m e c h a n i s m i n p o w e r i n v e s t m e n t h e l p s t h e n e w p o w e r s ys t e m t o a c h i e v e d o u b l e -c a r b o n t a r g e t [J ].C h i n a E l e c t r i c i t y,2021(5):34-35.[3] 舒印彪.发展新型电力系统助力实现 双碳 目标[J ].中国电力企业管理,2021(7):8-9.S HU Y B .D e v e l o p i n g n e w p o w e r s y s t e m s t o h e l p a c h i e v e t h e d o u b l e c a r b o n t a r g e t [J ].C h i n a P o w e r E n t e r p r i s e M a n a ge -m e n t ,2021(7):8-9.[4] 陈发明.新能源消纳能力要跟上[N ].经济日报,2022-06-08(8).C H E N F M.K e e p u p w i t h n e w e n e r g y c a p a c i t y [N ].E c o n o m i cD a i l y,2022-06-08(8).[5] 李晖,刘栋,姚丹阳.面向碳达峰碳中和目标的我国电力系统发展研判[J ].中国电机工程学报,2021(18):6245-6259.L I H ,L I U D ,Y A O D Y.S t u d y o n t h e d e v e l o p m e n t o f o u r c o u n t r y 's e l e c t r i c p o w e r s y s t e m f o r t h e g o a l o f pe a k c a r b o n a n d c a r -b o n n e u t r a l i z a t i o n [J ].C h i n e s e J o u r n a l of E l e c t r i c a l E ng i n e e r i n g,2021(18):6245-6259.[6] 张富强,元博,张晋芳,等.提升风电消纳水平的电力系统灵活性措施经济性评估方法研究[J ].全球能源互联网,2018(5):558-564.Z HA N G F Q ,Y U A N B ,Z H A N G J F ,e t a l .S t u d y o n e c o n o m i c e v a l u a t i o n m e t h o d o f p o w e r s y s t e m f l e x i b i l i t y me a s u r e s t o i m -p r o v e w i n d p o w e r a b s o r p t i o n l e v e l [J ].G l o b a l E n e r g y In t e r n e t ,2018(5):558-564.[7] 杨策,孙伟卿,韩冬.考虑新能源消纳能力的电力系统灵活性评估方法[J ].电网技术,2023,47(1):338-349.Y A N G C ,S U N W Q ,H D .P o w e r s y s t e m f l e x i b i l i t y a s s e s s m e n t m e t h o d c o n s i d e r i n g n e w e n e r g y a b s o r p t i o n c a p a c i t y[J ].G r i d T e c h n o l o g y,2023,47(1):338-349.[8] 程瑜,朱瑾,彭冬,等.提升新能源消纳含风险度量的输-储优化规划[J ].