电动汽车用电机控制策略分析
电动汽车档位控制策略设计与性能优化研究

电动汽车档位控制策略设计与性能优化研究摘要:随着对环境污染和能源消耗问题的关注日益增加,电动汽车作为一种清洁、可再生能源驱动的交通工具,受到了广泛关注,并呈现出快速的发展趋势。
在电动汽车的发展过程中,档位控制策略在性能优化中起到了至关重要的作用。
本文通过研究电动汽车档位控制策略的设计与性能优化,旨在为电动汽车的高效运行提供理论指导和实际应用价值。
第一部分:引言电动汽车作为一种新型的交通工具,不仅具有零排放的环保特点,还具备高能效、低运营成本的优势。
然而,电动汽车的驱动系统与传统的燃油汽车有着显著的差异,特别是在档位控制策略上。
因此,研究电动汽车档位控制策略的设计与性能优化至关重要。
第二部分:电动汽车档位控制策略设计2.1 传统档位控制策略传统的燃油汽车档位控制策略主要基于发动机的转速和车速,以实现驱动力和燃油经济性的平衡。
然而,电动汽车的驱动系统不仅由电动机组成,还包括电池组和控制器等多个部件。
因此,传统的档位控制策略无法直接应用于电动汽车。
2.2 电动汽车档位控制策略优化为了优化电动汽车的性能,研究者们提出了多种档位控制策略。
其中,基于电池能量管理的档位控制策略被广泛应用。
该策略通过监测电池的状态和车速等参数,根据实时的驱动力需求,实现档位的切换。
此外,还有基于能量利用率最大化和车辆动力性能最优化的档位控制策略。
第三部分:电动汽车档位控制策略的性能优化3.1 档位切换策略的优化档位的切换策略对电动汽车的性能影响较大。
通过优化档位切换策略,可以降低能量消耗和提高车辆的驱动力性能。
研究者们通过改进算法和模型,提出了多种优化的档位切换策略,如模糊控制、遗传算法和神经网络等。
3.2 效能优化策略的研究电动汽车的效能优化是提高整车动力性能的关键。
研究者们通过优化电池组、电机和控制器等关键部件的匹配和参数设置,提高了整车的效能。
此外,还有基于动力流和能量管理的效能优化策略,通过合理调控电能的流动路径和运行状态,实现了电动汽车的高效运行。
汽车电动助力转向系统的控制策略分析

汽车电动助力转向系统的控制策略分析陈军明(郑州宇通客车股份有限公司,郑州 450000)摘 要:汽车转向为汽车行业各项性能中的重要组成部分,电动助力转向技术属于其他类别的新兴技术,动力转向模式区别于传统电力的工作原理,其主要是通过电子控制系统的具体操作单元,电子控制系统传感器主要以采集信号控制功率的电机运行,从而辅助汽车在转向方面的功能实现。
总之,汽车电动助力转向系统是目前电子控制技术研究中的一项重要领域,应对其相关软件控制器进行合理设计,使系统基本助力特性得到有效调整,从而使驾驶要求得到有效提升。
关键词:汽车技术;电动助力转向;系统控制0 引言 交通工具的使用和发展人类社会在任何时代都具有技术提前性,汽车出现后,成为了陆地上的交通工具,有不可替代的作用在。
现代社会人们逐渐增强汽车的功能指标要求,同时在细节层面的优化发展的关键点之一。
操作汽车时,转向在驾驶的过程中是必不可少的步骤,除了司机需要按照操作标准进行设备调整,在汽车内部零件和设备系统的优化,科技水平也在不断上升,从传统转向系统液压制动转变为今天已经开始使用电动助力转向,这是一个技术的飞跃,同时,是汽车应用领域的一个巨大进步。
其改变了过去机械传动在实际运行中故障率高的问题,该技术的具体发展与汽车行业综合技术水平的提高密切相关。
1 汽车电动助力转向系统的概述 汽车电动助力转向系统的基本结构和位置各不相同,主要包括转向轴动力结构、齿轮动力结构和齿条动力结构。
虽然位置上有一定差异,但基本工作原理是相似的,其中最典型的是转向轴动力结构。
