数学应用题解题方法
六年级数学复习中的应用题解题方法与技巧

六年级数学复习中的应用题解题方法与技巧数学是一门注重应用的学科,而在数学学习的过程中,应用题是不可或缺的一部分。
它们涉及实际问题,要求学生将所学的数学知识应用于实际生活中。
因此,解决应用题需要一些特定的方法和技巧。
本文将介绍一些六年级数学复习中常用的应用题解题方法与技巧,以帮助学生提高解题能力。
一、阅读理解阅读理解是解决应用题的第一步。
在阅读题目时,学生应仔细阅读每一个问题,并明确问题所涉及的信息。
同时,学生还需要注意题目中所给信息的单位和范围,以确保正确理解题意。
在阅读理解过程中,学生可以划线或做简短的记号,以帮助他们理清问题的重点和要求。
此外,阅读理解还需要学生能够理解并提取出与问题相关的信息,将其与所学的数学知识联系起来。
二、建立数学模型建立数学模型是应用题解题的关键步骤。
通过将实际问题转化为数学形式,学生可以更好地理解问题,并运用所学的数学知识进行解答。
在建立数学模型时,学生可以将问题中的关键信息用字母或符号代替,以便于进行数学运算。
此外,学生还需要确定问题所涉及的数学概念和关系,并选择适当的数学方法进行求解。
三、选择适当的解题方法在解决应用题时,有多种数学方法可供选择。
学生需要根据题目的要求和所学的数学知识选择适当的解题方法。
以下是几种常用的解题方法:1. 逆推法:逆推法是一种从目标出发思考的解题思路。
学生可以先确定问题中的目标或答案,然后逆向思考如何得出这个目标或答案。
逆推法常用于时间、距离等方面的问题。
2. 分析法:分析法是通过对问题进行分类和分析,找出问题中的规律和关系,并运用数学知识进行解答。
学生可以将复杂的问题分解为几个简单的子问题,逐步解决。
3. 图表法:图表法是通过绘制图表或图形来解决问题。
学生可以用图形来表示问题中的信息和关系,以帮助他们更好地理解和分析问题。
图表法常用于统计和数据分析方面的问题。
四、合理估算和检验答案在解决应用题时,学生可以使用估算的方法来验证答案的合理性。
小学一年级数学应用题解题方法

小学一年级数学应用题解题方法数学是一门对于小学生来说非常重要的学科,它培养了孩子们的逻辑思维能力和解决问题的能力。
在小学一年级的数学学习中,应用题是一种非常重要的题型,它既考察孩子们对数学知识点的掌握,又锻炼他们的实际问题解决能力。
对于小学一年级学生来说,掌握一些解题方法是非常有必要的。
一、理解题意在解决应用题时,首先要做的就是要仔细阅读题目,理解题意。
理解题意是解题的第一步,只有真正理解了题目要求,才能找到合适的解题方法。
二、提取关键信息在理解题意的基础上,需要进一步提取关键信息。
关键信息是指问题中影响解题方向和答案的信息。
通过提取关键信息,可以帮助我们更好地思考和解决问题。
三、画图解决问题在解决应用题时,画图是非常有帮助的解题方法。
通过画图,可以将抽象的问题转化为具体的图形,更直观地理解问题,并找出解决问题的方法。
四、逐步推理一般来说,应用题的解决过程需要经过一系列的推理和分析。
在解题过程中,可以将问题分解为几个较为简单的小问题,逐步推理,并最终得出整个问题的解答。
五、运用逻辑思维解决应用题时,常需要运用一些逻辑思维。
例如,通过分析信息之间的关系、比较大小、归纳特点等方式,可以更好地把握问题的本质和解答的方向。
六、反复练习在掌握了一些解题方法后,需要通过大量的练习来提高自己的解题能力。
通过反复练习,可以熟悉不同类型的应用题,增强对问题的理解和解决问题的能力。
七、与他人讨论在解决应用题时,可以与同学或老师进行讨论。
通过交流和互相比较答案,可以发现问题中的不足和不同的解题思路,进一步提高自己的解题能力。
总结起来,小学一年级数学应用题解题方法主要包括理解题意、提取关键信息、画图解决问题、逐步推理、运用逻辑思维、反复练习和与他人讨论等。
通过掌握这些方法并经过实践,小学一年级的学生可以更好地应对数学应用题,并提高自己的解题能力。
希望孩子们在学习数学的过程中,能够善于思考、勇于探索,不断提高自己的数学解题能力。
初中数学应用题的解题思路与方法

初中数学应用题的解题思路与方法解题思路和方法在解决数学应用题中起着至关重要的作用。
通过正确的思路和方法,我们可以更好地应对各种应用问题,并得到准确的解答。
本文将分享一些初中数学应用题解题的思路与方法,希望对同学们在解决数学应用题时有所帮助。
一、理清思路在解决数学应用题之前,首先需要理清思路。
我们可以通过以下步骤来帮助我们理清思路:1. 仔细阅读题目:首先,我们要认真仔细地阅读题目,理解问题的要求和条件。
2. 提取关键信息:在阅读题目时,要学会提取关键信息,包括已知条件、待求的量以及题目给出的问题。
3. 分析问题类型:根据题目的要求和条件,分析问题的类型,明确需要运用哪些数学知识和方法。
4. 设定解题思路:根据题目要求和问题特点,设定解题思路,合理安排思考的步骤。
5. 检查解答:在解题过程中,需要不断进行反思和检查,确保解答的正确性和合理性。
二、常见解题方法在初中数学应用题中,常见的解题方法包括等式法、比例法、图形法、方程法等。
我们可以根据题目的具体要求灵活运用这些方法。
1. 等式法:等式法主要用于解决已知关系式的问题。