太阳能学报,2023,44(10):504-513.C H E N G Y ,Z HU J ,P E N GD ,e t a l .P r o m o t e t h e n e w e n e r g y a b s o r p t i o n w i t h r i s k m e a s u r e m e n t o f t h e t r a n s m i s s i o n -s t o r a ge o p t i m i z a t i o n p l a n n i n g [J ].J o u r n a l of S o l a r E n e rg y,2023,44(10):504-513.[9] 彭跃辉.双碳目标下新能源合理利用率形势分析及政策建议[J ].华北电力大学学报(社会科学版),2022(6):42-50.P E N G Y H.S i t u a t i o n a n a l y s i s a n d p o l i c y s u g g e s t i o n s o n r a t i o n a l u t i l i z a t i o n r a t e o f n e w e n e r g y u n d e r d o u b l e -c a r b o n t a r ge t [J ].J o u r n a l of N o r t h C h i n a E l e c t r i c P o w e r U n i v e r s i t y Sc i e n c e (S o c i a l S c i e n c e s ),2022(6):42-50.[10] 王耀华,栗楠,元博,等.含大比例新能源的电力系统规划中 合理弃能 问题探讨[J ].中国电力,2017,50(11):8-14.WA N G Y H ,L I N ,Y U A N B ,e t a l .D i s c u s s i o n o n r a t i o n a l e n e r g y a b a n d o n m e n t i n p o w e r s y s t e m p l a n n i n g w i t h l a r ge p r o -p o r t i o n of n e w e n e rg y so u r c e s [J ].C h i n a E l e c t r i c P o w e r ,2017,50(11):8-14.[11] 高雷,苏辛一,刘世宇.可再生能源消纳责任权重下的新能源合理弃电率研究[J ].中国电力,2020,53(12):136-142.G A O L ,S U X Y ,L I U S Y.S t u d y o n r e a s o n a b l e w a s t e r a t e o f n e w e n e r g y u n d e r t h e r e s p o n s i b i l i t y w e i gh t o f r e n e w a b l e e n e r -521 第1期 刘红丽,等:大规模新能源并网的新能源消纳能力和消纳空间方法研究及应用621太原理工大学学报第55卷g y c o n s u m p t i o n[J].C h i n a E l e c t r i c P o w e r,2020,53(12):136-142.[12]王守相,赵倩宇.新型电力系统下提升可再生能源接纳能力[J].供用电,2022,39(5):1-2.WA N G S X,Z H A O Q Y.U p g r a d i n g r e n e w a b l e e n e r g y c a p a c i t y u n d e r n e w p o w e r s y s t e m s[J].P o w e r S u p p l y,2022,39(5): 1-2.[13]曹南君,满林坤,刘爱民,等.辽宁电网风电㊁光伏接纳能力研究[J].