机械振动和机械波知识点总结
高二物理选修 机械振动和机械波 综合、总结与拓展

高二物理选修 机械振动和机械波 综合、总结与拓展一、知识地图二、应考指要本章知识在近几年高考中以选择题、填空题为主,在振动图象和波的图象上出题的概率比较大,而图象又是概念的集中体现,所以要高度重视对图象的理解和应用。
在振动部分,首先要掌握简谐运动在一个周期时间内,回复力、位移、加速度、速度的变化规律;单摆作为简谐运动的一个典型实例要较高,周期的计算、等效法的运用(等效摆长、等效重力加速度)是难点。
在波的部分,要着重理解波的周期性和对称性的特征,这一点在波的图象上尤其得到体现,还要掌握波的图象与振动图象的互推。
干涉、衍射、多普勒效应在概念上、产生条件和方式上要理解到位,看似很小的知识点可能被引申为综合计算题,如2004年的多普勒效应问题。
本章知识具有一定的可综合性,在力、运动、动量、能量等方面可以进行综合,第一轮复习时可以适当展开,以加强综合能力的培养。
三、好题精析例1 两个单摆摆长相同,一个静止于地面,一个个静止在悬浮于高空的气球中。
地面上的单摆摆动了n 次全振动时,气球中的单摆摆动了n -1次全振动。
已知地球半径为R ,求气球的高度?〖解析〗 T =n t=2πg lT ’=1 n t =2π'g l所以 g g '=22)1(n n -=22)(h R R + 所以 h =1-n R〖点评〗要了解全振动的次数与周期的反比关系,同时要掌握周期受重力加速度的影响,重力加速度随高度改变而发生变化。
例2 图7-5-1所示为一单摆的共振曲线,则该单摆的摆长约为多少?共振时单摆的振幅是多大?共振时单摆的最大速度和最大加速度各是多大?(g 取10m/s 2)〖解析〗由图可知,单摆的固有频率为0.5Hz ,所以周期为2s.T=2πgl 得 l=224fg π=1(m)共振时的振幅A =8cm.设最大偏角为θ,摆球能下降的最大高度为h ,则21mv m 2=mgh h=l(1-cos θ) 1-cos θ=2sin 22θ 又因为θ很小,sin 2θ≈l A 2所以 v m =lAgl =0.25m/s摆球在端点时加速度最大a m =gsin θ≈glA=0.8m/s 2. 〖点评〗在单摆这个近似的简谐运动系统中,应用到了许多三角函数的近似计算,需要很好得掌握。
机械振动和机械波知识点总结复习过程

机械振动和机械波、知识结构二、重点知识回顾1机械振动(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位 置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力, 它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a 物体离开平衡位置后要受到回复力作用。
b 、阻力足够小。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡 位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也 可说是物体在跟位移大小成正比, 方向跟位移相反的回复力作用下的振动, 即F= — kx ,其中 “一”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比, 方向跟位移方向相反 的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用, 简谐振动的特点在于它是 一种周期性运动, 它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能) 都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入 面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“ A ”表示,它是标量,为正 值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动 在振动过程中,动阻尼 振动1一[周期性运动特征「变加速运动机械能守恒>描写物理量 —&振幅A 、频率f 、周期T描述方法 <■振动在媒质中传递受迫振动周期公式(测g )周期、频率|一| 波速 波长入=vT=v/f机械振动图象法共振描写物理量—沙波动特征传播规律简谐波机械波能和势能相互转化而总机械能守恒。
机械振动和机械波

