正交试验设计案例分析
正交试验设计实例

显著性
A
618
B
114
C
234
e
18
S
984
2 309 2 57 2 117 29 8
34.3
**
6.333 ×
13
*
F0.90 (2,2) 9.0 F0.95 (2,2) 19.0 F0.99 (2,2) 99.0
最佳水平组合是A3B2C2 ,考虑B为不显著因素,取经济方案
A3B1C2 。
171
153 T=450
T3
183
144
144
153
T1
41
47
45
48
T2
48
55
57
51 Y = 50
T3
61
48
48
51
R
20
8
12
3
S
618
114
234
18 ST=984
数据分析: 1、直观法:第9方案 y=64 ,最佳方案为:A3B3C2 2、极差法:A>C>B
方差分析计算表
来源 平方和S 自由度f 水平
A温度(℃) B时间 (m) C用碱量(%)
1
80
2
85
3
90
90
5
120
6
150
7
(1)计算数据
1
2
3
4
y
1
1
1
1
1
31
2
1
2
2
2
54
3
1
3
3
3
38
4
2
1
2
3
正交试验设计原理与实例

目录
• 正交试验设计原理 • 正交表及其特性 • 正交试验设计实例 • 正交试验设计在实践中的应用 • 正交试验设计的优缺点 • 正交试验设计的发展趋势与展望
正交试验设计原理
01
定义与特点
定义
正交试验设计是一种通过正交表来安 排多因素多水平的试验,以高效地获 取试验结果的方法。
绿色环保
随着可持续发展理念的深入,正交试验设计将更加注重环 保和资源节约,减少试验过程中的浪费和污染。
定制化服务
针对不同行业和领域的需求,正交试验设计将提供更加定 制化的服务,满足客户特定的试验要求和目标。
展望
拓展应用领域 创新算法研究 强化实际应用 国际化合作与交流
正交试验设计的应用领域将进一步拓展,不仅局限于工程、科 学等领域,还将渗透到医学、经济、管理等领域。
靠性。
试验设计的基本步骤
明确试验目的
确定要解决的问题和目标,明确试验的约束 条件。
确定因素和水平
确定影响试验结果的主要因素及其取值范围或 水平。
选择合适的正交表
根据因素和水平数量,选择合适的正交表进行试 验设计。
制定试验计划
根据正交表,安排具体的试验计划,包括试验条件 、测试指标等。
实施试验
按照试验计划进行试验,并记录每个试验点的结 果。
未来将不断涌现出新的正交试验设计算法,提高试验的准确性 和效率,满足更多复杂试验的需求。
正交试验设计将更加注重与实际问题的结合,通过解决实际问 题来推动其理论和应用的发展。
正交试验设计将加强国际间的合作与交流,促进学术研究的共 同进步和创新。
THANKS.
实例二:农业种植试验
总结词
全面、系统、科学
正交设计应用实例(毕业论文)

2 正交实验设计2.1 正交实验设计概述正交实验设计(Orthogonal experimental design) 11是研究多因素多水平的一种设计方法,它是根据从全面实验中挑选出部分有代表性的点进行实验,正交实验设计又称正交设计或多因素优选设计,是一种合理安排、科学分析各实验因素的一种有效的数理统计方法。
它是在实践经验和理论认识的基础上,借助一种规格化的“正交表”,从众多的实验条件中确定出若干个代表性较强的实验条件,科学地安排实验,然后对实验结果进行综合比较,统计分析,探求各因素水平的最佳组合,从而得到最优或较优实验方案的一种实验设计方法。
正交实验设计的特点是用不太多的实验次数,找出实验因素的最佳水平组合,了解实验因素的重要性程度及交互作用情况,减少实验盲目性,避免资金浪费等。
它能以较少的实验次数找到较好的实验(生产)方案,由正交实验寻找出的优化参数(条件)与全面实验所找出的最优条件有一致的趋势。
正交实验设计具有正交性,使实验具备均衡分散和综合可比性。
此法应用方便,准确性高,在多因素条件下应用有很大的优越性,是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交实验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3)3正交表按排实验,只需作9次,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