东北电力技术,2019,40(3):6-11.C A O N J,MA N L K,L I U A M,e t a l.S t u d y o n t h e c a p a c i t y o f w i n d p o w e r a n d p h o t o v o l t a i c i n L i a o n i n g p o w e r g r i d[J].N o r t h e a s t E l e c t r i c P o w e r T e c h n o l o g y,2019,40(3):6-11.[14]元博,徐志成,刘俊,等.多区域新能源接纳能力评估模型研究及应用[J].中国电力,2019,52(12):136-142.Y U A N B,X U Z C,L I U J,e t a l.S t u d y a n d a p p l i c a t i o n o f m u l t i-r e g i o n a l n e w e n e r g y c a p a c i t y a s s e s s m e n t m o d e l[J].C h i n a E-l e c t r i c P o w e r,2019,52(12):136-142.(编辑:万佳)。
我国新能源消纳困难的原因及其对策

我国新能源消纳困难的原因及其对策1. 引言1.1 背景介绍我国新能源消纳困难的问题在近年来逐渐凸显,随着我国新能源装机规模的不断扩大,如风电、光伏发电等新能源的发展取得了长足的进步。
新能源的消纳却成为了一个亟待解决的难题。
新能源消纳困难不仅会影响新能源的发展速度和规模,还会给能源系统的稳定运行带来挑战。
我国新能源消纳困难的原因多方面存在,需要综合分析和研究。
从能源消纳技术、政策法规的落地执行、市场机制建设等方面来看,都存在着一定的瓶颈和挑战。
如何有效解决新能源消纳困难,保障新能源的稳定消纳,成为当前亟待解决的重要课题。
面对新能源消纳困难的挑战,政府、企业和社会各界应共同努力,加强政策支持和技术研发,推动新能源消纳问题的解决。
只有通过全社会的努力,才能实现我国新能源消纳难题的有效解决,推动能源革命和可持续发展的步伐。
1.2 问题提出我国新能源消纳困难的原因及其对策引言随着我国新能源装机容量的不断增加,尤其是风电和光伏发电的快速发展,新能源发电量已经占据了国内部分电网的一定比例。
我国的新能源消纳却面临着诸多困难和挑战。
在这种情况下,我们需要深入分析新能源消纳困难的原因,并提出有效的对策措施,以促进我国新能源消纳工作的顺利推进。
新能源消纳困难主要表现在电网调度能力受限、风光等资源分布不均匀、储能技术不成熟、市场机制不完善等方面。
这些问题导致了新能源发电的波动性和间歇性,给电力系统的稳定运行带来了一定难度。
在这种情况下,如何解决新能源消纳困难成为当前亟待解决的问题。
本文将深入探讨我国新能源消纳困难的原因,并提出针对性的对策建议,力求为解决新能源消纳难题提供有益参考,推动我国新能源消纳工作的持续发展。
2. 正文2.1 新能源消纳困难的原因供需不平衡是导致新能源消纳困难的主要原因之一。
新能源的间歇性和波动性导致其产生和消费之间存在着不匹配的情况,特别是在风电和光伏等可再生能源领域,太阳能和风能的产生不受人为控制,而电力需求却是连续性的,这就造成了新能源消纳的困难。
新能源消纳问题的研究与对策

新能源消纳问题的研究与对策随着全球对可持续发展的关注,新能源的发展已成为各国的重要议题。
然而,随着新能源规模的不断扩大,新能源消纳问题逐渐凸显。
新能源消纳问题指的是由于新能源的天然特性和与传统能源互补的特点,导致其在能源系统中存在剩余和浪费的情况。
解决新能源消纳问题对于实现能源可持续发展至关重要。
本文将就新能源消纳问题进行深入研究,并提出一些可行的解决方案。
首先,新能源消纳问题的产生与新能源的发展紧密相关。
随着可再生能源(如风能、太阳能、水能)的大规模利用,限制其消纳的主要问题是能源系统的不平衡。
由于新能源的供给受气象条件等自然因素的限制,其产生的电力波动性较大。
这导致了利用新能源时,能源系统的可靠性和稳定性受到了挑战。
