冲击试验

合集下载

冲击试验实训报告

冲击试验实训报告

一、实训目的本次冲击试验实训的主要目的是通过实际操作,使学生掌握冲击试验的基本原理、方法和步骤,了解冲击试验在材料、构件和设备中的应用,提高学生的实际操作能力和分析问题的能力。

二、实训内容1. 冲击试验概述(1)冲击试验的定义:冲击试验是指在短时间内对材料、构件或设备施加冲击载荷,以检验其在冲击载荷作用下的性能和可靠性。

(2)冲击试验的分类:根据冲击载荷的形式,冲击试验可分为机械冲击试验、热冲击试验、电冲击试验等。

2. 机械冲击试验(1)试验设备:冲击试验机、试样、温度计、计时器等。

(2)试验步骤:①将试样放置在冲击试验机上,调整好冲击速度和试验温度。

②启动冲击试验机,使冲击头与试样接触,产生冲击载荷。

③记录冲击载荷的大小、冲击次数和试样破坏情况。

④分析试验数据,评估试样的冲击性能。

3. 热冲击试验(1)试验设备:热冲击试验箱、试样、温度计、计时器等。

(2)试验步骤:①将试样放置在热冲击试验箱中,调整好试验温度。

②快速将试样从高温区转移到低温区,或从低温区转移到高温区。

③记录试样在热冲击过程中的温度变化和破坏情况。

④分析试验数据,评估试样的热冲击性能。

4. 冲击试验数据分析(1)试验数据的整理:将试验数据记录在表格中,包括冲击载荷、冲击次数、试样破坏情况等。

(2)试验数据分析:根据试验数据,分析试样的冲击性能,如冲击韧性、疲劳寿命等。

三、实训结果与分析1. 机械冲击试验结果与分析本次实训中,我们对不同材质的试样进行了冲击试验。

试验结果表明,不同材质的试样在冲击载荷作用下的破坏情况不同。

例如,低碳钢试样在冲击载荷作用下容易发生脆性断裂,而高碳钢试样则具有较高的韧性。

2. 热冲击试验结果与分析本次实训中,我们对不同材质的试样进行了热冲击试验。

试验结果表明,试样在热冲击过程中的温度变化与材料的导热性能、热膨胀系数等因素有关。

此外,热冲击试验还可以评估试样的热稳定性。

四、实训总结通过本次冲击试验实训,我们掌握了冲击试验的基本原理、方法和步骤,了解了冲击试验在材料、构件和设备中的应用。

冲击试验 规格

冲击试验 规格

冲击试验规格
【实用版】
目录
一、冲击试验简介
二、冲击试验规格分类
三、冲击试验的实施步骤
四、冲击试验的应用领域
五、冲击试验的未来发展趋势
正文
一、冲击试验简介
冲击试验,是一种测试材料在受到冲击或突然载荷作用下性能变化的实验方法。

这种试验能够帮助我们了解材料在承受突然冲击时的强度、韧性和抗疲劳性能,对于提高产品设计质量和预测材料在实际应用中的寿命具有重要意义。

二、冲击试验规格分类
根据试验样品的形状、试验设备的类型以及冲击能量的大小,冲击试验可以分为以下几种规格:
1.试验样品形状:平板、圆棒、圆板等;
2.试验设备类型:摆锤式冲击试验机、落锤式冲击试验机、冲击台车等;
3.冲击能量:根据试验设备的不同,冲击能量可以从几焦耳到数百千焦耳不等。

三、冲击试验的实施步骤
一般来说,冲击试验的实施步骤可以分为以下几个步骤:
1.样品制备:根据试验要求,制备试验样品;
2.样品安装:将试验样品安装到试验设备上;
3.冲击试验:启动试验设备,进行冲击试验;
4.数据采集:采集冲击过程中的各项数据;
5.数据分析:对采集到的数据进行分析,得出试验结果。

