人教版八年级数学上册 13.4课题学习 最短路径问题 教学设计
人教版八年级数学上册:13.4课题学习最短路径问题(将军饮马为题)教案

三、教学难点与重点
1.教学重点
-理解并掌握轴对称的性质,以及在实际问题中的应用。
-学会利用轴对称性质解决最短路径问题,特别是将军饮马问题。
-掌握通过直观感知、操作确认、推理证明等数学活动来解决几何问题。
其次,小组讨论环节,学生的参与度很高,大家积极分享自己的观点。但我注意到,有些小组在讨论时可能会偏离主题,讨论一些与最短路径问题不相关的内容。这提示我在今后的教学中,需要更加明确讨论的主题和目标,适时引导学生回到主题上来。
另外,实践活动的设计上,我觉得还可以进一步优化。虽然实验操作能够帮助学生理解最短路径的概念,但我觉得可以增加一些更具挑战性和实际意义的任务,让学生在实践中遇到更多的问题,从而激发他们更深层次的思考和探索。
教学内容:
(1)回顾线段的性质,强调线段是两点间距离最短的路径。
(2)引入将军饮马问题,探讨在给定条件下如何找到最短路径。
(3)学习轴对称的性质,掌握将问题转化为轴对称问题的方法。
(4)应用轴对称性质解决将军饮马问题,得出最短路径的解法。
(5)通过例题和练习,巩固最短路径问题的求解方法。
二、核心素养目标
在难点和重点的讲解上,我尽量使用了简单的语言和生动的例子,但仍有部分学生在理解上存在障碍。我考虑在下一节课前,通过一些小测验来检测学生对这些概念的理解程度,以便我能够更有针对性地进行辅导。
此外,我也意识到,对于一些接受能力较强的学生,他们在掌握了基本概念后,可能需要更多拓展性的内容来满足他们的学习需求。因此,我计划在后续的课程中,提供一些难度较高的题目,让他们在挑战中进一步提升自己的能力。
3.重点难点解析:在讲授过程中,我会特别强调轴对称性质和线段性质这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。
13.4课题学习 最短路径问题教学设计

13.4 课题学习最短路径问题(第一课时)一、内容和内容解析1.内容利用轴对称研究某些最短路径问题。
2.内容解析最短路径问题是人教版八年级上册第十三章第四节内容,本节课以一个实际问题为载体开展对“最短路径问题”的课题研究,让学生将实际问题抽象为数学中线段之和最小问题,并建立数学模型,学会用数学的眼光观察现实世界.初步了解利用图形变换——轴对称的方法来解决最值问题,体会用数学的思维思考现实世界。
从内容上来看,在本章节之前学生已经学习了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,以及简单的轴对称知识,这为过渡到本节的学习起着铺垫作用。
本节课既轴对称知识运用的延续,从初中数学的角度来看,也是中考数学的热点问题之一,本节课的教学内容是解决中考最值综合问题的基础,具有承上启下作用。
本节课的教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。
二、目标和目标解析1.目标(1)能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想。
(2)通过实际问题的提出,能够抽象为数学问题,并建立数学模型,利用所掌握的数学知识完成严谨的推理过程,然后再解决实际问题。
体会数学在实际生活中的价值。
2.目标解析达成目标 1 的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线",把实际问题抽象为数学的线段和最小问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想。
达成目标 2 的标志是:课题学习本身是考察综合能力,注重现实背景,学生能从生活中自己发现问题,并抽象成数学模型,掌握转化的探究方法,将不熟悉的模型转化成所学过简单的数学模型,通过合作探究,解决问题。
三、教学问题诊断分析已形成的:我校八年级学生已经学习轴对称相关的简单知识,掌握了“两点之间,线段最短”“三角形两边之和大于第三边”等相关理论,思维活跃,敢于尝试,具备一定的动手操作能力和小组合作意识,同时也具备一定的数学抽象能力和数学建模能力。
人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例

4.鼓励学生积极参与评价,培养学生的评价能力和批判性思维。
四、教学内容与过程
(一)导入新课
1.教师通过一个有趣的现实生活中的选址问题,如“如何在两个村庄之间建一座桥,使得两地之间的距离最短?”引起学生的兴趣。
2.学生尝试用自己的知识解决此问题,教师引导学生思考问题的方法论。
人教版数学八年级上册13.4课题学习最短路径造桥选址实验教学探究优秀教学案例
一、案例背景
人教版数学八年级上册13.4课题学习“最短路径造桥选址实验教学”探究优秀教学案例,是基于学生在学习了平面直角坐标系、一次函数和二次函数等知识的基础上,对“线性规划”的初步认识。此章节内容旨在让学生通过实验探究,掌握线性规划的基本方法,解决实际问题。