结构主要取决于输入轴和输出轴的力量,通过基本驱动机制来指导整个方向盘转向杆,也可以确保司机在现实操作过程中,通过输入角位移,速度传感器的对车速进行有效测试,确保传输操作信号及电子控制单元(ECU)的实现有效采集、从而确定电子控制单元(ECU)的功率大小和方向值,可以得出与之相对应的输出转矩功率,可以指导驱动电路的控制信号,以促进整体转向轴电压和电流对动力转向功能基本电机输出转矩的实现过程中的整体实时控制。
电动汽车用永磁电机及驱动控制探究

电动汽车用永磁电机及驱动控制探究摘要:汽车是人们出行和货物运输的重要交通工具。
近年来,受能源紧张和环境污染等问题的影响,电动汽车成为国内外汽车行业的研究重点。
在电动汽车所使用的各类电机中,永磁电机由于具有效率高、可靠性强、结构简单等特点,在电动汽车领域得到了广泛应用。
文章首先概述了电动汽车的发展现状,随后分析了电动汽车驱动电机的特点及类型,最后就永磁同步电机控制方法进行了论述。
关键词:电动汽车;永磁电机;驱动控制1电动汽车发展现状自上世纪末期能源危机爆发以来,世界各国都开始在各个行业寻找石油、煤炭等能源的替代资源。
在汽车领域内,日本是最早开始进行电动汽车研究的国家,也是目前电动汽车技术较为成熟的国家之一。
早在1997年,日本丰田汽车公司就推出了世界上第一款混合动力轿车,虽然该款轿车并不是真正意义上的电动汽车,但是在世界范围内拉开了电动汽车研究的帷幕。
随后,美国、挪威、中国等国家开始加入到电动汽车研究的队伍中,并在各个领域取得了成绩。
我国人口数量庞大,加上近年来国民经济水平不断增长,汽车保有量也逐年上涨。
为了降低传统能源汽车对环境造成的破坏,我国在2006年颁布了《国家中长期科学和技术发展规划纲要(2006-2022)》,其中明确将电动汽车研究列入高新技术研发行列。
截至目前,像比亚迪、奇瑞、长安等汽车公司,都在新能源汽车领域取得了较大的研究突破。
例如,2022年比亚迪推出的E6纯电动出租车,百公里耗电仅为20度,成本花费仅为传统燃油汽车的1/4。
2电动汽车驱动电机的特点及类型作为电动汽车的核心部件,电机驱动系統不仅要保证电动汽车像正常燃油车辆一样具备高速行驶能力,而且要满足频繁启动、制动和紧急刹车等驾驶要求。
具体来说,电动汽车的驱动系统应具备以下要求[1]:(1)提供足够的动力,在短时间内为电动汽车提供最大的动力输出,例如百公里加速和极限爬坡等。
考虑到系统运行的安全性,还要求电机具备过载能力,通常其过载限定值为正常状态下的5倍左右;(2)要具备较好的系统稳定性,尤其是在雨雪、高温、颠簸路面等恶劣环境下,要保证电动汽车具备良好的环境适应能力;(3)要提供给司乘人员良好的驾车体验,包括行车稳定性和舒适度等。
纯电动重卡整车控制策略开发浅析

纯电动重卡整车控制策略开发浅析摘要:步入“十四五”规划后,新能源汽车产业的发展由量变向质变转化,乘用车领域,新能源的渗透率突飞猛进,一度超过30%,一时间新能源成了炙手可热的话题。
相比于乘用车,重卡领域的使用场景的多样化导致电动化的技术路线也多样化。
主流的技术路线有换电重卡、纯电重卡、氢燃料电池重卡、氢燃料发动机重卡、混动重卡等。
众多的技术路线其控制策略也不尽相同。
本文主要从整车各系统结构入手,来对新能源重卡的控制策略进行概述,力求能起到抛砖引玉的作用,能够给读者以启发。
关键词:新能源重卡;整车控制器;控制策略;控制系统;引言步入“十四五”规划后,新能源汽车产业的发展由量变向质变转化,乘用车领域,新能源的渗透率突飞猛进,一度超过30%,一时间新能源成了炙手可热的话题。
受乘用车带动,重卡领域的电动化也在快速推进,各大重卡主机厂开始相继积极谋划布局。
着眼全局,基于国家能源安全及环保的大力推进,汽车的电动化承担着国家产业结构升级的大任,正以摧枯拉朽的不可逆之势迅速崛起,一个新的赛道已经出现。