此外,随着新能源规模的扩大,其与传统能源(如煤炭、石油、天然气)之间的互补性越来越强。
新能源消纳问题的主要原因之一是传统能源生产与消费方式的调整与变革不足,导致了新旧能源之间的差异导致的消纳困难。
针对新能源消纳问题,我们可以从以下几个方面进行研究和解决。
第一,加强新能源消纳技术研究。
新能源消纳技术是解决新能源消纳问题的关键。
通过研究新能源消纳技术,可以有效降低新能源消纳的难度和风险。
例如,利用先进的电网技术,如智能电网和储能技术,可以更好地消纳新能源。
智能电网可以通过电力系统的监控、控制和优化,提高新能源的消纳能力。
储能技术可以在新能源供给不足时,提供备用电源,保持能源系统的平衡。
此外,研究并推广新能源与传统能源的互补技术,如功率调节、储电和能量转换等,也是解决新能源消纳问题的重要途径。
第二,优化能源系统规划与管理。
建立健全的能源系统规划和管理机制,是解决新能源消纳问题的基础。
需要制定科学合理的能源发展规划,根据能源消费结构和新能源资源分布情况,合理确定新能源装机规模和区域布局,避免因过度装机而导致的新能源消纳问题。
此外,需要加强能源系统的监测和调度能力,及时掌握新能源的供需状况,合理分配和调度能源资源,提高能源系统的可靠性和稳定性。
新能源消纳关键因素分析及解决措施

新能源消纳关键因素分析及解决措施作者:吴慧娟钟永龙来源:《中国电气工程学报》2020年第14期摘要:随着社会可持续发展进程的不断加快,我国新能源结构呈现出种类多、应用范围不断扩大等特征,同时出现弃风、弃光等问题,对新能源消纳工作提出了更高要求。
如何消纳过剩的新能源成为了人们普遍关心的问题。
本文将从新能源消纳的现状出发,分析影响新能源消纳的关键因素,并提出解决措施。
关键词:新能源;消纳;关键因素;解决措施引言能源是现代社会持续运行的基础,是人类生产生活的动力来源。
能源问题历来和经济发展、生态环境以及气候变化等息息相关,为了确保能源安全,积极应对生态环境变化,推行可持续发展的新能源已经成为社会的普遍共识。
因为各种各样的因素影响,新能源消纳问题一直是推行新能源普及战略的重大难题。
各种矛盾的凸显已经引起了各界的广泛关注。
据统计,目前我国的新能源汽车数量已经跃居世界第一,汽车行业依托着庞大的消费群体和能源消费市场,在消纳新能源方面具有不可限量的潜力。
1新能源消纳的现状分析当前,我国新能源发展速度极快,累计装机容量排世界第一。
新能源渗透率远超于同期部分发达国家。
我国新能源發展成效有目共睹,消纳总量增大,但是,风能、光能等具有一定的随机性与波动性,能源整体消纳率处于有待提升的阶段,弃光、弃风等问题愈加显著,备受国家及社会各领域的关注。
所以为了切实提升新能源开发利用的经济效益与服务效益,要做好新能源消纳工作,缓解地区能源消纳矛盾。
2新能源消纳的机理分析电力系统的规模发展到一定程度后,系统的自身调节能力关键取决于电源结构,新能源相比与传统能源而言,不仅体现在对生态环境的友好性,还体现出了巨大的价格优势。
例如,新能源汽车和燃油汽车相比,出行成本可以降低20%以上。
但是,目前这一过程仅仅是电网向车载电池输出能量,能量的传输只是单向传输,并不能有效解决电网侧新能源的消纳问题。
相比常规的蓄水消纳控制或飞轮储能技术,电动汽车的电池储能具有更强的可操作性,对新能源调节幅度更广,而且更加灵活。
新能源消纳情况报告

新能源消纳情况报告根据最新的数据分析和研究结果,以下是关于新能源消纳情况的报告:近年来,随着全球对可持续发展和环境保护的日益关注,新能源的消纳问题成为全球能源领域面临的重要挑战之一。
新能源消纳是指将由可再生能源(如风能、太阳能、水能等)和其他清洁能源(如核能)所产生的电力有效地融入电网,以满足日益增长的电力需求。
在世界范围内,许多国家都积极推动新能源的发展和应用,以减少对传统化石能源的依赖,提高能源供应的安全性,并减少对环境的不良影响。
然而,新能源消纳面临着诸多挑战和限制。
首先,新能源发电的不稳定性是新能源消纳的主要限制因素之一。
由于天气条件、季节变化以及能源资源的地域分布等原因,新能源发电的产量波动较大,无法像传统发电厂那样实现恒定的供电能力。