通过列出等式、建立方程,并运用解方程的方法求解未知数。
2. 比例法:比例法常用于解决两个或多个量之间的比例关系。
通过列出比例式,并根据已知条件求解未知量。
3. 图形法:图形法常用于解决与图形形状相关的问题。
通过绘制图形、标注已知条件和待求量,并运用几何性质解决问题。
4. 方程法:方程法主要用于解决数学模型的问题。
通过建立数学模型、列出方程,并通过解方程求解问题。
三、解题技巧在解决数学应用题时,还可以运用一些解题技巧,帮助我们更快、更准确地解答问题。
以下是一些常用的解题技巧:1. 求平均值:当题目给出多个数值,要求求其平均值时,可以将这些数值相加后除以数量,得到平均值。
2. 利用单位转换:题目中可能涉及到不同单位之间的转换,需要注意转换单位时的换算关系,确保计算的准确性。
3. 强化图形分析:对于与图形相关的题目,可以通过绘图、标注等方式更好地理解问题和条件,从而找到解题的突破口。
小学数学应用题解题思路及方法精华版

小学数学应用题解题思路及方法精华版小学数学是数学学习的基础,应用题占据着小学数学的一大部分,而解题思路和方法则是应用题解答的关键。
本文将为大家总结一些小学应用题解题思路和方法的精华版,希望能够帮助大家更好地完成小学数学应用题。
1. 阅读题目首先,我们要认真阅读题目,弄清楚题目的意思。
如果题目的描述较长,我们可以先将问题简化,提炼出题目的核心内容,从而更好地理解问题。
同时,还要注意观察题目中的数据和图表,确定它们与问题的关联。
2. 确定问题类型在理解了题目的意思之后,我们要根据问题的类型选取合适的解题方法。
小学应用题的类型较为丰富,常见的有比例、面积、体积、图形与分数等。
我们要根据问题所涉及的概念和知识点,确定问题的类型,并选择相应的解题方法。
3. 建立数学模型解决应用题,最主要的就是建立数学模型。
将问题转化为数学问题,建立相应的方程或者不等式,从而得到所需的答案。
建立数学模型的方法包括比例、方程、代数式、几何图形等等。
4. 验证答案的合理性我们在解题的过程中,往往得到一些结果,需要通过一些方法来确定这些结果是否合理。
比如,我们要检验得到的答案是否与题目中所给的条件相符合,或者是否能够通过近似计算来确定答案是否正确等等。
5. 深入思考同时,我们也要多进行深入思考。
不要局限于应用题,去了解应用题背后的数学思想,从而开拓自己的数学思维,在日常生活中更好地应用数学知识。
以上就是小学数学应用题解题思路和方法的精华版。
相信通过这些方法的运用,大家可以迅速解决应用题,提高数学解题的效率。
同时也能够更好地掌握数学知识,更好地应用数学知识解决实际问题。
初中数学应用题解题方法总结

初中数学应用题解题方法总结数学是一门需要运用理论知识解决实际问题的学科,而应用题是数学的实践性体现。
初中阶段是学生接触应用题的重要阶段,因此了解和掌握初中数学应用题的解题方法非常重要。
在这篇文章中,我们将总结一些常见的初中数学应用题解题方法。
一、图像法图像法是初中数学应用题中常用的解题方法之一。
当问题中涉及到几何形状、位置关系或者图表数据时,可以通过绘制图像来帮助解题。
例如,在解决面积、体积问题时,我们可以先绘制出相应的图形,利用几何图形的性质来计算面积或体积。
此外,在解决速度、距离、时间等问题时,我们也可以通过绘制速度-时间图来帮助理解和解决问题。
二、代数方法代数方法也是初中数学应用题中常用的解题方法之一。
当问题中涉及到等式、方程或者变量时,可以通过代数方法来解决。
例如,在解决关于年龄、比例、速度等问题时,可以通过设定变量,建立代数方程式来解决问题。
代数方法的优势在于可以建立模型,通过符号运算来解决问题,使问题更加抽象化,更容易推广到其他类似问题。
三、逻辑推理逻辑推理是初中数学应用题中常用的解题方法之一。
当问题中涉及到条件、假设或者逻辑关系时,可以通过逻辑推理来解决。
例如,在解决选课、选班干部等问题时,我们可以根据条件和假设来推导出最终的答案。
逻辑推理的优势在于可以通过推理和分析找到解题的规律和方法,提高解题的准确性。
四、数学建模数学建模是初中数学应用题中较高级的解题方法之一。
当问题中涉及到复杂的实际情境,无法直接用一、二、三种方法解决时,可以通过数学建模来解决。
数学建模的过程包括问题分析、建立模型、求解模型和验证模型四个步骤,通过分析实际问题的数学特点,转化为数学模型并进行求解,最后将求解结果反馈到实际问题中。
数学建模的优势在于能够将实际问题更具体地量化为数学问题,并通过数学模型来解决。
五、思维方法除了以上几种解题方法外,还可以运用一些思维方法来解决初中数学应用题。
例如,归纳法、反证法、策略方法等。
初中数学应用题解题方法与技巧

初中数学应用题解题方法与技巧一个应用题往往会包含多个应用信息,在审题过程中,保持慎重、肃穆的看法,是解决应用的第一步。
下面是我为大家整理的关于初中数学应用题解题方法与技巧,盼望对您有所协助。
欢送大家阅读参考学习!1初中数学应用题解题方法与技巧理清思路,从问题的思索角度造就学生的解题技巧高效课堂教学除了概念的讲解之外,主要集中在解题实力的造就上。
学生不仅要理解例题,而且要做大量的练习题。
在解题训练中,老师首先要引导学生分析题意,明确思路,再动笔解题。