四、冲击试验的应用领域
冲击试验广泛应用于航空航天、汽车制造、建筑材料、机械制造等众多领域。

通过冲击试验,可以评估材料在实际应用中可能遇到的冲击载荷下的性能,从而为产品设计提供重要依据。

五、冲击试验的未来发展趋势
随着科技的不断发展,冲击试验在技术上将不断改进,以满足更广泛的应用需求。

冲击试验作业指导书

冲击试验作业指导书

冲击试验作业指导书标题:冲击试验作业指导书引言概述:冲击试验是一种常见的实验方法,用于测试材料在受到冲击力作用时的性能。

为了确保试验的准确性和安全性,需要编写一份冲击试验作业指导书,以规范试验操作流程和注意事项。

一、试验前准备1.1 准备试验设备:确保冲击试验机和相关设备处于良好状态,如有损坏或异常应及时修理或更换。

1.2 校准设备:在进行试验前应对冲击试验机进行校准,以确保试验结果的准确性。

1.3 准备试样:选择合适的试样进行试验,确保试样符合试验标准要求,并做好标识。

二、试验操作流程2.1 设置试验参数:根据试验标准要求,设置冲击试验机的参数,如冲击能量、冲击速度等。

2.2 安装试样:将试样安装到冲击试验机上,确保试样位置正确、固定牢靠。

2.3 进行试验:按照设定的参数进行试验,记录试验过程中的数据和观察试样的变化。

三、试验注意事项3.1 安全防护:在进行试验时,要注意佩戴相关的安全防护用具,如护目镜、手套等,确保试验过程中的安全。

3.2 观察试验过程:在试验过程中要时刻观察试样的变化情况,及时记录数据并做好标记。

3.3 处理试验结果:试验结束后,要对试验结果进行分析和处理,得出结论并撰写试验报告。

四、试验结果分析4.1 数据处理:对试验结果进行数据处理,计算冲击强度、断裂能量等指标。

4.2 结果对比:将试验结果与标准要求进行对比,评估试样的性能。

4.3 结论与建议:根据试验结果得出结论,并提出相关的建议和改进措施。

五、试验报告编写5.1 报告结构:编写试验报告时,要包括试验目的、试验方法、试验结果、分析结论等内容。

5.2 报告格式:按照规定的格式编写试验报告,确保内容清晰、准确。

5.3 报告审查:在完成试验报告后,要进行审查和修改,确保报告的准确性和完整性。

结论:编写一份冲击试验作业指导书对于规范试验操作流程、确保试验结果的准确性和安全性至关重要。

只有严格按照指导书的要求进行操作,才能得到可靠的试验结果并为进一步研究提供参考。

材料冲击试验

材料冲击试验

材料冲击试验材料冲击试验是用来评估材料在受到冲击载荷作用时的性能和耐久性。

在工程领域中,材料的耐冲击性能是非常重要的,因为在实际使用中,材料可能会受到各种外部冲击力的作用,如撞击、碰撞、挤压等。

因此,对材料的冲击性能进行评估和测试,可以帮助工程师们选择合适的材料,确保产品在使用过程中具有足够的安全性和可靠性。

材料冲击试验通常包括冲击试验机、试样制备、试验方法和试验结果分析等内容。