这就要求在消纳新能源时,电力系统需要具备强大的灵活性和调整能力,以平衡供求关系。
其次,电网的建设和升级也是新能源消纳的难点之一。
由于新能源发电通常发生在偏远地区或离主要用电区较远的地方,需要大规模的电网输电线路来将电能输送至用电者。
然而,在许多国家,电网基础设施的建设滞后,输电线路容量不足,面临着电力输送损耗大、输电效率低和输电风险增加的问题。
此外,市场机制和政府政策也对新能源消纳产生重要影响。
要实现新能源消纳,需要建立合理、灵活的市场机制,以便新能源发电能够与传统发电方式公平竞争。
同时,政府需要出台支持政策,包括对新能源发电的补贴和优惠政策,以鼓励投资者和能源公司加大新能源项目的建设和运营。
针对新能源消纳问题,各国已经采取了一系列的措施。
例如,通过技术创新和研发投入,不断提高新能源发电设备的效率和可靠性;加强电力系统规划,提早准确预测新能源发电的波动性,以便合理安排电力调度和储能设施的运行;加快电网升级和扩建,增加输电线路容量和负荷能力;制定和完善相关的市场机制和政策,为新能源消纳提供更好的市场环境和政策支持。
综上所述,新能源消纳是当今能源领域面临的重要挑战之一。
新能源消纳能力计算与调控系统的设计

新能源消纳能力计算与调控系统的设计随着全球能源环境的变化与发展,新能源的发展和利用受到了越来越多的关注。
新能源的引入可以带来清洁、可再生的能源供应,降低对传统化石能源的依赖,对环境保护和可持续发展具有重要意义。
新能源并网后的消纳和调控面临着诸多挑战,为了更好地解决这些问题,需要设计一套能够准确计算新能源消纳能力并进行调控的系统。
一、新能源消纳能力的问题新能源对电网系统会产生影响,有可能会引起电压、频率稳定性方面的问题,因此需要进行消纳能力的计算。
消纳能力是指在不影响系统的安全运行的前提下,新能源在电网系统中的最大可接入容量。
这个容量的大小决定了新能源的发展潜力和在电网系统中的占比。
准确计算新能源的消纳能力是非常重要的。
新能源消纳能力的计算需要考虑多方面的因素,包括主变压器的容量、线路的输电能力、负荷的消纳能力、新能源发电机的特性等。
可以利用数值计算的方法,构建模拟仿真模型,通过模拟仿真可以更加准确地计算新能源的消纳能力。
在计算新能源消纳能力时,需要考虑多种情景下的条件,例如清晨和傍晚的负荷峰值、变压器和线路的负荷率、新能源的发电量等。
通过对这些因素进行分析和计算,可以得到新能源消纳能力的准确数值。
为了更好地管理和调控新能源消纳能力,需要设计一套可靠高效的调控系统。
这个系统需要包括以下几个方面的内容:1. 数据采集与分析系统:通过数据采集设备对电网系统中的各项参数进行实时监测和数据采集,并通过分析处理得到系统当前的能源消纳能力,为后续的调控提供准确的数据支持。
2. 控制策略设计:针对不同的情况和需求,设计相应的控制策略,包括新能源的限功率调控、有功和无功的调节、电网频率和电压的调控等。
3. 调控设备的选择与配置:根据系统的实际情况,合理选择调控设备,并进行相应的配置,确保能够快速、稳定地进行新能源消纳能力的调控。
4. 系统运行及监控:对新能源消纳能力调控系统进行实时运行监控,及时发现并解决系统运行中的问题,并进行系统性能的优化。
新能源发电项目消纳能力研究综述

21 电网结构 电网结构主要从几个方面影响着地区电网的消纳
能力,分别为变电站和线路容量约束、电力线路廊道约 束和间隔约束等。
(1)变电站和线路容量约束 从电网结构约束来看,新能源的接入应满足线路 和主变“N-1”的校验,以保证电网调度的灵活性。因 此新能源最大的 消 纳 容 量 受 最 小 网 供 负 荷 和 满 足 “N -1”件下主变和线路的容量影响,具体情况如下: Smax=PK +PE 式中,Smax为新能源最大消纳容量;PK 为最小网供 负荷;PE 为满足“N-1”条件下主变和线路的容量。 对于有外送通道的电网来说,外送通道的建设可
Abstract:Suchasnewenergypowergeneration,windpowerandphotovoltaicpowergenerationhasdevelopedthefas