造就学生解题思路时,老师可以要求学生严格遵守必须的解题程序去思索,以形成良好的解题习惯。
进展解题思索时,学生首先要细致地读题,弄清晰题目考察什么,明确各个数据之间的关系,然后解题。
有必要时可以把相关的数据关系先列出来,以提高解题的效率,也提高解题的精确度。
例如,学习求“几分之几”的方法时,老师先不必急着答题,而是引导学生进展思索,谁是谁的几分之几。
经过思索,学生知道了用乘法计算,解题就简单了。
从读题、思索、发觉规律到最终解题,学生的思路都非带清楚,形成了良好的解题思索习惯,学习过程就易提高效率和质量。
标准解题过程,造就学生良好的解题技巧老师要依据教学目标引导学生学习例题,并创设相应的训练来提高学生的解题实力。
大量的训练往往会导致学生忽视解题的过程而干脆得出答案。
这个习惯会影响解题的正确性,也不符合数学解题标准要求。
老师在教学中要强调遵照标准解题的重要性,无论是侧题的讲解,还是训练过程,都要求学生严格遵照步骤去做,以形成良好的解题习惯。
这不仅有助于学生清楚地读题,列式,而且削减误算和漏算,提高解题质量。
另外,通过老师的示范和训练过程中的严格要求,学生渐渐形成标准的解题习惯,也能提高课堂的有序性和有效性。
例如,讲解“修400米的路,第一天修了全程的1/5,其次天修了1/8,两天共修多少米?”这一例题时,学生通过探讨得出可以有两种解题方法:400×1/8+400×1/5;400×(1/5+1/8)。
小学数学应用题解题技巧100例附答案(完整版)

小学数学应用题解题技巧100例附答案(完整版)题目1小明有10 个苹果,小红的苹果数是小明的2 倍,小红有多少个苹果?解题技巧:求一个数的几倍是多少,用乘法计算。
答案:10×2 = 20(个)题目2商店里有30 个篮球,足球比篮球少5 个,足球有多少个?解题技巧:已知一个数,求比这个数少几的数,用减法计算。
答案:30 - 5 = 25(个)题目3一本书有120 页,小明第一天看了全书的1/4,第一天看了多少页?解题技巧:求一个数的几分之几是多少,用乘法计算。
答案:120×1/4 = 30(页)题目4甲车每小时行60 千米,乙车速度是甲车的1.2 倍,乙车每小时行多少千米?解题技巧:求比一个数多(或少)几分之几(或几倍)的数是多少,先求出多(或少)的部分,再用这个数加上(或减去)多(或少)的部分。
答案:60×1.2 = 72(千米)题目5果园里有苹果树80 棵,梨树的棵数是苹果树的3/4,梨树有多少棵?解题技巧:同题目3答案:80×3/4 = 60(棵)题目6一件衣服原价200 元,现在打八折出售,现在的价格是多少元?解题技巧:打几折就是按原价的百分之几十出售,用原价乘以折扣。
答案:200×80% = 160(元)题目7小明从家到学校,每分钟走60 米,15 分钟可以到达,如果每分钟走75 米,几分钟可以到达?解题技巧:先根据路程= 速度×时间,求出路程,再用路程除以新的速度得到新的时间。
答案:60×15÷75 = 12(分钟)题目8一个长方形的长是8 厘米,宽是长的1/2,这个长方形的面积是多少?解题技巧:先求出宽,再用长乘以宽求出面积。
答案:宽= 8×1/2 = 4(厘米),面积= 8×4 = 32(平方厘米)题目9工人师傅要加工180 个零件,已经加工了2/3,还剩下多少个零件没加工?解题技巧:先求出已经加工的零件数,用总数减去已经加工的就是剩下的。
初中数学应用题的解题思路以及方法

初中数学应用题的解题思路以及方法
初中数学应用题是一种将数学概念和技能应用到实际生活问题
中的数学题目。
这些问题可以涉及面积、周长、体积、比例、百分比、利率、速度、时间等方面,可以是商业、科学、日常生活中的问题。
解决这些问题需要有一定的数学技能和解题思路。
以下是一些初中数学应用题的解题思路和方法:
1. 阅读理解:首先阅读题目,理解问题所涉及的内容和条件。
如果问题中涉及到比例或百分比,需要将其转化为小数。
然后,确定需要求解的未知量,列出方程式。
最后,通过解方程式得到答案。
2. 图形分析:对于面积、周长、体积等问题,需要分析图形,确定所需解决的问题。
然后,根据图形的性质和公式,列出方程式,解方程式得到答案。
3. 实际应用:对于商业、科学、日常生活中的问题,需要分析问题中的条件和数据。
然后,将其转化为数学形式,列出方程式,解方程式得到答案。
在解题过程中,需要注意单位的转换和小数的精度。
4. 推理判断:对于一些推理判断问题,需要根据给定的条件进行推理。
解决这些问题需要有一定的逻辑思维和数学知识。
在解题过程中,
需要注意理解题目中的条件和要求,能够运用推理和比较的方法进行分析判断。
综上所述,初中数学应用题的解题思路和方法包括阅读理解、图形分析、实际应用和推理判断。
在解题过程中,需要将问题转化为数学形式,并列出方程式,解方程式得到答案。
同时,需要注意单位的转换和小数的精度,将问题和答案与现实情况进行比较和验证。