相比于乘用车,重卡领域的使用场景的多样化导致电动化的技术路线也多样化。
主流的技术路线有换电重卡、纯电重卡、氢燃料电池重卡、氢燃料发动机重卡、混动重卡等。
众多的技术路线其控制策略也不尽相同。
本文主要从整车各系统结构入手,来对新能源重卡的控制策略进行概述,力求能起到抛砖引玉的作用,能够给读者以启发。
1新能源重卡系统概述1.1新能源重卡系统简述图1纯电动重卡简图如图1所示,动力电池作为车辆的动力源,为车辆提供行驶的能量或者在能量回收时储存能量。
多合一控制器控制转向油泵,打气泵、低压蓄电池DC供电、空调及PTC和氢堆DCDC的配电。
如果是氢燃料重卡,氢堆作为增程系统为车辆行驶提供额外的能量。
电机控制器驱动电机工作,整车控制器控制车辆上所有控制模块协同工作。
1.2新能源重卡高压系统介绍图2纯电动系统架构图如图2所示,新能源技术兴起于乘用车,重卡入局较晚,由于两者面对的客户群体和工况不一样,高低压架构也有所区别。
电动汽车驱动控制策略研究综述

电动汽车驱动控制策略研究综述伍岳;仇磊【摘要】驱动系统是电动汽车研制的关键技术之一,它直接决定电动汽车的性能.矢量控制通过坐标变换将定子电流矢量分解为转子磁场定向的两个直流分量并分别加以控制,从而实现异步电动机磁通和转矩的解耦控制,达到直流电动机的控制效果.直接转矩控制,并不需要观测转子磁链,它基于定子磁场控制磁场定向以转距作为被控量,思路清晰,手段直接.本文根据电动机矢量控制及直接转矩控制理论,结合电动汽车的实际要求,对其的现状及优缺点进行了分析及说明,介绍了改进的控制措施及发展趋势.【期刊名称】《汽车实用技术》【年(卷),期】2014(000)003【总页数】7页(P1-7)【关键词】电动汽车;矢量控制(DSC);直接转矩控制(DTC);PWM;模糊控制;零电压矢量控制【作者】伍岳;仇磊【作者单位】重庆交通大学,重庆400074;重庆交通大学,重庆400074【正文语种】中文【中图分类】U469.72CLC NO.:U469.72Document Code:AArticle ID:1671-7988(2014)03-01-07随着环境问题,能源问题的凸显,以传统能源为燃料的汽车,无论在能源的消耗上,还是排放的指标上已经收到挑战。
我国所面临的环境问题、能源问题同样相当的严重。
随着汽车保有量的提高,对石油的需求也逐步增加,导致我国的石油供应已供不应求。
另一方面,汽车持有量的增长对环境造成了一定的破坏,汽车排放的尾气中含有大量氮氧化物,硫化物,二氧化碳,会导致酸雨,臭氧层破坏,并加重温室效应。
与此同时,电动汽车及混合动力汽车的发展得到了强烈的关注,而电动汽车及混合动力汽车的组成包括:电力驱动及控制系统、驱动力传动等机械系统、完成既定任务的工作装置等。
电力驱动及控制系统由驱动电动机、电源和电动机的调速控制装置等组成。
电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。
这其中,驱动电机的控制算法研究又是驱动电机研究的重中之重。
新能源汽车电动驱动控制系统设计与实现

新能源汽车电动驱动控制系统设计与实现一、简介随着环境污染和能源危机的加剧,新能源汽车作为一种绿色、环保的交通工具逐渐引起了人们的关注。
其中,电动汽车因其零排放、低噪音、低能耗等优点成为发展方向。
而电动驱动控制系统作为电动汽车的重要组成部分,对于提高电动汽车的性能、稳定性和可靠性起到了至关重要的作用。
本文就电动驱动控制系统的设计与实现进行详细的讲解。
二、电动驱动控制系统的基本概念电动驱动控制系统通常由电机、电控器、电池组、控制器和传感器等组成。
其中,电机是电动汽车的核心设备,是将电能转化为机械能的装置;电控器是控制电机运转的主要设备,它控制电机的各种参数,实现电机的启动和停止、调速等功能。