test,mostmature,commercial,thebestprospectsforcleanenergydevelopmentmethodsComparedwithconventional powersupply,suchashydropower,thermalpower,etc,themostfundamentaldifferencebetweenthenewenergygenera tion,suchaswindenergyandsolarenergy,liesintherandomness,intermittenceandvolatilityoftheactivepowerout putThisfeaturehascausedfacinglargescaledevelopmentofnewenergyaccess,scheduling,impactonthepowergrid operationandconsumptivedifficultandaseriesofcomplextechnicalandeconomicproblemsInviewoftheabovesitua tion,thispaperanalyzestheinfluencefactorsofthenewenergytothegrid,whichhasimportantguidingsignificancefor thelocalpowergridplanning,newenergyconsumptiveabilityanalysis.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菲律宾国家输电网新能源消纳能力分析摘要:近年来,随着新能源发电得到世界各国的广泛关注和迅猛发展,新能源大规模接入对电力系统运行控制产生的影响日益显著。
为保障新能源并网后电网的安全稳定运行,有必要对电网新能源消纳能力进行研究。
本文以菲律宾国家输电网为例,采用基于无功电压稳定裕度约束的新能源穿透率分析模型,以及新能源布局分析模型,对菲律宾电网接纳新能源能力进行深入研究,通过分析以风电和光伏为代表的新能源接入对系统的影响及其穿透率,为制定区域新能源与其它电源及电网的协调发展规划提供参考依据。
关键词:静态电压稳定裕度、布局分析、新能源穿透率、暂态校验一、概述目前,风电和太阳能作为商业化程度很高的新能源在很多国家发展极为迅猛,在新能源装机持续增长的同时,部分国家和地区的弃风弃光现象也愈加严重,因此准确评估地区风电穿透功率极限,由此制定合理的风电发展规划和外送通道建设规划对保持新能源持续健康发展具有重要意义。
在新能源发展政策推动下,近年来菲律宾新能源发展迅速。
截至2019年底,菲律宾风电装机总容量达到49.4万千瓦,太阳能装机132.8万千瓦。
然而,风能和太阳能固有的随机性、易变性和波动性使得大规模接入对电力系统的运行和控制产生显著的影响。
而且新能源发电的并网减小了系统惯量,会导致在系统发生故障后如传统机组掉闸等,系统频率下降增大,系统稳定性易受到破坏。
为避免系统大面积停电等恶性事故的发生,有必要研究并网新能源发电在系统事故情况下对电网的影响,在最恶劣条件下确定电网安全稳定运行的裕度,确定新能源发电的最大穿透率,为新能源发电的发展以及开发布局提供依据。
本文根据菲律宾电网已建及规划新能源电站概况、电源和电网现状及发展规划数据,开展分析。
通过建立的基于电压稳定裕度分析的网架约束模型,对比分析给出菲律宾电网新能源功率穿透极限以及布局建议。
主要内容包括:(1)从稳态以及暂态等方面分析影响菲律宾新能源穿透率的影响因素,建立基于电压稳定裕度分析的新能源穿透率分析模型;(2)分析菲律宾电网新能源接入后的系统无功电压特性,对菲律宾电网中大规模新能源接入后的系统潮流进行计算,分析新能源并网运行对节点电压水平的影响,通过电压稳定裕度实现对新能源穿透极限的确定以及规划新能源各地区接入容量的分配。