冲击试验机是用来施加冲击载荷的设备,它可以模拟出各种不同类型和强度的冲击载荷,如冲击力、冲击能量、冲击速度等。

试样制备是为了保证试样的几何尺寸和质量符合要求,以便进行准确的试验。

试验方法是根据不同的标准和要求,设计出合适的试验方案和程序,以确保试验的可靠性和可重复性。

试验结果分析是对试验数据进行处理和分析,得出材料的冲击性能参数和曲线,从而评估材料的耐冲击性能。

冲击试验的结果可以反映出材料在受到冲击载荷时的表现,如抗冲击强度、断裂形态、残余变形等。

这些参数和表现可以帮助工程师们了解材料的耐冲击性能,从而决定材料的使用范围和条件。

通过对不同材料的冲击试验结果进行比较和分析,可以帮助工程师们选择合适的材料,设计出更加安全和可靠的产品。

在实际工程中,材料的冲击性能往往受到多种因素的影响,如材料的类型、组织结构、加工工艺、温度和湿度等。

因此,进行冲击试验时需要考虑这些因素,并进行相应的控制和调整,以确保试验结果的准确性和可靠性。

此外,冲击试验还需要根据不同的应用场景和要求,设计出相应的试验方案和标准,以满足工程实际需求。

总之,材料冲击试验是评估材料耐冲击性能的重要手段,它可以帮助工程师们选择合适的材料,设计出更加安全和可靠的产品。

通过对材料的冲击性能进行评估和测试,可以提高产品的质量和可靠性,确保产品在使用过程中具有足够的安全性和耐久性。

因此,冲击试验在工程领域中具有重要的意义和价值。

冲击试验机操作规程

冲击试验机操作规程

冲击试验机操作规程一、操作前准备1、确认冲击试验机是否连接正确,电源是否稳定。

2、准备冲击试样,并确认试样的尺寸、形状和表面状态是否符合试验要求。

3、确认试验环境温度和湿度是否符合试验标准要求。

4、穿戴适当的防护设备,如安全眼镜、手套等。

二、操作步骤1、打开冲击试验机的电源,启动操作系统。

2、将冲击试样放置在冲击试验机的工作台上,确保试样放置稳定,不会在试验过程中滑落。

3、设置冲击试验的参数,如冲击能量、冲击速度等。

4、启动冲击试验程序,开始冲击试验。

5、观察冲击试样的变化,记录冲击试验的数据。

6、在冲击试验结束后,关闭冲击试验机,并整理试验数据。

三、操作注意事项1、在操作冲击试验机时,必须遵守安全操作规程,确保人身安全和设备安全。

2、冲击试验机的使用必须符合国家相关法律法规的规定。

3、在进行冲击试验前,必须对冲击试验机进行充分的检查和维护,确保设备处于良好状态。

4、在冲击试验过程中,如发现异常情况,应立即停止试验,并报告相关人员进行处理。

5、在完成冲击试验后,应对冲击试验机进行清理和维护,确保设备长时间使用保持良好的状态。

四、操作后处理1、对冲击试验的数据进行整理和分析,得出试验结果。

2、根据试验结果,对冲击试样进行评价或提出改进建议。

3、清理冲击试验机的工作台和设备周围的杂物和垃圾。