电池组则是提供电能的设备,控制器则负责对电机控制器进行控制。
传感器则是对电控系统进行反馈的设备,能够实时监测电动汽车各种参数。
三、电动驱动控制系统设计的要点1. 电机与电控器的匹配电动汽车的电机与电控器之间需要进行匹配,以满足电动汽车的动力要求。
电机与电控器的匹配需要考虑多方面因素,如电机的功率、转矩、轴承载荷等。
所以对于电机与电控器的匹配需要严格按照规定进行。
2. 电动汽车控制策略控制策略是电动汽车电控系统的核心,它涉及到电池组电路的设计、电机控制方式和转速控制等。
因此,电动汽车控制策略的选择应该根据具体的车辆性能和实际驾驶需要,以达到最佳的控制效果。
3. 电池管理系统电池管理系统是电动汽车电控系统中的重要组成部分,它对电池充电和放电进行控制与管理,保证电池的正确使用和延长电池寿命。
所以电池管理系统的设计需要考虑多个方面因素,如环境温度、电池组质量、充电电流、放电电流和循环使用次数等。
4. 车辆传感器的设计传感器是电动汽车电控系统中一个极为重要的组成部分,它能够实时测量车辆各种参数的数据并反馈给控制器,从而实现对电动汽车动态和静态数据的掌控。
因此,传感器的设计需要具备高精度、高可靠性和防抖动等特点,同时需要根据不同的车型和使用场景进行个性化设计。
新能源电动汽车驱动系统NVH特征及控制策略

例子: MCU控制策略对电机高频噪声的影响
车前0.5m噪声频谱及声压级对比
红线——标准SV PMW控制 蓝线——三段PWM控制
实线——overall值 虚线-----10kHz-16阶噪声
标准SV-PWM控制
约18dB(A)
三段PWM控制
约40dB(A)
控制逻辑: 随机PWM 离散PWM
SV(Space
4. 性能平衡控制难度大:如何做到动力性、 可靠性与舒适性兼具的控制
NVH挑战
1. 大扭矩: 纯电/混动加速、怠速充电、上坡 起步等低速大扭矩及动力分汇 流工况下的NVH表现天然较差;
2. 制动能量回收引起电机啸叫 3. 热管理及冷却系统带来噪声问题 4. 能量切换:
转矩协同、并/卸载转矩等工况带 来振动和冲击问题
4 能量切换(混动车)引起的噪声与振动
在动力模式切换过程中,汽车抖动:EV、 充电、自动,等等
EV:纯电动模式 Charge:发动机给电池充电 Auto:自动模式 ……
解决办法
同时监测发动机扭矩和转速、电机扭矩 和转速、电池电流和电压。 调节VCU, ECU, MCU(IPU) 参数来调整 发动机扭矩的波动。
7000. 00
0. 00
3 怠速充电(混动车)引起的振动与噪声
1. 问题: 无充电负载时,车内振动水平较好;车辆在怠速工况(电量<17%充电 时),车内振动偏大 随电量降低时,发动机请求扭矩增大,发动机负载大,车内振动增大
2. 解决方案: 降低扭矩波动 降低扭矩 传递路径控制:悬置设计、车身传递
5. NVH与动力性和可靠性的矛盾
3.3 宽频脉冲控制引起的噪声
脉宽调制(Pulse Width Modulation):按照冲量相等但幅值不同的窄脉
纯电动汽车电动机的驱动控制和扭矩响应分析

纯电动汽车电动机的驱动控制和扭矩响应分析随着环境保护意识的增强和新能源技术的发展,纯电动汽车正逐渐成为汽车行业的重要发展方向。
而电动机作为纯电动汽车的关键组件之一,其驱动控制和扭矩响应的分析对于实现高效、安全、可靠的车辆性能至关重要。
一、纯电动汽车电动机的驱动控制分析纯电动汽车的电动机驱动控制系统主要包括电机驱动控制器和电机转矩控制系统两部分。
电机驱动控制器负责将电池组的直流电转换为交流电,供给电动机使用;电机转矩控制系统则通过控制电机的相电流和转子位置,实现对电机转矩的精确控制。
1. 电机驱动控制器的功能电机驱动控制器是纯电动汽车电机系统的核心组件,其主要功能包括电流采样、闭环控制、PWM调制、过流保护和故障诊断等。