二、基于静态电压稳定裕度的穿透率分析新能源穿透率受到电网安全稳定约束的限制,包括电压稳定约束与断面传输约束。
本文采用的电压稳定约束方法不同于传统定义里因电压稳定或电压安全所限制的风电出力,而是系统中某个节点或区域受其自身网架约束的最大风电接纳能力,包括电压稳定、电压安全的约束、风电场送出线路的容量约束、变压器容量约束等,其特点在于直接确定该区域风电的极限并网容量(或允许最大出力)。
1.无功电压稳定裕度在现代大型电力系统中电压崩溃问题已成为威胁电力系统安全运行的重要问题之一。
为了防止电压崩溃事故,运行人员最关心的问题是当前电力系统运行点离电压崩溃点还有多远。
要回答这个问题,就应该给运行人员提供一些确定电压稳定程度的指标。
常用的电压稳定指标可分为状态指标和裕度指标,两类指标都能够给出系统当前运行点离电压崩溃点距离的某种量度。
状态指标只取用当前运行状态的信息,计算比较简单,但存在非线性;裕度指标的计算涉及到过渡过程的模拟和临界点的求取问题,蕴含的信息量较大。
相对于状态指标而言,裕度指标具有以下优点:1.能够给运行人员提供一个较直观的表示系统当前运行点到电压崩溃点距离的量度;2.系统运行点到电压崩溃点的距离与裕度指标的大小呈线性关系;3.可以比较方便地计及过渡过程中各种因素如约束条件、发电机有功分配、负荷增长方式等的影响。
因此,电压稳定裕度指标分析方法受到了广泛的重视。
随着新能源的发展,可以通过对电压稳定裕度分析确定新能源并网对系统电压稳定的影响程度。
2.方法介绍本文采用基于静态电压稳定储备系数的区域电网风电布局分析方法,通过分析电网中随着风电出力变化各风电场接入系统母线电压变化情况,利用P-V曲线得到该母线的临界电压,再根据系统的静态电压稳定储备系数折算出该母线能够达到的电压最低值即母线的正常电压,最后得到对应正常电压时接入该母线的风电容量。
静态电压稳定性计算一般采用实用算法,计算的结果通常表现为P-V曲线的形式。
P-V曲线是静态电压稳定分析的工具之一,它通过建立母线电压和一个地区负荷或输电断面潮流之间的关系曲线,从而给出地区负荷或断面功率水平导致系统接近静态电压崩溃的程度。
在常规电力系统应用P-V曲线分析电压稳定性问题时,P通常表示某区域的总负荷,也可代表系统传输断面或者是区域联络线上的传输功率,V则代表关键母线的电压,也可同时画出多个母线的电压曲线。
当把P-V曲线方法应用于风电场接入电网的静态电压稳定性分析时,由于需要考虑的是风电注入电网对电压稳定性的影响,P则代表了整个风电场发出的有功功率,V既可以是机端电压也可以是并网点的电压。
对于应用P-V曲线对风电场接入电网的静态电压稳定性的分析,实际上是研究风速变化导致的风电场出力变化对电网电压的影响,采用简化的办法将小扰动电压稳定计算处理成为连续时间断面上每一个离散点的静态潮流计算,用于研究风电的注入功率引起的电压稳定性的变化及运行点距离电压崩溃点的距离,反映风电所接入的电网的电压稳定裕度。
该方法计算流程图如下所示。
图1:系统电压稳定条件下新能源消纳能力计算方法三、菲律宾电网新能源穿透率确定1.菲律宾电网介绍菲律宾电网属于垄断经营、受严格监管企业,私有化前由国家输电公司(TransCo)负责运营。
2009 年1月,菲律宾国家电网公司(NGCP)获得菲律宾国家输电网25 年特许经营权。
按照特许经营权法案,菲政府拥有输电资产所有权,NGCP 负责管理并运营菲律宾全国的输电资产,负责全国高压输电设施(包括联网)的规划、建设、调度、运行和维护。
菲律宾输电网由吕宋、维萨亚、棉兰老三大区域电网组成,其中,吕宋电网与维萨亚电网间通过±350千伏莱特—吕宋直流输电工程互联,棉兰老电网目前暂为孤网运行。
受地理条件限制,除首都马尼拉地区电网有环网外,大部分地区电网结构呈放射状,部分主要岛屿之间由交、直流海缆相联。
菲律宾输电网电压等级主要有:500千伏、230千伏、138/115千伏、69千伏;直流±350千伏。
截至2018年,NGCP拥有输电线路约21390公里。
2.新能源穿透率确定下面以吕宋电网为例对菲律宾电网新能源消纳能力进行分析,并确定新能源穿透率。