硫化机操作规程一、操作前准备1、确认硫化机是否处于安全状态,包括紧固件是否松动,安全阀、压力表、电气线路是否正常。

2、检查液压油、润滑油的油位是否正常,如有需要,及时添加。

3、打开硫化机电源,检查各部分指示灯是否正常。

4、根据待硫化的物料特性,设置硫化时间和硫化温度。

二、操作步骤1、将待硫化的物料放置在硫化机内,关闭模具,并确保其紧固。

2、打开加热系统,将硫化温度升至设定值。

3、开启液压系统,对模具进行加压,直至达到设定压力。

4、保持压力不变,继续加热一定时间,然后关闭加热系统和液压系统,完成硫化。

5等待一段时间,待模具冷却后,打开模具取出硫化好的物料。

冲击实验的实验报告

冲击实验的实验报告

一、实验目的1. 理解冲击载荷的概念及其在工程中的应用。

2. 掌握冲击实验的基本原理和方法。

3. 研究不同材料在不同冲击载荷下的力学性能。

二、实验原理冲击实验是研究材料在冲击载荷作用下力学性能的一种实验方法。

实验中,通过施加冲击载荷,使试样在短时间内承受较大的应力,从而研究材料在冲击载荷作用下的断裂韧性、冲击韧性等力学性能。

实验原理如下:1. 冲击载荷:冲击载荷是指作用时间极短,应力变化速率极高的载荷。

在冲击实验中,常用冲击试验机施加冲击载荷。

2. 冲击韧性:冲击韧性是指材料在冲击载荷作用下抵抗断裂的能力。

常用冲击功(A)和冲击韧性(AK)来衡量。

3. 冲击断裂韧性:冲击断裂韧性是指材料在冲击载荷作用下,抵抗裂纹扩展的能力。

常用断裂韧性(KIC)来衡量。

三、实验仪器与材料1. 实验仪器:冲击试验机、试样夹具、温度计、计时器等。

2. 实验材料:低碳钢、不锈钢、铝合金等。

四、实验步骤1. 准备实验材料:根据实验要求,选择合适的试样材料,并加工成规定尺寸的试样。

2. 安装试样:将试样安装在冲击试验机的试样夹具中,确保试样与夹具接触良好。

3. 设置实验参数:根据实验要求,设置冲击试验机的冲击速度、温度等参数。

4. 进行实验:开启冲击试验机,使试样在冲击载荷作用下断裂。

5. 测量数据:记录冲击功、冲击韧性、断裂韧性等数据。

6. 分析实验结果:对实验数据进行整理和分析,得出结论。

五、实验结果与分析1. 实验数据:(1)低碳钢试样冲击功:A1 = 150J,AK1 = 100J/m2;(2)不锈钢试样冲击功:A2 = 200J,AK2 = 150J/m2;(3)铝合金试样冲击功:A3 = 300J,AK3 = 200J/m2。

2. 实验结果分析:(1)低碳钢试样在冲击载荷作用下,具有较高的冲击韧性,表明其抵抗断裂的能力较强;(2)不锈钢试样在冲击载荷作用下,冲击韧性较高,但断裂韧性相对较低,表明其在抵抗裂纹扩展方面表现一般;(3)铝合金试样在冲击载荷作用下,冲击韧性最高,断裂韧性也相对较高,表明其在抵抗断裂和裂纹扩展方面表现较好。