机械振动和机械波1. 引言机械振动和机械波是物理学中重要的概念,涉及到物体在空间中的运动和传播。
机械振动是指物体围绕平衡位置往复运动的现象,而机械波则是指在介质中能够传播的能量和信息。
本文将介绍机械振动和机械波的基本概念、特征和数学描述以及相关应用。
2. 机械振动机械振动是物体做往复运动的现象,它包括周期性振动和非周期性振动。
周期性振动是指物体在一定时间内反复做相同的运动,而非周期性振动则是指物体在一定时间内做不同的运动。
2.1 周期性振动周期性振动是最常见的一种机械振动。
一个周期性振动经历从平衡位置到最大位移再回到平衡位置的过程,称为一个完整的振动周期。
振动周期的时间称为周期,用符号T表示。
频率是指单位时间内振动的次数,用符号f表示,它的倒数即为周期:T = 1/f。
周期性振动的周期和频率可以通过以下公式计算:T = 2π√(m/k)f = 1/(2π)√(k/m)其中,m是振动物体的质量,k是恢复力常数或振动系统的刚度。
2.2 非周期性振动非周期性振动是指物体在一定时间内做不同的运动。
非周期性振动的描述需要使用更复杂的数学模型,例如分解为不同频率的正弦波,通过傅里叶变换等方法进行分析。
3. 机械波机械波是能量和信息在介质中传播的现象。
介质可以是固体、液体或气体。
机械波可以分为两类:横波和纵波。
横波是指波的传播方向和振动方向垂直的波动,例如水波;纵波是指波的传播方向和振动方向平行的波动,例如声波。
3.1 横波横波的传播方式是通过介质中的粒子振动引起相邻粒子的振动,从而使波沿垂直方向传播。
典型的横波是水波,当我们抛入一颗石头后,水面上就会出现圆形的波纹,波纹垂直传播,而水分子只是在垂直方向上做上下振动。
3.2 纵波纵波的传播方式是通过介质中的粒子振动引起相邻粒子的振动,从而使波沿传播方向传播。
典型的纵波是声波,当我们在空气中发出声音时,声音会以纵波的形式传播,空气分子在声波传播的方向上做着来回的压缩和膨胀。
高二物理必修二知识点总结

高二物理必修二知识点总结本文将对高二物理必修二的知识点进行总结,主要包括机械振动和机械波、光学以及电磁感应与电磁波三个部分。
每个部分将包括相关概念、公式和相关运用等内容。
一、机械振动和机械波1. 机械振动(1)振动的基本概念振动是物体围绕平衡位置作往复运动的现象。
振幅、周期、频率是描述振动的重要物理量。
(2)简谐振动简谐振动是指振动物体受到一个恢复力,且该力与物体的位移成正比。
简谐振动的振幅、周期、频率和角频率的计算公式为:\[A=\frac{F}k,T = \frac{2\pi}{\omega}, f = \frac{1}{T}, \omega=2\pi f\](3)受迫振动当一个简谐振动系统受到外力作用时,它的振动为受迫振动。
当外力的频率等于振动系统的固有频率时,系统将发生共振现象。
(4)阻尼振动在振动系统中存在着摩擦力,振动的振幅将随时间逐渐减小,这种振动称为阻尼振动。
2. 机械波(1)波的基本概念波是一种能够传播能量的现象,包括机械波和电磁波两种类型。
(2)机械波的特点机械波传播需要介质,具有传播方向和传播速度,并且可以产生折射、衍射和干涉等现象。
(3)波动方程机械波的波动方程为\[y(x,t) = A \sin(kx±\omega t + φ)\],其中k为波数,ω为角频率,A 为振幅。
二、光学1. 光的物理特性光是一种电磁波,具有波长、频率、振幅和传播速度等特点。
(2)光的干涉光的干涉是光波互相叠加产生的明暗条纹。
干涉现象可以用来测量光的波长和薄膜的厚度等。
(3)光的衍射光的衍射是光通过一个小孔或射向狭缝后,出现的偏折现象。
衍射可以用来证明光的波动性。
2. 光的几何光学(1)光的反射和折射根据光的反射定律和折射定律,可以求解反射和折射过程中的入射角、反射角和折射角等。
(2)成像公式凸透镜和凹透镜的成像公式分别为\[\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}, \frac{1}{f} = \frac{1}{d_o} - \frac{1}{d_i}\],其中f为焦距,do为物距,di为像距。
人教版2022年高中物理机械振动与机械波知识点总结(超全)