在教学过程中,我以“最短路径造桥选址”为例,让学生结合生活实际,探讨如何在一个城市中选择最佳的桥梁建设位置,以达到连接两个区域、节省路程、提高效率的目的。通过对问题的探究,引导学生运用所学的数学知识,解决实际问题,提高学生的实践能力和创新能力。
在教学设计上,我充分考虑了学生的认知规律和兴趣,将抽象的数学知识与具体的生活情境相结合,以实验教学为主线,让学生在动手操作、观察分析、合作交流的过程中,掌握线性规划的方法。同时,我注重引导学生进行思考,激发学生的学习兴趣,培养学生的自主学习能力。
4.全面提高学生的数学素养:通过对实际问题的解决,本节课不仅使学生掌握了线性规划的基本方法,还培养了学生的观察力、动手能力、思维能力、沟通能力和团队协作能力,全面提高了学生的数学素养。
5.教学策略灵活多样:教师根据学生的认知规律和兴趣,采用了情景创设、问题导向、小组合作等多种教学策略,使学生在轻松愉快的氛围中学习,提高了教学效果。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例

4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。
人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题

人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
人教版数学八年级上册13.4课题学习最短路径问题将军饮马优秀教学案例

在本章节的学习过程中,学生将经历以下过程与方法:
1.通过小组合作、讨论交流的方式,培养学生的团队协作能力和沟通能力。
2.引导学生从实际问题出发,培养学生的发现问题、分析问题和解决问题的能力。
3.利用数学软件、教具等辅助工具,培养学生的动手操作能力和实际应用能力。
4.通过对最短路径问题的探讨,引导学生掌握数学建模的方法,提高学生的数学思维能力。
4.教师巡回指导,关注每个小组的学习情况,及时解答学生疑问。
(四)反思与评价
1.教师引导学生对所学知识进行总结、反思,帮助学生巩固知识点,形成知识体系。
2.鼓励学生自我评价,反思自己在解决问题过程中的优点和不足,培养学生的自我认知能力。
3.组织小组互评,让学生学会欣赏他人的优点,发现自身的不足,促进团队合作。
3.对学生提出的解决方案进行讨论、分析,找出最优解,并解释其原理。
(三)小组合作
小组合作是实现教学目标的重要途径,具体策略如下:
1.将学生分成若干小组,每组4-6人,确保组内成员在知识、能力、性格等方面具有一定的互补性。
2.各小组针对问题进行讨论、研究,共同寻找解决方案。
3.小组间进行交流、分享,互相学习,取长补短。
4.教师对学生在课堂上的表现进行评价,给予肯定和鼓励,指出需要改进的地方。
(五)作业小结
在作业小结环节,我将布置以下任务:
1.请学生运用所学知识,解决一个生活中的最短路径问题,并以作文或报告的形式提交。
2.要求学生在作业中阐述自己的思考过程、解决方案和心得体会,以提高学生的书面表达能力。
3.鼓励学生进行课后拓展,了解其他求解最短路径的方法,如:A*算法、遗传算法等,提升学生的自主学习能力。
3.小组间进行分享、交流,互相借鉴,完善各自的方法和思路。
13.4 课题学习-最短路径问题人教版数学八年级上册同步课堂教案
第十三章轴对称13.4 课题学习最短路径问题一、教学目标1.能利用轴对称、平移等变换解决简单的最短路径问题.2.体会图形的变化在解决最值问题中的作用,感受由实际问题转化为数学问题的思想.二、教学重难点重点:利用轴对称、平移等变换解决简单的最短路径问题.难点:体会图形的变化在解决最值问题中的作用.三、教学过程【新课导入】[复习导入]1.如图,连接A、B两点的所有连线中,哪条最短?你的依据是什么?(②最短,依据“两点之间,线段最短”)2.如图,P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?你的依据是什么?(PC 最短,依据“垂线段最短”)3.如图,直线l是线段AB的对称轴,C是直线l上任意一点,则AC和BC的大小关系是什么?你的依据是什么?(AC=BC.依据“线段垂直平分线上的点到线段两端点的距离相等”.)4.如图,如何做点A关于直线l的对称点?(作法:(1)过点A作直线l的垂线,垂足为O;(2)在垂线上截取OA′=OA.点A′就是点A关于直线l的对称点.可简记为:作垂线;取等长)教师带领学生复习与最短路径相关的知识,为本节课的学习做准备.【新知探究】知识点1牧人饮马问题[提出问题]引例如图,若点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?这里强调一下两点的位置:直线l异侧的两个点.[课件展示]教师利用多媒体展示如下动画过程:[提出问题]你找到的是哪个点?[学生回答]学生观察后,发现第3条线段很明显是最短的.依据是“两点之间,线段最短”.[提出问题]根据这个依据,你可以得到作法吗?[课件展示]教师利用多媒体展示如下作图过程:作法:连接AB,与直线l相交于一点C.