根据菲律宾可再生能源计划,风电和光伏发电将被连接到吕宋电网的四个地区,1区西北部(Laoag变电站),2区东北部(Magapit、Sta Ana、Lucban变电站),3区中部(Labrador、Subic变电站),4区南部(Kalayaan EHV、Malaya、Gumaca、Labo、Makban变电站)。
通过对菲律宾电网中大规模新能源接入后的系统潮流进行计算,分析新能源并网运行对节点电压水平和系统无功的影响,通过电压稳定裕度确定新能源穿透极限,并据此规划新能源各地区接入容量的分配。
(1)区域1风电穿透率分析假设其他地区的风电和太阳能发电的容量为零,即不考虑风电和太阳能发电在其他地区输出变化的影响。
连接到Laoag变电站的风电场的PV和VQ曲线如图1所示。
随着风电场有功功率的增加,Laoag变电站的电压将先增加后减小。
这表明当风电出力较低时,可以满足局部负荷需求的一部分,提高当地的电压水平。
随着风电出力的不断增加,风电满足本地全部负荷需求,额外的输出功率将导致局部电压下降。
根据图1(上)所示的正常运行方式下PV曲线,当风电功率达到106MW时,Laoag变电站将会发生电压崩溃。
相应的VQ曲线是图1(下)中所示的红色曲线。
右侧红色VQ曲线过零点表明,可以从电网向Laoag变电站注入少量的无功功率,这也表明当风力发电达到106MW时,将会导致局部电压不稳定。
根据静态稳定要求,电力系统应具有额定电压10%-15%的电压静态稳定裕度,本文取10%。
如图2所示,非高峰负荷情景下Laoag变电站的崩溃电压为0.93pu。
因此,Laoag变电站的电压下限应为1.02pu,相应的风电出力为92MW,这意味着1区风电场的总有功功率输出应控制在0-92MW的非高峰负荷范围。
PV Curve rerereveCureve图2:laoag变电站风电场PV/VQ曲线为确保接入风电的电力系统安全稳定,需要监测主输电线路输送风电的有功潮流和负荷。
如图4所示,风电出力增加到18MW左右时,输电线路有功潮流方向将逆转,风电出力从0增加到90MW时,负荷总是在50%以下。
图4:1区负荷传输曲线(2)区域2风电穿透率分析假设其他三个地区的风能和太阳能发电能力为零,即不考虑其他地区的风能和太阳能发电量变化的影响。
接入Magapit变电站的风电场的PV和VQ曲线如图5所示。
当风电场处于低功率输出运行,输出功率小于本地负荷需求时,局部电压会上升,因为部分负荷可以通过风电满足,导致无功功率损失较小。
随着风电出力的不断增加,风电出力将充分满足负荷需求,额外输出功率将导致无功损耗的增加和局地电压的降低。
根据图5(上)所示的PV曲线,当风电出力达到83MW时,Magapit变电站的电压将会崩溃,相应的VQ曲线如图5(下)红色曲线所示。
红色VQ曲线的最低点意味着无需从电力系统向Magapit变电站注入更多的无功功率。
这种情况下Magapit变电站的崩溃电压为0.99pu。
因此,考虑到10%的电压静态稳定裕度,Magapit变电站的电压下限应该是1.1pu,在非高峰负荷情况下,相应的风电出力上限为80MW。
PV Curve rerereveCureve图5: Magapit变电站风电场PV/VQ曲线如图6所示,输电线路的有功潮流方向将在风电输出增加到20MW左右时反转。
风电出力可控制在0〜79MW范围内,不会造成输电线路超载。
图6:2区负荷传输曲线(3)区域3新能源穿透率分析假设其他三个地区的风能和太阳能发电能力为零,即不考虑其他地区的风能和太阳能发电量变化的影响。
连接到Labrador变电站的风电场和连接到Subic 变电站的太阳能电站的PV和VQ曲线如图7所示。
Labrador和Subic变电站的电压将随着风电场有功功率的增加而下降。
当风能和太阳能总发电量达到1239MW 时,Labrador和Subic变电站的电压将会崩溃,相应的VQ曲线如图7(下)所示的红色曲线。
红色VQ曲线中的最低点表示不再有无功功率可以从电力系统注入Labrador和Subic变电站。
如图7(下)所示,Labrador变电站在非高峰负荷情景下的崩溃电压为0.93pu。