2.2 正交实验设计基本程序正交设计中常用的术语有:指标、因子和水平。
正交设计把实验设计要考表示第i次实验的指标值;把对实验虑的结果和评价准则称为指标,一般以yi结果和对评价指标可能产生影响且在实验中明确了条件加以对比的因素称为因子,一般以大写字母表示;把每个因子在实验中的具体条件称为因子的水平,简称水平,一般以表示因子的大写字母加上脚标来表示。
对于多因素实验,正交设计是简单常用的一种设计方法,其设计程序12如图4所示。
正交实验法设计测试用例例子

正交实验法设计测试用例例子正交实验法(Orthogonal Experimental Design)是一种设计测试用例的方法,通过合理选择测试用例,可以有效减少测试工作量,提高测试效率。
正交实验法的核心思想是通过一定的设计原则,选择一组具有独立性和均匀性的测试用例,以覆盖系统的各个方面,从而发现系统中的问题。
以下是使用正交实验法设计测试用例的一些例子:1. 网页登录功能测试:通过正交实验法设计测试用例,测试网页登录功能的正确性和稳定性。
测试用例包括用户名和密码长度的不同组合、是否输入正确的用户名和密码、是否支持记住密码等等。
2. 购物车功能测试:通过正交实验法设计测试用例,测试购物车功能的正确性和稳定性。
测试用例包括添加商品到购物车的不同顺序、添加不同数量的商品、删除商品、修改商品数量等等。
3. 文件上传功能测试:通过正交实验法设计测试用例,测试文件上传功能的正确性和稳定性。
测试用例包括上传不同类型的文件、上传不同大小的文件、上传多个文件、上传文件的同时进行其他操作等等。
4. 数据库查询功能测试:通过正交实验法设计测试用例,测试数据库查询功能的正确性和性能。
测试用例包括查询不同条件的数据、查询不同数量的数据、查询数据的同时进行其他操作等等。
5. 网络连接功能测试:通过正交实验法设计测试用例,测试网络连接功能的正确性和稳定性。
测试用例包括连接不同类型的网络、连接不同网络的速度、在连接过程中进行其他操作等等。
6. 手机应用程序测试:通过正交实验法设计测试用例,测试手机应用程序的正确性和稳定性。
测试用例包括不同操作系统的手机、不同型号的手机、在不同网络环境下使用等等。
7. 网络游戏测试:通过正交实验法设计测试用例,测试网络游戏的正确性和稳定性。
测试用例包括不同操作系统的电脑、不同网络环境下使用、同时进行其他操作等等。
8. 电子邮件发送功能测试:通过正交实验法设计测试用例,测试电子邮件发送功能的正确性和稳定性。
正交法设计测试用例.ppt

在很多领域的研究中已经得到广泛应用。
L9(33)示意图
利用因果图来设计测试用例时, 作为输入条
件的原因与输出结果之间的因果关系,有时 很难从软件需求规格说明中得到。
往往因果关系非常庞大,以至于据此因果图
而得到的测试用例数目多的惊人,给软件 测试带来沉重的负担,为了有效地,合理地 减少测试的工时与费用,可利用正交实验设 计方法进行测试用例的设计。
用n个不同的拉丁字母排成一个n阶方阵(n<26 ),如果每行的n个字母均不相同,每列的n个 字母均不相同,则称这种方阵为n*n拉丁方或n 阶拉丁方。每个字母在任一行、任一列中只出现 一次。
什么是正交拉丁方?
设有两个n阶的拉丁方,如果将它们叠合在一起 ,恰好出现n2个不同的有序数对,则称为这两个 拉丁方为互相正交的拉丁方,简称正交拉丁方。
打印出全部幻灯片为讲义,灰度且不加框。
测试用例3
测试用例编号 PPT—ST—FUNCTION—PRINT—003
测试项目 测试标题
测试powerpoint打印功能 打印PowerPoint文件A全部的备注页,黑白,加框
重要级别 预置条件
中 PowerPoint文件A已被打开,电脑主机已连接有效打印机
1
1
0
2
0
3
0
4
0
5
1
6
1
7
1
8
1
9
2
10
2
11
2
12
2
13
3
14
3
15
3
16
3
2
3
4
5
0
正交试验法及实例分析

1、试验方案设计
试验目的与要求 试验指标 选因素
确定水平
选择合适正交表
表头设计
列试验方案
试验结果分析
2、试验结果分析