点C即为所求作的点.[课件展示]教师利用多媒体展示如下问题1:问题1 如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?[提出问题]这是一个实际问题,那么我们怎样把它转化成数学问题呢?[小组讨论]学生分组讨论,教师引导学生可分别把A地、B地看成点,把笔直的河边看成直线,再用数学语言描述一下问题.学生讨论完毕,教师点名每组代表回答,教师纠错.[课件展示]教师利用多媒体展示如下转化过程:问题转化一:那么该实际问题就转化为这样的数学问题:如图,点A,B分别是直线l同侧的两个点,如何在l上找到一个点C,使得AC+CB的最小?这里注意强调点A,B的位置:是直线l同侧的两个点.[课件展示]教师利用多媒体展示如下动画:[提出问题]你找到的是哪个点?[学生回答]学生观察后,发现很难找到点的位置.[课件展示]教师利用多媒体展示如下两幅对比图:[提出问题]你能找出两幅图中,A,B两点的位置有什么不同吗?(同侧、异侧)[课件展示]教师利用多媒体展示如下动画:[提出问题]我们分析,如果我们能把点B“移”到l 的另一侧B′处,同时对于直线l 上的任一点C,都保持CB 与CB′的长度相等,就能把这个“同侧”的问题转化为“异侧”的问题. 那么怎么找到B′呢?(作出点B关于直线l的对称点B′,利用轴对称的性质,可以得到CB′=CB.)[课件展示]教师利用多媒体展示如下动画:此时,问题就转化为:当点C在l的什么位置时,AC+CB′最小.[学生回答]很明显,连接AB′,与l的交点即为点C.[课件展示]教师利用多媒体展示如下作图过程:作法:(1)作点B关于直线l的对称点B′;连接AB′,交直线l于点C.点C即为所求作的点.[提出问题]怎样证明点C的位置即为所求?在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.[学生思考]给学生思考时间,教师提示,蓝色的两条线段相等,绿色的两条线段相等,A、C、B在一条直线上.学生思考完毕,教师点名学生说出自己的答案,教师纠错.[课件展示]教师利用多媒体展示如下证明过程:证明:如图,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.∴AC +BC=AC +B′C=AB′,∴AC′+BC′=AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴AC +BC<AC′+BC′.即AC +BC 最短.[归纳总结]利用”牧人饮马“模型解决最值问题的应符合的条件:(1)定直线l;(2)两定点A,B,且两定点在直线l的同侧;(3)所求作的动点C在直线l 上.解决”牧人饮马“问题的步骤:(1)找:由轴对称的性质,作其中一个定点(如B)关于直线l 的对称点(B′);(2)连:连接另外一个定点(A)与对称点(B′);(3)交:连线与直线l 的交点(C′)所在的位置即为所求作的点(C).[课件展示]教师利用多媒体展示如下例题:例1 如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,F是AD边上的动点,则BF+EF的最小值为( B )A.7.5 B.5 C.4 D.不能确定教师根据“牧人饮马”模型解决最值问题的应符合的条件,在图中依次找到定直线、两定点、一动点.【解析】∵△ABC为等边三角形,D是BC边的中点,∴点B与点C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长即为BF+EF的最小值.思考:作点E关于AD的对称点可以吗?为什么不选择这个方法?知识点2造桥选址问题[课件展示]教师利用多媒体展示如下问题1:问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直)[提出问题]这是一个实际问题,我们同样需要把它转化成数学问题来解决.经过了刚才我们对问题1的转化,你能将这个实际问题转化为数学问题吗?[小组讨论]学生分组讨论,教师引导学生可分别把A地、B地和造桥的起始两个位置看成点,把河岸看成直线,再用数学语言描述一下问题.学生讨论完毕,教师点名每组代表回答,教师纠错.[课件展示]教师利用多媒体展示如下转化过程:问题转化一:该实际问题就转化为这样的数学问题:N 为直线b 上一点,且NM ⊥直线a 于点M ,当点N 在直线b 的什么位置时,AM+MN+NB 最小.[课件展示]教师利用多媒体展示如下动画:[提出问题]你找到的是哪个点?[学生回答]学生观察后,发现很难找到点的位置.此时,教师引导学生发现,桥的长度是不变的,进而可得到:问题转化二:由于河岸的宽度MN 是固定的,这样问题就转化为:当点N 在直线b 的什么位置时,AM+NB 最小.[课件展示]教师利用多媒体展示如下两幅对比图:[提出问题]你能找出这两幅图有什么不同吗?(两条直线、一条直线)[课件展示]教师利用多媒体展示如下动画:[提出问题]我们分析,如果我们能把两条直线转化成一条直线,就能把这个问题转化成“引例”的问题了.