通过电流采样和闭环控制,电机驱动控制器可以实现对电机相电流的精确控制,确保电机运行稳定可靠;利用PWM调制技术,电机驱动控制器可以实现对电机转矩和速度的控制;同时,电机驱动控制器还具备过流保护功能,可以监测并保护电机在运行过程中的安全性;故障诊断功能可以及时检测电机驱动控制器的故障,并提供相应的故障代码,便于维修与排查。
2. 电机转矩控制系统的设计电机转矩控制系统主要包括电流环控制和速度环控制。
在电流环控制中,通过对电机相电流的检测和控制,实现对电机转矩的精确控制。
在速度环控制中,则通过对电机转子位置和转速的检测和控制,实现对电机速度的精确控制。
为了实现高效的电机控制,需要合理设计电机转矩控制系统的参数,包括电流环控制系统的比例、积分和微分系数以及速度环控制系统的比例、积分和微分系数等。
二、电机扭矩响应的分析电机扭矩响应是指电机在受到外界变化时对其做出的响应,通常可以用于判断电机的动态性能和控制系统的性能。
电机扭矩响应的分析主要包括响应时间、超调量、稳态误差和频率响应等方面的分析。
1. 响应时间响应时间是指电机从受到输入变化到输出达到稳定值所需要的时间。
一般情况下,电机响应时间越短,说明其动态性能越好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动汽车用电机控制策略分析 摘要 第一章绪论 1.1引言 1.2电动汽车的定义及优势 1.2.1电动汽车的定义 1.2.2电动汽车的优势 1.3电动汽车的基本结构
1.4本论文选题的意义及主要内容 1.4.1选题的意义 1.4.2本文的主要内容 第二章电动汽车电机驱动系统介绍
2.1电动汽车驱动电机分类 2.2电机驱动系统系统构成与布置方式 2.3电动汽车中电动机类型及其驱动系统
2.4电动汽车电机驱动控制的发展现状和趋势 第三章交流感应电动机及其控制策略 第四章无刷直流电动机及其控制策略 第五章永磁同步电动机及其控制策略 5.1永磁同步电机的结构和特点 5.2永磁同步电机矢量控制理论
5.2.1电动机的转矩控制 5.2.2 PMSM坐标变换 5.2.3 PMSM数学模型 5.2.4电流极限圆和电压极限圆
5.3永磁同步电动机恒转矩控制 5.3.1 id =0控制 5.3.2最大转矩/电流比控制 5.3.3恒磁链控制 5.3.4 cosφ=1控制
5.4永磁同步电动机弱磁控制
第六章全文总结与展望 摘要 第一章绪论 1.1引言 在未来的一段时间内,我国将成为世界最大的汽车消费国,2010年我国汽车增加到五千六百万辆以上,不过空气污染源也会大幅度提高,空气污染将有64%来自于汽车尾气的排放,在2020年左右,我国石油消费量将超过4.5亿吨,而我国能源系统效率平均低于国际先进水平10%,但是我国60%石油消费量依赖于进口,要是仍然采用传统的内燃机技术发展汽车工业将会使我国为此付出巨大代价和对环境保护也会造成巨大的压力。在这种严峻的形势下,我国汽车工业的未来发展需要我们好好思考。
根据现在世界人口和汽车的增长趋势来看,今后50年中,世界人口和汽车数量分别从60亿增加到100亿和7千万增加到2亿5千万辆以上。若这些车辆都采用内燃机,能源需求和空气污染将会给人类造成巨大的压力和损坏。因此我们必须开发节能环保型以及高效智能型的交通车辆,只有这样才能在本世纪实现交通的可持续发展。能源危机曾经对世界经济带来严重影响,因此石油毕源的争夺更加强烈,石油纠纷在国际上也不断发生,甚至为了争夺石油资源而爆发的战争在近几年也不断发生。因此石油资源的解决是当今世界每个国家所面临的首要考虑的问题,石油资源解决的好坏是当今世界是否稳定的重要因素。