(1)直接比较。从直观上比较所有实验工况下的实验结果,选取最好的 一项实验工况作为优化选择。 (2)优水平组合,提出预测优处理。即把所有的正交实验结果进行简单 计算,得出各个因子对参考量的影响程度,从而进行优化组合,为后 续的研究工作提供参考。 (3)极差分析。求出各个水平的平均值,选取最大值减去最小值,得出 极差。极差大说明此因子在不同水平的作用下产生的差异大,属于重 要因子,极差小说明此因子在不同水平的作用下对实验结果影响不大, 属于次要因子。再根据优水平进行组,提出预测的优化处理。
2、试验指标
采用正交试验设计的方法,研究在各个因素作用下中庭 空间排风量的大小,从而得到对混合通风影响最大的因素。
3、选因素
热源非对称性集中分布时,由于此时中庭内部的风速及温度 分布存在偏移,且相对于热源对称分布时中庭内部的气流分布不 是很理想,因此,在各个热源分布形式的情况下,分别考虑在中 庭顶部出口和热源层加上风机。热源层加上风机的窗口为住户和 中庭空间连接的内窗口,安装于此的风机定义为内窗风机。此外, 在热源层上加入风机时还必须考虑所放风机的位置。 因此共有4个因素,热源分布形式、顶部风机风量、内窗风 机风量以及内窗风机位置。
②任两列之间各种不同水平的所有可能组合都出现,且对出现 的次数相等
2、基本特点
① 整齐可比性:是指每一个因素的各水平间具有可比性。
② 均匀分散:是指用正交表挑选出来的各因素水平组合在全 部水平组合中的分布是均匀的 。
③ 简单易行
3、正交表的分类
三、正交试验设计的基本程序
正交试验法(含案例)

正交试验设计法一、定义:正交试验设计法就是利用正交表来合理安排多因素试验的一种方法。
二、常用术语1、指标:指标就是试验要考察的效果。
常用X、Y、Z……来表示。
▼定量指标:能够用数量来表示的试验指标,如重量、尺寸、温度。
▼定性指标:不能用数量来表示的试验指标,如颜色、味道、外观。
●定性指标量化:可用打分法、分等法。
2、因素:因素是指对试验指标可能产生影响的原因。
因素是在试验中应当加以考察的重点内容。
一般用大写字母A、B、C……来表示。
3、水平(位级):位级是指因素在试验中所处的状态或条件。
常用阿拉伯数字1、2、3……来表示。
如: A1、A2、A3、B1、B2、B3。
三、正交表 (已设计好的标准化表格,是进行正试验法的基本工具)1、日本型正交表:由日本质量管理专家田口玄一博士创立。
该正交试验设计法,除需试验的因素外,还要研究分析因素与因素之间的交互作用,一起上列,对试验结果的分析用方差分析等方法,过程较复杂。
2、中国型正交表是由以我国张千里教授为首的中国专家所创立。
它不考虑因素之间的交互作用,而将其交互作用融于试验之中,对试验结果的分析采用极差分析法,简单的用“看一看”与“算一算”相结合的分析、简单、易行、同样能得到满意的结论,是一种实用的试验方法,很适合现场应用。
四、正交表的特点:1、均衡分散性:每一列中各种字码出现的次数相同,保证试验条件均衡地分散在配合完全的位级组合之中,因而代表性强,容易出现好条件。
2、整齐可比性:任意两列中全部有序数字对出现次数都是相同的。
保证了在各个位级的效果之中,最大限度地排除了其他因素的干扰,能最有效地进行比较,作出展望。
五、用中国型正交表安排试验的步骤 1、明确试验目的 2、确定考察指标 3、挑因素、选位级,制定因素位级表 ①挑因素的原则: ▼分析影响指标的各种因素,排除: 不可控因素 对指标影响不大的因素 已掌握得好的因素(让其固定在适当位置上) ▼选对指标可能影响大,又无把握的因素。
正交试验设计经典案例

正交试验设计经典案例
一、L9(3^4)正交试验设计
这个实验设计是一个L9(3^4)正交试验设计,用于研究铜锌合金中锌的含量、冶炼时间、冷却速率和成型压力对铜锌合金硬度的影响。
在这个设计中,有四个因素(锌的含量、冶炼时间、冷却速率和成型压力)和三个水平(低、中、高)。
该试验的九个试验条件如下表所示。
2、L16(4^5)正交试验设计
这个实验设计是一个L16(4^5)正交试验设计,用于研究发酵生产中,发酵液pH 值、生物量、发酵温度、曲菌培养基和曲菌翻转次数对干酪根的质量影响。
在这个设计中,有五个因素(发酵液pH值、生物量、发酵温度、曲菌培养基和曲菌翻转次数)和四个水平(低、中低、中高、高)。
该试验的十六个试验条件如下表所示。