[课件展示]教师利用多媒体展示如下动画:转化成了引例中的模型该折线即为最短路径[课件展示]教师利用多媒体展示如下作图过程:作法:(1)平移点A到点A′,使AA′等于河宽;(2)连接A′B,A′B与直线b的交点,即为所求作的点N;(3)过点N作NM⊥直线a于点M.点M和点N的位置即为造桥的位置.[提出问题]怎样证明造桥位置的正确性呢?在直线b上另外任取一点N′,过点N′作N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B,证明AM+MN+NB <AM′+M′N′+N′B.你能完成这个证明吗?[学生思考]给学生思考时间,教师提示,蓝色的两条线段相等,绿色的两条线段相等,黄色的两条线段相等,A′、N、B在一条直线上.学生思考完毕,将解题过程写在练习本上,教师巡视,帮助有困难的学生,之后教师点名学生说出自己的答案,并纠错.[归纳总结]解决”造桥选址“问题的步骤:(1)一移;(2)二连;(3)三交;(4)四垂直.在解决最短路径问题时,我们通常利用轴对称、平移等变化把未知问题转化为容易解决的问题,从而作出最短路径的选择.【课堂小结】【课堂训练】1.如图,点A,B是直线l同侧不重合的两点,在直线l上求作一点C,使得AC+BC的长度最短.作法:①作点B关于直线l的对称点B′;②连接AB′,与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有用到的知识或方法是( D )A.转化思想B.三角形两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的任意一个内角2.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是( D )3.(2021•天津二模)如图所示的平面直角坐标系中,点A的坐标为(4,2),点B的坐标为(1,-3),在y轴上有一点P,使PA+PB的值最小,则点P的坐标为( D )A. (2,0) B . (-2,0) C. (0,2) D. (0,-2)【解析】如图,作B点关于y轴的对称点B',连接AB',交y轴于一点,该点即为所求的点P.过点A作x轴的垂线,交B'B的延长线于点C,则∠C=90°,设BB'交y轴于点D,则OD=|-3|=3.∵点B坐标为(1,-3) ,∴B'(-1 ,-3 ) .∵易得B'C=1+4=5,AC=2=3=5 ,∴B'C=AC.∴∠B'=45°.∴PD=B'D=1.∴OP=2 ,∴P (0,-2 ).故选D.4.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是1000米.【解析】延长AC至点A′,使得A′C=AC,连接A′B交CD于点E,连接AE,则E即为所求的点.易得A′C=AC=BD,又AC⊥CD,BD⊥CD,∠A′EC=∠BED.∴△A′CE≌△BDE(AAS),则E是CD 的中点,∴AE=500,所以AE+BE=500+500=1000.5.(2021•江西模拟)如图,等腰三角形ABC的底边BC长为10,面积是40,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为 13 .【解析】如图,连接AD,AM.∵△ABC是等腰三角形,D是BC边的中点,BC=10,∴CD=5,AD⊥BC,∴S△ABC=BC•AD=×10×AD=40,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴MA=MC,∵MC+MD=MA+MD≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长的最小值=AD+CD=8+5=13.故答案为13.6.两棵树的位置如图所示,树的底部分别为点A,B,有一只昆虫沿着A至B的路径在地面爬行,小树的树顶D处有一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小虫在AB之间何处被小鸟抓住时,小鸟飞行路程最短,在图中画出该点的位置.方法一:解:如图,作点C关于AB的对称点C′,连接DC′交AB于点E,则点E即为所求.方法二:解:如图,作点D关于AB的对称点D′,连接CD′,同样交AB于点E的位置,则点E即为所求.7.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?解:(1)作AF⊥CD,且AF=河宽;(2)作BG⊥CE,且BG=河宽;(3)连接GF,与河岸相交于E ′,D ′;(4)作DD′,EE′即为桥.8.(1)如图①,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点.(2)如图②,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点.(3)如图③,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点.