通过不断的练习和思考,可以提高解决数学应用题的能力和水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学应用题解题方法 数学应用题解题方法 应用题是指将所学知识应用到实际生活实践的题目。这是我为大家带来的数学应用题解题方法,希望对大家有所帮助。 数学应用题解题方法 1 归一问题 【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数 【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。 例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱? 解(1)买1支铅笔多少钱? 0.6÷5=0.12(元) (2)买16支铅笔需要多少钱?0.12×16=1.92(元) 列成综合算式 0.6÷5×16=0.12×16=1.92(元) 答:需要1.92元。 例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷? 解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷) (2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷) 列成综合算式 90÷3÷3×5×6=10×30=300(公顷) 答:5台拖拉机6 天耕地300公顷。 例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 解 (1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨) (2)7辆汽车1次能运多少吨钢材? 5×7=35(吨) (3)105吨钢材7辆汽车需要运几次? 105÷35=3(次) 列成综合算式 105÷(100÷5÷4×7)=3(次) 答:需要运3次。 小学数学几十种典型应用题,解题思路、数量关系与例题剖析 - 社会风向标、博文精品 - 社会风向标、心灵驿站 2 归总问题 【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。 【数量关系】 1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量 【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。 例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套? 解 (1)这批布总共有多少米? 3.2×791=2531.2(米) (2)现在可以做多少套? 2531.2÷2.8=904(套) 列成综合算式 3.2×791÷2.8=904(套) 答:现在可以做904套。 例2 小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》? 解 (1)《红岩》这本书总共多少页? 24×12=288(页) (2)小明几天可以读完《红岩》? 288÷36=8(天) 列成综合算式 24×12÷36=8(天) 答:小明8天可以读完《红岩》。 例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天? 解 (1)这批蔬菜共有多少千克? 50×30=1500(千克) (2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天) 列成综合算式 50×30÷(50+10)=1500÷60=25(天) 答:这批蔬菜可以吃25天。 小学数学几十种典型应用题,解题思路、数量关系与例题剖析 - 社会风向标、博文精品 - 社会风向标、心灵驿站 3 和差问题 【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。 【数量关系】 大数=(和+差)÷ 2 小数=(和-差)÷ 2 【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。 例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人? 解 甲班人数=(98+6)÷2=52(人) 乙班人数=(98-6)÷2=46(人) 答:甲班有52人,乙班有46人。 例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。 解 长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米) 长方形的面积 =10×8=80(平方厘米) 答:长方形的面积为80平方厘米。 例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。 解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知 甲袋化肥重量=(22+2)÷2=12(千克) 丙袋化肥重量=(22-2)÷2=10(千克) 乙袋化肥重量=32-12=20(千克) 答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。 