3、L16(4^5)正交试验设计
这个实验设计是一个L16(4^5)正交试验设计,用于研究太阳能集热器的建造,包括集热面积、集热器长度、集热器宽度、太阳能采集器的形状和位置对太阳能集热器效率的影响。
在这个设计中,有五个因素(集热面积、集热器长度、集热器宽度、太阳能采集器的形状和位置)和四个水平(低、中低、中高、高)。
该试验的十六个试验条件如下表所示。
以上这些都是经典的正交试验设计案例,这些设计都遵循着统计学中的一些原则和方法,有效地结合了多个因素的影响,将因素控制在一定范围内,从而帮助我们更好地理解问题并提出相应的解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交实验设计案例分析
45120611戴杰
摘要:正交实验设计法在工业生产中具有广阔的应用领域,但
由于推广不够,在实践少有应用,除了观念上的影响外,对操
作方法的疑惑和不熟悉,也是重要因素。
我们小组选取了两个
典型案例,对正交实验设计法的操作方法和步骤进行了介绍。
正交实验设计法在工业生产中具有广阔的应用领域。
作为一种科学的实验方法,它以投资少、易操作见效快的特点而为人们所关注,在已经试点过的单位都不同程度地取得了明显效果,受到企业的普遍欢迎。
正交实验设计法虽然已经取得了骄人的业绩,但它的推广并不普遍。
原因主要是许多企业科学意识差,对正交法缺乏正确认识,不懂操作程序,甚至怕麻烦。
鉴于此,我们选择了两个典型案例,对正交法的应用程序和方法做出了说明。
一、双氰胺生产工艺的优化研究
1.1 立项背景
山西省双氰胺厂。
1989年引进技术,设计能力为年产双氰胺500t,1990年投产,1991 年全年生产双氰胺300t。
虽然当时双氰胺出厂价为15000元/t,市场供不应求,但由
于该企业产量达不到设计能力,成本很高,年亏损30 多万元,企业处于非常困难的境地。
1.2 经诊断发现的问题
(1)双氰胺的主要原材料质量差,有效含氮量低。
调查结果:石灰氮最好是一级品占一半,其余为二级品以下。
石灰氮产品的行业标准(有效含氮量)是:优级品>=20%,一级品>18%,二级品>17%,次品<17%。
经过对比,该厂石灰氮有效含氮量低,是双氰胺消耗高、成本高、产量低的主要原因。
(2)石灰窑CO2 气体浓度太低且很不稳定,是制约双氰胺生产的关键因素。
经调查发现,CO2 气体浓度一般在17%以下,有时12%左右,致使双氰胺车间第一道工序(即水解工序)脱钙速度慢、时间长,是制约双氰胺产量的关键。
(3)双氰胺的生产工艺影响因素多,优化潜力大。
经分析认为:水解投料量、水解pH 值、聚合工序的聚合温度、聚合pH值、结晶温度等因素,均对产品质量和消耗有影响。
多因素影响正好适用正交法。
1.3 正交法在各生产车间的应用及效果
(1)提高白灰窑CO2气体浓度的正交实验。
经调查,投入的煤和石头的比例是由人工估计的,并不计量,每天加料总量和分配的层次随意性很大。
由于没有固定的工艺标准,CO2 气体浓度既不可能稳定,生产效果也不可能提高。
故采取了以下措施:一是安装地磅,投入的煤和石头要求过磅计量;二是实施正交优化。
经计算,石灰窑优化方案的因素水平及实验结果(选用L9(3^4)正交表安排实验)分别
如表1、表2 所示。
表1 因素水平表
经计算分析,显然优化方案为A2B3C3。
即A 煤石比为1:0.17,加料量为6t/次,加料
层次为9 次/d 。
经进一步优化,加料层次为12 次/d,使二氧化碳气体浓度达38%。
(2)提高石灰氮有效含氮量和产量的正交实验。
经过对氮化车间3台沉降炉产出成品状况分析和操作情况分析,我们发现成品不均匀,一层一层的,每层3cm厚,在两层连接处质量好,而在两层之间质量疏松,经化验有效含氮量低。
工人操作,电石在上端有加料机均匀撒于料面,由于冷料加入,炉温逐步下降,连续加料,待炉温降低80 摄氏度时,才停止加料,致使料层厚度超过3cm。
从上面的操作过程分析:连续加料时间太长,使得料层太厚,在停止加料后,氮气与电石进行氮化反应,生成CaCN2,由于氮化反应是一个放热反应,炉温慢慢升高,当再回到900 摄氏度重新加料,又是厚厚一层,炉温降低80 摄氏度才停止加料。
这样就造成停止加料后,氮气与料层表面接触,反应生成CACN2,由于料层厚,氮气深入内部反应不易,因此两层中间氮化不充分,造成质量差,而且反应慢,产量也低。