【变式】(2021•吉安模拟)如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,BC>AB,DE >AE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为 120° .【解析】如图,作A点关于BC的对称点A',关于ED的对称点A'',连接A'A'',A'A''与BC的交点即为所求的点M,A'A''与ED的交点即为所求的点N,∵∠B=∠E=90°,∴A、B、A'共线,A、E、A''共线,∴∠A'=∠A'AM,∠A''=∠NAE,∴∠A'AM+∠NAE=∠A''+∠A'=180°﹣∠BAE=180°﹣120°=∠60°,∴∠AMN+∠ANM=180°﹣∠MAN=180°﹣(120°﹣∠A'AM﹣∠NAE)=120°,故答案为120°.【教学反思】本节课我通过引例(两点在直线的异侧),让学生认识到找最短路径的根本是通过"两点之间,线段最短”找出解决问题的途径,接下来通过"牧人饮马”让学生带着兴趣进入教学。
人教版数学八年级上册13.4课题学习最短路径问题说课稿
三、教学方法与手段
(一)教学策略
在本节课中,我将主要采用问题驱动的教学法和案例教学法。问题驱动的教学法能够激发学生的思考和探究欲望,通过解决实际问题,使学生理解和掌握知识。案例教学法则能够提供具体的实例,使学生能够将理论知识与实际问题相结合,提高解决问题的能力。这两种方法的选择基于现代教育理念,即以学生为中心,注重培养学生的思维能力和实践能力。
(二)新知讲授
在新知讲授阶段,我会逐步呈现最短路径问题的知识点,引导学生深入理解。首先,我会介绍最短路径问题的定义和基本概念,让学生理解什么是路径、什么是距离等。然后,我会引入图解法和解析法两种解决方法,通过图示和实例讲解图解法的原理和步骤,通过公式和推导讲解解析法的原理和步骤。在讲解过程中,我会引导学生积极参与,提问和解答疑问,帮助学生深入理解知识点。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计一些巩固练习和实践活动。例如,我可以设计一些实际问题的练习题,让学生运用图解法或解析法解决这些问题。同时,我可以组织小组合作实践活动,让学生共同解决一个实际问题,例如设计一个城市的公交路线,找出最短路径。通过这些练习和实践活动,学生能够巩固所学知识,并提升解决问题的能力。
(三)教学重难点
1.教学重点:最短路径问题的定义、图解法、解析法及其应用。
2.教学难点:图解法在实际问题中的应用,解析法的推导过程。
针对学生的认知水平,本节课的教学重点是让学生掌握最短路径问题的解决方法,教学难点在于让学生理解和掌握图解法在实际问题中的应用以及解析法的推导过程。在教学过程中,教师需要通过举例、讲解、引导学生动手操作等方式,帮助学生克服这些难点。
人教版数学八年级上册《13.4 课题学习 最短路径问题》教学设计2
人教版数学八年级上册《13.4 课题学习最短路径问题》教学设计2一. 教材分析《人教版数学八年级上册》第13.4课题学习“最短路径问题”是本册内容的一个重要组成部分。
本节课主要让学生了解最短路径问题的背景和应用,掌握利用图的性质和简单的图算法解决最短路径问题的方法。
通过本节课的学习,学生能够进一步提高分析问题和解决问题的能力,培养逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的相关知识,如图的定义、图的表示方法、图的性质等。
同时,学生也了解了一些简单的算法,如深度优先搜索、广度优先搜索等。
但部分学生对这些知识的掌握程度不够扎实,对算法的理解也相对模糊。
因此,在教学过程中,需要关注这部分学生的学习情况,引导他们更好地理解和掌握本节课的内容。
三. 教学目标1.了解最短路径问题的背景和应用,理解最短路径的概念。
2.掌握利用图的性质和简单的图算法解决最短路径问题的方法。
3.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.教学重点:最短路径问题的解决方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
2.教学难点:算法的原理和实现,以及如何将实际问题转化为最短路径问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.案例教学法:分析具体的最短路径问题案例,让学生直观地了解问题的解决过程。
3.算法分析法:引导学生分析算法的原理和实现,提高学生的逻辑思维能力。
4.小组合作学习:鼓励学生分组讨论和合作解决问题,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示最短路径问题的背景、应用和解决方法。
2.案例材料:准备一些具体的最短路径问题案例,供学生分析和讨论。
3.编程环境:为学生提供编程环境,以便他们在课堂上实践算法。
七. 教学过程1.导入(5分钟)利用课件展示最短路径问题的背景和应用,如地图导航、网络通信等。
引导学生关注最短路径问题,激发学生的学习兴趣。