冲击试验实验报告

冲击试验实验报告

冲击试验实验报告冲击试验实验报告引言冲击试验是一种常用的实验方法,用于评估物体在受到外部冲击时的抗冲击性能。

本实验旨在通过对不同材料的冲击试验,探索不同材料的抗冲击性能,并对实验结果进行分析和总结。

实验方法1. 实验材料准备我们选择了三种不同材料进行冲击试验:金属、塑料和木材。

分别选取了相同尺寸和质量的样本,确保实验的公平性。

2. 实验装置搭建搭建了一个坚固的实验装置,用于模拟冲击过程。

装置包括一个冲击台和一个冲击器。

冲击台上固定了待测试的材料样本,冲击器则用于给样本施加冲击力。

3. 实验过程依次将不同材料的样本放置在冲击台上,调整冲击器的位置和冲击力大小。

然后,通过控制冲击器的运动,使其以一定速度和角度撞击样本。

记录冲击过程中的数据,包括冲击力、冲击时间等。

实验结果1. 金属样本金属样本在冲击试验中表现出色。

由于金属的高强度和韧性,它能够有效地吸收和分散冲击力。

在实验中,金属样本只出现了一些表面划痕,没有发生明显的形变或破裂。

2. 塑料样本塑料样本的抗冲击性能较差。

塑料的韧性较低,容易发生断裂。

在实验中,塑料样本经历了明显的形变和破裂,甚至出现了碎裂的情况。

这表明塑料在受到冲击时容易发生失效。

3. 木材样本木材样本的抗冲击性能与金属相当。

木材具有一定的韧性和强度,能够有效地吸收和分散冲击力。

在实验中,木材样本表现出较好的抗冲击性能,仅出现一些细微的裂纹,没有发生明显的断裂。

实验分析通过对实验结果的分析,我们可以得出以下结论:1. 材料的物理性质对抗冲击性能有重要影响。

金属具有较高的强度和韧性,能够有效地吸收和分散冲击力,因此具有良好的抗冲击性能。

而塑料的韧性较低,容易发生断裂,抗冲击性能较差。

2. 材料的结构和形状也会影响其抗冲击性能。

例如,木材由于其纤维状结构,能够有效地吸收和分散冲击力,具有较好的抗冲击性能。

3. 不同材料的抗冲击性能可用于不同领域。

金属适用于需要高强度和韧性的场合,而塑料适用于低强度要求的场合。

冲击试验 a类

冲击试验 a类

冲击试验 a类
冲击试验A类
冲击试验A类是一种常见的实验方法,用于评估材料或结构在冲击载荷下的性能。

通过这种试验,我们可以了解材料的抗冲击能力,为工程设计和产品开发提供可靠的依据。

在冲击试验A类中,我们通常会选择适当的试验装置和冲击载荷,以模拟实际工况下的冲击情况。

试验过程中,我们将材料或结构暴露在冲击载荷下,并记录下载荷-位移曲线或载荷-时间曲线,以评估其性能。

冲击试验A类可以用于评估不同材料的抗冲击性能,比如金属、塑料、复合材料等。

通过这种试验,我们可以了解不同材料在冲击载荷下的变形、破坏行为及其影响因素,为相关工程项目提供科学依据。

在冲击试验A类中,我们还可以评估结构的抗冲击性能。

比如,汽车碰撞试验就是一种常见的冲击试验A类。

通过这种试验,我们可以了解汽车在碰撞中的变形和破坏情况,以评估其安全性能。

冲击试验A类在工程领域中有着广泛的应用。

通过这种试验,我们可以提前评估材料和结构在冲击载荷下的性能,为工程设计和产品开发提供科学依据。

同时,冲击试验A类也是一种重要的安全评估方法,可以帮助我们提高产品的安全性能。

冲击试验A类是一种重要的实验方法,可以评估材料和结构在冲击载荷下的性能。

通过这种试验,我们可以了解材料和结构的抗冲击能力,为工程设计和产品开发提供可靠的依据。

冲击试验A类在工程领域中有着广泛的应用,具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冲击试验得到广泛应用的原因所在
导致冲击试验结果的离散性较大。
12.06.2020
zzf
35
与样品取样和制备有关的因素
取样方向
– 沿轧制方向取样,垂直于轧制方向开缺口,冲击值较高;
缺口加工质量
– 试样缺口深度、缺口根部曲率半径及缺口角度
– 缺口根部的表面质量,加工硬化、加工痕迹
试样尺寸
– 试样宽度增加会使金属在冲击中塑性变形体积的增加,从而 导致试样吸收能量的增加。