电动汽车是将机算机、电子与化学各学科领域中的高新技术于一体,是汽车、计算机、电力拖动、新材料、新能源、功率电子、自动控制、化学电源等工程技术中最新成果的集成产物。混合动力电动汽车、燃料电池汽车和纯电动汽车对世界汽车的发展以及环境的保护都起到一个前所未有的阶段,具有里程碑的意义。
1.2电动汽车的定义及优势 我国政府已将电动汽车的快速发展列入我国“十五”国家863计划,加大了对电动汽车开发和产业化的投入,与世界发达国家电动汽车发展接轨,目前已经取得了一定得成就。我国不少高等院校、相关的研究以及国内部分企业都加强了对电动汽车研究开发的力度,加快了汽车事业的发展速度。目前我国纯电动汽车研发比较顺利,可以小批量生产与应用;与此同时混合动力汽车的发展目前它的产业化也可以说具备条件;值得炫耀的是我国的燃料电池汽车研发目前达到国际先进水平。因此我国建立电动汽车产业,逐步实施车用能源动为系统转型,实现节能环保目标奠定了技术基础。
1.2.1电动汽车的定义 电动汽车是指以车载电源为动力,用全部或部分由电机驱动,并配置大容量电能储存装置,符合道路交通、安全法规各项要求的车辆
1.2.2电动汽车的优势 现如今各国都在发展电动汽车事业,是由于它具有以下几个方面的优点: (l)污染小。电动汽车在本质上是一种零排放汽车,一般无直接排放污染物,大多是间接污染,如电池废弃物和发电的时候所消耗的能源而造成的污染都属于间接污染。然而国家目前也在大力改进间接污染,再加上电池废弃物的回收技术逐渐成熟。其次水力、原子能发电等均十分清洁,只是火力发电污染比较严重,但相对于燃油汽车而言,它的控制难度就比较容易了,这样电动车就可以实现人们想要的“清洁车辆”。根据国内外相关资料调查显示,电动汽车的噪音比燃油车辆要低 5dB以上。而目前世界各大城市的噪音污染比较严重,因此要想大幅度降低噪音污染,在世界范围内电动汽车的广泛使用是必不可少的。
(2)节约能源,改善能源消耗结构。据测算,将原油提炼成柴油和汽油,要是用它们作为燃油汽车驱动能源时,它们平均只有大约14%的能量利用效率。我国石油储量仅占世界石油储量的2%一3%左右,因此我国以石油为主的能源消耗,只能通过进口才能满足国内的能源需求因此电动汽车的广泛使用,对减少石油资源消耗具有举足轻重的影响。
(3)优越的车辆性能。电动汽车的转矩响应迅速、加速快,比燃油汽车高出2个数量级;电机可分散配置,可直接控制车轮转速,易实现四轮独立驱动和四轮转向。
(4) 提高道路利用率和交通安全性。由于信息技术和控制技术的广泛应用,电动汽车的安全性和可靠性大幅提高。电动车比传统的燃料汽车更易实现精确的控制,智能交通系统则有可能率先通过电动车来实现,从而提高道路利用率和交通安全性。
(5)改善电网负荷。世界各国供电系统都存在负荷平衡问题。也就是说白天是用电高峰,夜间人们相对于白天而言用电量要少得多,因此我们利用夜间对电动汽车充电,这样不但有利于电动汽车的能量补充也能使电网负荷得到平衡,这样对降低维护电网的成本也起着至关重要的作用。
(6)树立节能环保的国家形象。随着我国对外开放,我国经济发展迅速,在世界上的地位逐年不断提高,与世界各国的交往更加密切,而电动汽车的发展和广泛使用对树立中国在国际上的良好形象有着重要意义。
1.3 电动汽车的基本结构 如图2.1所示,主要由电力驱动子系统、主能源子系统和辅助控制子系统等组成。
各个子系统的组成如图2.1所示,加速和制动踏板作为信号的输入端,主控制器在接受到信号后,发出相应的控制指令来控制PWM功率转换器,通过功率转换器的状态来控制电动机的制动或者加速。能源子系统为电机正常运行提供能源。辅助子系统主要给电机提供动力转向以及车内温度的控制等作用。