八年级数学上册 13.4 课题学习 最短路径问题教学设计 (新版)新人教版
八年级数学上册 13.4 课题学习最短路径问题教学设计(新版)新人教版一. 教材分析“课题学习最短路径问题”是人教版八年级数学上册第13.4节的内容。
这部分内容主要让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
教材通过引入一个实际问题,引导学生探讨并找出解决问题的方法,从而培养学生解决问题的能力和兴趣。
二. 学情分析八年级的学生已经掌握了图论的基本知识,如图的定义、图的表示方法等。
但是,对于图的最短路径问题,学生可能还没有直观的理解和认识。
因此,在教学过程中,教师需要结合学生的已有知识,通过实例讲解、动手操作等方式,帮助学生理解和掌握最短路径问题。
三. 教学目标1.知识与技能目标:让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
2.过程与方法目标:通过探讨实际问题,培养学生解决问题的能力和兴趣。
3.情感态度与价值观目标:培养学生对数学的热爱,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:最短路径问题的实际应用,图论中的最短路径算法。
2.教学难点:如何引导学生从实际问题中抽象出最短路径问题,并运用图论知识解决。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.实例讲解法:通过具体的实例,讲解最短路径问题的解决方法,帮助学生理解和掌握。
3.动手操作法:让学生亲自动手操作,加深对最短路径问题的理解。
六. 教学准备1.教学素材:准备一些实际问题的案例,以及相关的图论知识介绍。
2.教学工具:多媒体教学设备,如PPT等。
3.学生活动:让学生提前预习相关内容,了解图论的基本知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入最短路径问题,激发学生的学习兴趣。
例如,讲解从一个城市到另一个城市,如何找到最短的路线。
2.呈现(15分钟)讲解最短路径问题的定义,以及图论中最短路径算法的基本原理。
通过PPT等教学工具,展示相关的知识点,让学生直观地了解最短路径问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4课题学习
最短路径问题
教学内容解析:
本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“三角形两边之和大于第三边”为知识基础,有时还要借助轴对称、平移变换进行研究。
本节课以数学史中的一个经典故事----“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间、线段最短”的问题。
教学目标设置:
1、能利用轴对称解决简单的最短路径问题
2、在谈最短路径的过程中,体会“轴对称”的桥梁作用,感悟转化的数学思想。
教学重点难点:
重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。
难点:如何利用轴对称将最短路径问题转化为线段和最小问题。
学生学情分析:
1、八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学意识的思想比较薄弱,自主探究和合作学习能力也需要在课堂教学中进一步引导。
此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一定的数学新知识,但在数学的说理上还不规范,集合演绎推理能力有待加强。
2、学生已经学习过“两点之间,线段最短。
”以及“垂线段最短”。
以及刚刚学习的轴对称和垂直平分线的性质作为本节知识的基础。
教学策略分析:
最短路径问题从本质上说是最值问题,作为八年级学生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,
无从下手。
解答“当点A、B在直线l的同侧时,如何在l上找到点C,使AC与BC的和最小”,需要将其转化为“直线l异侧的两点,与直线l上的点的线段的和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难。
在证明“最短”时,需要在直线上任取一点(与所求做的点不重合),证明所连线段和大于所求作的线段和,这种思路和方法,一些学生想不到。
教学时,教师可以让学生首先思考“直线l异侧的两点,与直线l上的点的和最小”为学生搭建桥梁,在证明最短时,教师要适时点拨学生,让学生体会任意的作用。
教学条件分析:
在初次解决问题时,学生出现了多种方法,通过测量,发现利用轴对称将同侧两点转化为异侧两点求得的线段和比较短;进而利用几何画板通过动画演示,实验验证了结论的一般性;最后通过逻辑推理证明。
教具准备:直尺、几何画板,ppt
教学过程:
环节教师活动学生活动设计意图
一
复习引入1.【问题】:看到图片,回忆
如何用学过的数学知识解释这
个问题?