– 尺寸增大,特别是宽度的增加,会使约束程度增加,导致脆 性断裂,降低吸收能量。
12.06.2020
zzf
36
缺口深度对冲击性能的影响
深度/mm 高能量样 /J
2.0±0.0 103±5.2 25
2.13
97.9
中能量样 /J
60.3±3. 0
56
低能量样 /J
16.9±1. 4
15.5
2.04
101.8
操作设备和安放试样为一人。
12.06.2020
zzf
30
冲击试验结果
吸收能量有效位数
– 吸收能量应至少保留两位有效数字(至少估读到0.5J)
吸收能量的表示方法
– V型缺口试样在2mm摆锤刀刃下冲击吸收能量:KV2 – V型缺口试样在8mm摆锤刀刃下冲击吸收能量:KV8 – U型缺口试样在2mm摆锤刀刃下冲击吸收能量:KU2 – U型缺口试样在8mm摆锤刀刃下冲击吸收能量:KU8
12.06.2020
zzf
31
试验中几种情况的处理
试样吸收能超过试验机能力的80﹪,在试验报告中应报告为近似 值并注明超过试验机能力的80﹪。
试样试验后没有完全断裂,可以报出冲击吸收能量,或与完全断裂 试样结果平均后报出。
试验机打击能量不足使试样未完全断开,吸收能量不能确定,试验 报告应注明用×J的试验机试验,试样未断开。
冲击试验机应稳定牢固地安装在基础上。
所有测量仪器均应溯源至国家或国际标准并在合适的 周期内进行校准
12.06.2020
zzf
18
2mm摆锤刀刃
12.06.2020
8mm摆锤刀刃
zzf
19
试验设备
12.06.2020
zzf
20
第三节 常温冲击试验
试验前准备工作
注意试验温度
– 无规定时,室温冲击试验在23℃±5℃范 围进行(注意与其他力学性能试验的室温 10℃~35℃不同)
应力集中程度加剧而减少。 – 材料的冲击韧度不光取决于材料本身的内
在因素。
12.06.2020
zzf
3
冲击试验标准
GB/T229-2007金属材料 夏比摆锤冲击试验方法
– ISO148-1:2006,MOD
– 代替GB/T229-1994
– 2008年6月1日实施
其他相关标准
– GB/T 18658-2002 摆锤式冲击试验机检验用夏比V型缺口标 准试样
57.2
16.8
ቤተ መጻሕፍቲ ባይዱ
1.97
104.1
61.4
17.2
12.06.2020
zzf
37
缺口根部半径对冲击性能影响
半径/mm 高能量样 中能量样 低能量样
/J
/J
/J
0.25±0.0 103±5.2 60.3±3.0 16.9±1.4 25
0.13
98
56.5
14.6
0.38
108.5
64.3
21.4
12.06.2020
适用范围:测定金属材料 在夏比冲击试验中吸收能 量的方法(V型和U型缺口 试样)。
12.06.2020
zzf
6
冲击试验的应用
作为韧性指标,为设计选材和研制新型材料 提供依据
检查和控制冶金产品质量 监督热加工工艺质量 评定材料在不同温度下的脆性转化趋势 确定应变时效敏感性 缺口敏感性指标。
V型缺口试样
公称尺寸 机加工公差
55mm
±0.60mm
10mm
±0.075mm
10mm
±0.11mm
7.5mm
±0.11mm
5mm
±0.06mm
2.5mm
±0.04mm
45°
±2°
8mm
±0.075mm
缺口根部半径
0.25mm ±0.025mm
缺口对称面-端部距离
27.5mm
±0.42mm
缺口对称面-试样纵轴角
12.06.2020
zzf
15
缺口在焊缝、熔合线或热影响区的 位置
12.06.2020
zzf
16
12.06.2020
zzf
17
冲击试验机
由机架、摆锤、砧座、指示装置及摆锤释放、制动和 提升机构等组成。
分类:
– 摆锤刀刃半径:2mm,8mm – 送样方式:手动送样,自动送样 – 指示装置:表盘式,数显式
(55×10×10)mm,中间有V型或U型缺口。
– V型缺口应有45º夹角,其深度为2mm,底部曲率半径 为0.25mm。
– U型缺口深度一般应为2mm或5mm,底部曲率半径为 1mm。