由于找准了石灰氮质量差和产量低的原因,正交优化方案制定如下:首先把加料前后的温差由80 摄氏度降低为20 摄氏度以内(越低越好),这是为了减少一次加料的数量和厚度使CaC2和氮气能充分反应,既可提高产品质量,又可促进产量提高。
其因素水平及实验结果分别如表3、表4 所示。
优化方案为A3B2C2D2。
由于人工操作,温差太小,操作困验难,后来安装了自动控制加料
装置,可把温差控制在10摄氏度以下,使C aCN2质量大幅度提高。
9个方案均达到优级品,
从极差大小来看,其他因素影响不大。
当按优化方案生产后,有效含氮量稳定在22%~23%,100%为优级品。
(3)双氰胺生产工艺的正交优化。
双氰胺工序正交试验,主要是降低消耗,提高产量。
考察指标只计产量,其因素水平及实验结果(选用L8(2^7)正交表)分别如表5、表6 所示。
直接可看出8 号试验产量最高,班产29袋,其条件为A2B2C1D2。
经观察发现,投料过程中,由于投料速度快,再加上水解过程为放热反应,故料液温度升高。
本来水解工序料液温度应低于70℃,如果达到聚合温度,会提前生成双氰胺,过滤过程将把生成的双氰胺滤到废渣中丢弃,使消耗高、产量低、温度高,将生成的大量氨气排放到空气中,造成损失。
因此,除优化生产条件外,应着重控制加料速度的均匀性,保持料液温度低于60℃。
这样按优化方案操作,使每t 双氰胺消耗石灰氮由6.5t降至4t 以下。
石灰氮售价2000元/t,双氰胺成本下降约5000 元/t。
(4)经济效益分析。
由于CO2 气浓度提高,产量增加1/3,石灰氮有效含氮量的提高
可使双氰胺的石灰氮耗量大幅度下降。
2 八水钡生产工艺的优化及一水钡的开发研究
2.1 立项背景
1995 年,榆次钡盐厂月产八水钡不足70t,投产近两年亏损约90 多万元。
该项目投产
后只能生产八水钡,消耗极大,成本很高,企业亏损严重。
2.2 发现问题
(1)毒重石煅烧工艺问题最大。
主要有以下几点:一是煅烧温度和恒温时间不确定,工人凭经验操作;二是煅烧罐煅烧过程中破裂严重,高温情况下空气进入,熟料变色提取不出八水钡;三是矿石粒度大,熟料中仍有大量BaCO3矿石颗粒。
该工序是该厂生产工艺的关键工序,BaCO3矿石不能很好地转化为BaO,产品无法生产出来。
当时生产1t八水钡,需矿石5t 以上,试产时曾用20t矿石生产出1t 八水钡,每t 矿石从四川运到山西,进厂费用300 元/t 以上,造成企业亏损。
(2)浸取工序中成品和废渣分离不彻底,仅废渣中带走的成品约占1/3。
(3)成品中杂质含量高,BaCO3杂质经常超标。
2.3 科研课题组采取的措施
(1)在浸取过滤工序中增加真空过滤装置,收回大量成品;
(2)改自然结晶为真空结晶,提高结晶效率和产品质量;
(3)配料中增加添加剂,有效解决因热胀造成煅烧罐大量破裂的问题;
(4)针对煅烧转化率极低的难题,用正交试验法找出最佳工艺参数。
2.4 毒重石煅烧提高转化率的正交试验
为了找到最佳恒温湿度,工厂专门建小型试验窑一座,经摸索发现恒温温度在1100至1150 摄氏度范围,转化率有保证,故以下试验把恒温温度作为固定因素。
试验1、试验2、试验3 的结果分别见表7、表8、表9。
试验1 考察了恒温时间、保温措施、添加剂对转化率的影响。
该试验告诉我们,恒温时间长些好,在保温措施下增加添加剂有明显效果,转化率有较大幅度提高,原生产记录转化率均在40%以下。
试验2 考察了恒温时间、矿石粒度、还原剂配比对转化率的影响。
该试验清楚地告诉我们,恒温时间长些好,分开粒度煅烧效果显著,转化率大幅上升,原来加17%的还原剂煤比例偏高,不仅浪费煤,效果也不好。
试验3 为固定恒温温度(固定恒温时间36h),有保温措施,重点考察矿石粒度、添加剂配比、还原剂配比对转化率的影响。
经多次优化,转化率保持在80%以上,企业在不增加任何投入的情况下,产量翻一翻,
后稍加技改,月产量就由原70t增加到300 多t,企业每年实现利税100万元以上。
从案例可以看出,正交实验设计法,简便易行,易学好懂,是迅速提高企业经济效益的有效途径。
希望企业管理者们能够转变观念,树立科学意识,从推广正交实验设计法入手,全面提高企业的科技水平。