2.这样的问题,我们称为“最
短路径”问题。
1、两点之间,线段最
短。
2、两边之和大于第三
边。
从学生已经学
过的知识入
手,为进一步
丰富、完善知
识结构做铺
垫。
二探究新知1.探究一:
【故事引入】:唐朝诗人李颀
在《古从军行》中写道:“白
日登山望峰火,黄昏饮马傍交
河.”诗中就隐含着一个有趣
的数学问题,古时候有位将
军,每天从军营回家,都要经
过一条笔直的小河。
而将军的
马每天要到河边喝水,那么问
题来了,
问题:怎样走才能使总路程最
短呢?
认真读题,仔细思考。
将实际问题中的“地
点”“河”抽象为数学
中的“点”“线”,把
实际问题抽象线段和最
小问题。
从异侧问题入
手,由简到
难,逐步深
入。
2.探究二:
【变换情境】:后来将军把家
搬到了河的对面,若还是要带
马先到河边喝水,然后再回
家,应该怎样走,才能使总路
程最短呢?
(1)【转化】:你能将实际
问题抽象为数学问题吗?
(2)【展示】:
让学生猜想,并画出图形。
巡视发现学生不同的作法(尽
可能多),分别展示各小组的
作法。
【回答】:学生思考并
回答,如何将实际问题
转化为数学问题。
已知:直线L和同侧两
点A、B
求作:直线L上一点C,
使C满足AC+BC的值最
小。
【学生展示】:
作法1:
作法2::
五
范例分析1.【问题】:如图,一个旅游
船从大桥AB的P处前往山脚
下的Q处接游客,然后将游客
送往河岸BC上,再回到P
处,请画出旅游船的最短路
径。
在具体问题中
实践已有模
型,固化已有
模型。
为进一
步丰富、完善
知识结构做铺
垫。
六巩固练习1.【题目】:如图,直线l
是一条河,P、Q为河同侧
的两地,欲在l上某处修
建一个水泵站M,分别向
P、Q两地供水,四种方案
中铺设管道最短的是
()
2.【题目】:如图,在直角
三角形ABC中,角A=30
度,角C为直角,且
BC=1,MN为AC的垂直平
分线,设P为直线MN上任
一点,PB+PC的最小值为
3.如图,正方形ABCD边长为
8,M在BC上,BM=2,N
为AC上的一动点,则
BN+MN的最小值为
将军饮马模型的直接应
用。
习题难度,由
易到难,逐步
深入。
让学生
进一步巩固解
决最短路径问
题的基本策略
和基本方法。
七课堂小结1.【问题】:本节课研究问题
的基本过程是什么?
当我们遇到一个实际问题,首
先,我们要将实际问题变成一
个数学问题(群答),也就是
抽象成一个数学模型,这样可
以帮助我们进行实验观察,进
而运用合情推理得到一个猜
想,然后我们可以通过严谨的
逻辑证明,验证猜想,从而得
出结论,最后再将结论运用到
实际问题里。
2.【问题】:轴对称在所研究
问题中起什么作用?
利用轴对称主要是进行问题的
转化,它其实是起到了一个桥
梁的作用,同时也体现了我们
我们要先将实际问题变
成一个数学问题,然后
观察实验,提出猜想,
之后通过证明,验证猜
想,从而得出结论,最
后再将结论运用到实际
问题里。
转化作用
培养学生总结
在课题学习的
基本思路。
目标检测设计:
题目1、(课后练习)课本93页,第15题。
设计意图:
本题难度适中,适合作为课后练习,是学生跳一跳能摘到的果子,达到复习本节课知识方法,又为后续学习打下基础。
题目2、(拓广探索)在∠AOB内有一点P,在射线OA上找一点M,在射线OB上找一点N, 的周长最短。
使PMN
设计意图:
学以致用,并且有提高和挑战,作两次轴对称。
在解决最短路径问题时,通常利用轴对称将同侧转化为异侧问题,化折线为直线,从而作出最短路径的选择。