12.06.2020
zzf
10
试样类型和小尺寸试样
选择试样类型的原则应根据试验材料的产品 技术条件、材料的服役状态和力学特性
– 缺口深度、根部曲率半径及角度决定缺口附近应力集中程度,从 而影响该试样的吸收能量,制备应特别仔细
需热处理的样品,应在最后精加工前进行热处理
试验前应对试样进行适当标记,标记位置应尽量远离缺口,
且不得标在与支座、砧座或摆锤刀刃接触的面上,试样标
12.0记6.20应20 避免对冲击吸收能量的zzf 影响。
小尺寸试样进行高能量冲击试验其影响很小可 不加垫片。
12.06.2020
zzf
25
V型缺口夏比冲击试样对中夹钳
12.06.2020
zzf
26
试样与摆锤冲击试验机支座及砧座相对位置
12.06.2020
zzf
27
试验操作要点
操作过程
– 将摆锤扬起并锁住,从动指针拨到最大冲击能量位置 (数字显示装置清零),放好试样,释放摆锤使其下 落打断试样,任其向前继续摆动直到达到最高点后回 摆动至最低点,使用制动闸将摆锤刹住使其停止在垂 直稳定位置,读取吸收能量数值
相对回零差不应大于0.1%(以最大量程300J为例, 其回零差应不超过0.3J)。相对能量损失不应大于 0.5%。
12.06.2020
zzf
24
试验操作要点
试样定位
– V型缺口自动对中夹钳
– 试样缺口对称面偏离两砧座间的中点小于 0.5mm
– 小尺寸试样进行低能量冲击试验时,应在支 座上放置适当厚度的垫片,使试样打击中心 高度为5mm(相当于宽度10mm标准试样 打击中心的高度)
限建议不低于试验机最小分辨力的25倍。
– 根据相关产品标准规定选择摆锤刀刃半径(2mm或 8mm)
低能量的冲击试验,一些材料用2mm和8mm摆锤刀刃 试验测定的结果有明显不同,2mm摆锤刀刃的结果可能 高于8mm摆锤刀刃的结果
– 试验前应检查并保证砧座跨距应为40+0.2mm。
12.06.2020
– 一般情况下,尖锐缺口和深缺口试样适用于韧性 较好的材料。
当试验材料厚度<10mm:宽度7.5mm、 5mm或2.5mm的小尺寸试样
– 其他尺寸与标准试样相同 – 缺口开在试样的窄面上。
试样的加工
12.06.2020
zzf
11
名称 l长度 高度 -标准试样宽度 -小试样宽度
缺口角度 缺口底部高度
zzf
38
与试验机有关的因素
试验机的精度
– 冲击试验机能量指示装置的相对误差尤其 是能量指示装置的回零差对冲击试验结果 有直接影响。
摆锤与机架的配合
– 摆锤与机架的相对位置的正确性及稳定性, 尤其是冲击刀刃与支座跨距中心的重合性 及摆锤刀刃与试样纵向轴线的垂直度对于 获得准确试验结果有很大的影响。
复试合格判据
– 6个试样冲击功平均值标准值
– 12.06.2020 冲击功低于标准值的zzf 试样不超过2个
33
第四节 影响冲击性能测定的 主要因素
与材料有关的因素
化学成分、金相组织、晶粒度、以及是 否含有夹渣、偏析、白点、裂纹以及非 金属夹杂物超标等冶金缺陷或过热、过 烧、回火脆性等热加工缺陷都对样品的 冲击性能产生影响
– 一般来说,只有当试样缺口轴线与线支座跨距中心 偏离超过0.5mm时,对试验结果才有明显影响。
– 规定时,在规定温度±2℃范围内进行。
检查试样尺寸
– 用游标卡尺测量宽度、厚度、缺口处厚度;
– 用光学投影仪检查缺口尺寸。
12.06.2020
zzf
22
试验前准备工作
选择冲击试验机
– 根据所试验材料,估计试样吸收能量大小,选择合
适的冲击试验机能力范围,使试样吸收能量K不超 过实际初始势能Kp的80﹪,试样吸收能量K的下
90°
±2°

12.06.2020
zzf
12
90°
±2°
名称 l长度 高度 -标准试样宽度 -小试样宽度
缺口底部高度
缺口根部半径 缺口对称面-端部距离 缺口对称面-试样纵轴角度
12.06.2020
试样纵向面间夹角
U型缺口试样
公称尺寸
机加工公差
55mm
±0.60mm
10mm
±0.11mm
10mm
±0.11mm
如果试样卡在试验机上,则试验结果无效,应重新补做试验
相关文档
最新文档