例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐? 解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此 甲车筐数=(97+14×2+3)÷2=64(筐) 乙车筐数=97-64=33(筐) 答:甲车原来装苹果64筐,乙车原来装苹果33筐。 小学数学几十种典型应用题,解题思路、数量关系与例题剖析 - 社会风向标、博文精品 - 社会风向标、心灵驿站 4 和倍问题 【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。 【数量关系】 总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数 较小的数 ×几倍 = 较大的数 【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。 例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵? 解 (1)杏树有多少棵? 248÷(3+1)=62(棵) (2)桃树有多少棵? 62×3=186(棵) 答:杏树有62棵,桃树有186棵。 例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨? 解 (1)西库存粮数=480÷(1.4+1)=200(吨) (2)东库存粮数=480-200=280(吨) 答:东库存粮280吨,西库存粮200吨。 例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍? 解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为 (52+32)÷(2+1)=28(辆) 所求天数为 (52-28)÷(28-24)=6(天) 答:6天以后乙站车辆数是甲站的2倍。 例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少? 解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。 因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍; 又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍; 这时(170+4-6)就相当于(1+2+3)倍。那么, 甲数=(170+4-6)÷(1+2+3)=28 乙数=28×2-4=52 丙数=28×3+6=90 答:甲数是28,乙数是52,丙数是90。 小学数学几十种典型应用题,解题思路、数量关系与例题剖析 - 社会风向标、博文精品 - 社会风向标、心灵驿站 5 差倍问题 【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。 【数量关系】 两个数的差÷(几倍-1)=较小的数 较小的数×几倍=较大的数 【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。 例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵? 解 (1)杏树有多少棵? 124÷(3-1)=62(棵) (2)桃树有多少棵? 62×3=186(棵) 答:果园里杏树是62棵,桃树是186棵。 例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁? 解 (1)儿子年龄=27÷(4-1)=9(岁) (2)爸爸年龄=9×4=36(岁) 答:父子二人今年的年龄分别是36岁和9岁。 例3 商场改革经营管理办法后,本月盈利比上月盈利的`2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元? 解 如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此 上月盈利=(30-12)÷(2-1)=18(万元) 本月盈利=18+30=48(万元) 答:上月盈利是18万元,本月盈利是48万元。 例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍? 解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此 剩下的小麦数量=(138-94)÷(3-1)=22(吨) 运出的小麦数量=94-22=72(吨) 运粮的天数=72÷9=8(天) 答:8天以后剩下的玉米是小麦的3倍。 小学数学几十种典型应用题,解题思路、数量关系与例题剖析 - 社会风向标、博文精品 - 社会风向标、心灵驿站 6 倍比问题 【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。 【数量关系】 总量÷一个数量=倍数 另一个数量×倍数=另一总量