电力驱动子系统是整个系统运行的智能核心,它由电控单元、功率转换器、电动机组成。电控单元的作用是接收加速踏板输入的信号,以及电机反馈的速度信号和电流信号,发出相应的控制指令来控制功率转换器的功率装置的通断,以获得电动汽车良好的动、静态运行特性和能量利用率。因此,驱动系统在很大程度上决定了整车的运行性能和效率。
主能源子系统由主电源和能量管理系统构成,能源管理系统是实现能源利用监控、能量再生、协调控制等功能的关键部件。
辅助控制子系统主要是为电动汽车提供控制电源,具有辅助电源的控制、动力转向、充电控制、空气调节等功能。
1.4本论文选题的意义及主要内容 1.4.1选题的意义 目前研制和开发的关键技术主要有电池、电动机、电动机控制、整车设计,以及能量管理技术等。然而,制约电动汽车发展的瓶颈是电池和电机驱动控制系统。电机驱动控制系统是提高汽车动力性、续驶里程和可靠性的保证。其输出特性决定了电动汽车的动力特性,同时,它的效率对电动汽车效率的影响也非常大。目前,在电池技术未取得突破的背景下,电机驱动控制策略的选择成为电动汽车技术研究的主要热点,也是提高续驶里程并使之实用化的关键,目的是提高电动汽车的驱动性能、续驶里程以及行驶方便性、可靠性等。电机驱动子系统的研究以驱动电机的研究为中心,辅以各种新型控制技术而展开。
1.4.2本文的主要内容 本文对电动汽车概念,结构,驱动电机的分类及电动汽车电机控制的发展现状和趋势做了简要介绍,并针对目前最为流行的异步电机,永磁无刷直流电机,永磁同步电机的驱动控制策略的分析
第二章电动汽车驱动系统介绍
电机驱动子系统由电控系统、电机、机械传动系统和驱动车轮等部分组成。它将蓄电池输出的电能转化为车轮上的动能,驱动电动汽车行驶,是电动汽车的关键组成部分,可以说它是电动汽车的心脏。
2.1电动汽车电机驱动系统的要求 电动汽车与其它的电力驱动系统相比较,有其自身的特点。它对驱动系统相应有其特殊的要求: 1)能够频繁地启动、停车,加、减速,对转矩控制的动态性能要求高 2)电动汽车驱动的速度、转矩变化范围大,既要工作在恒转矩区,又要运行在恒功率区,同时还要求保持较高的运行效率;
3)能在恶劣工作环境下可靠地工作。 正因为电动汽车对其驱动系统有这些特殊要求,所以在电动汽车电机驱动系统设计中,驱动电机的选择及其变流器、控制器的设计,都必须考虑到这些特殊的要求。
在确定了电动车的目标性能后, 对与之相匹配的电机驱动系统的性能可提出如下要求: ① 电机的转矩、速度特性能满足电动车对驱动性能的要求。 ② 能实现对输出功率和转矩的迅速、平滑的控制。 ③ 系统整体效率高, 功率密度大。 ④ 能够在恶劣的工作环境下可靠地工作。 ⑤ 成本低, 易维修。 2.2电机驱动系统系统构成与布置方式 电动汽车电机驱动子系统又可分为电气和机械两大系统。其中电气系统包括电动机、功率变换器和电子控制器三个子系统;机械系统的组成主要包括变速装置和车轮。
电机驱动系统的电气与机械系统有着多种组合方式,其基本布置方式有机械驱动布置方式、机电集成驱动布置方式、机电一体化驱动布置方式和轮毅电机驱动布置方式四种布置方式。各种布置方式之间最大的区别就在于对传统的机械传动部件保留的多少。越高级的布置方式,对传统燃油汽车的机械传动部件保留得就越少,而且更能发挥电动汽车的优势。
不论电动汽车的驱动系统采用哪种布置方式,其电气系统的结构基本上都相同,主要由三个部分组
成,如图2.1所示。 2.2电动汽车中电动机类型及其控制系统 电动汽车驱动电机的特性曲线如图1.1所示:
这条特性曲线分为两个区域:I区恒转矩区和II区恒功率区。电机在恒转矩区运行时转矩保持恒定而功率随着转速的上升而线性增加;电机在恒功率区运行时功率保持恒定而转矩随着转速的上升而呈双曲线减小。当汽车起停和加减速时,需要克服惯性阻力,对转矩要求比较高,因此电动汽车主要运行于I区中。而当汽车车速较高,汽车行驶比较平稳时,主要用来克服行驶阻力,转矩消耗比较小,因此电动