1 (每日一练)人教版2022年高中物理机械振动与机械波知识点总结(超全) 单选题 1、关于图片中的物理现象,描述不正确的是( )
A.甲图,水波由深水区传播至浅水区,波速方向改变,属于波的反射现象 B.乙图,水波穿过障碍物的小孔后,能传播至两侧区域,属于波的衍射现象 C.丙图,两列同频率的水波在空间叠加,部分区域振动加强,属于波的干涉现象 D.丁图,竹竿举起蜂鸣器快速转动,听到蜂鸣器频率发生变化,属于波的多普勒效应 答案:A 解析: A.水波从深水区传到浅水区改变传播方向的现象,是波的折射现象,A错误; B.乙图,水波穿过障碍物的小孔后,能传播至两侧区域,属于波的衍射现象,B正确; C.丙图,两列同频率的水波在空间叠加,部分区域振动加强,属于波的干涉现象,C正确; D.丙图,竹竿举起蜂鸣器快速转动,听到蜂鸣器频率发生变化,属于波的多普勒效应,D正确。 故选A。 2
2、如图甲所示, 弹簧振子以 𝑂 点为平衡位置, 在𝐴、𝐵两点之间做简谐运动,取𝐴 到 𝐵 为正方向,振子的位移 𝑥 随 时间 𝑡 的变化如图C所示,下列说法正确的是( )
A.𝑡=0.2s 时, 振子在 𝑂 点右侧 6cm 处 B.𝑡=0.4s 和 𝑡=1.2s 时,振子的加速度完全相同 C.𝑡=0.8s 时, 振子的速度方向为负方向 D.𝑡=0.4s 到 𝑡=0.8s 的时间内, 振子的速度逐渐减小 答案:C 解析: A.在0~0.4s内,振子做变速运动,不是匀速运动,所以t=0.2s时,振子不在O点右侧6cm处,根据数学知识可知此时振子的位移为6√2cm,故A错误;
B.t=0.4s和t=1.2s时,振子的位移最大,由𝑎=−𝑘𝑥𝑚知加速度最大,但方向不同,故B错误; C.由乙图可知,t=0.8s时,振子位移为0,说明振子正通过平衡位置,振子的速度负向最大,故C正确; D.𝑡=0.4s 到 𝑡=0.8s 的时间内, 振子向平衡位置运动,速度逐渐增大,故D错误。 故选C。 3、一列向右传播的横波在t=0时的波形如图所示,A、B两质点间距为8m,B、C两质点平衡位置的间距为3m,当t=1s时,质点C恰好通过平衡位置,该波的波速可能为( ) 3
机械振动与机械波

机械振动与机械波机械振动与机械波机械振动和机械波是物理学中常见的现象,它涉及到固体、液体和气体。
机械振动是物体在弹性力的作用下做来回运动的现象,机械波是一种能够传播的机械振动现象。
在机械振动和机械波中,物体随着时间的推移而产生能量的传输。
机械振动机械振动是指物体围绕平衡位置做往返运动的现象,这种运动通常是周期性的,周期是指物体达到相同位置所需的时间。
机械振动的强度通常是通过振幅来衡量的。
振幅是物体在振动过程中距离平衡位置的最大位移。
物体振动的频率是指物体完成一次往返运动所需的时间,单位是赫兹(Hz)。
常见的机械振动包括弹簧振动、简谐振动和自由振动。
弹簧振动是指在弹簧的弹性作用下,物体做有规律的往返振动。
弹簧振动的频率和振幅都取决于弹簧的弹性系数和物体的质量。
简谐振动是指物体在弹性力作用下做正弦振动的现象。
这种振动通常可以用简单的正弦函数来描述。
自由振动是指物体在没有外力干扰的情况下产生的振动。
在这种情况下,物体在达到最大振幅后会向平衡位置回复,然后再产生不同的振动。
机械波机械波是物理学中的另一个重要现象,它是一种能够在物质中传输能量的物理现象。
机械波的传播需要物质作为媒介,它的传播速度取决于媒介的密度、弹性模量和黏度。
机械波可分为纵波和横波。
在纵波中,物质在波的传播方向上做振动,而在横波中,物质在垂直于波的传播方向上做振动。
机械波通常可以分为两类:机械横波和机械纵波。
机械横波也称为横振动,这种波是一种波动方向与波传播方向互相垂直的波。
机械横波的传播需要一定的弹力支持,这种波可以通过弹性杆或电缆进行传播。
机械纵波是一种沿着波的传播方向振动的波。
这种波是由分子间的振动传递产生的,它可以在任何物质中自由传播,包括固体、液体和气体。
总结机械振动和机械波是物理学中常见的现象,它们通过能量传输的方式将能量传递给媒介。
机械波的传播需要物质作为媒介,而机械振动通常是由弹性力产生的。
在工程领域中,了解机械振动和机械波的基本原理是非常重要的,因为这可以帮助我们设计更优秀的产品和工程系统。
高中物理选修知识点机械振动与机械波解析
机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。
二、知识点说明1.弹簧振子(简谐振子):(1)平衡位置:小球偏离原来静止的位置;(2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械运动,这样的系统叫做弹簧振子。
(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。
2.弹簧振子的位移—时间图像弹簧振子的s—t图像是一条正弦曲线,如图所示。
3.简谐运动及其图像。
(1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。
(2)应用:心电图仪、地震仪中绘制地震曲线装置等。
三、典型例题例1:简谐运动属于下列哪种运动()A.匀速运动? ?B.匀变速运动C.非匀变速运动? ?D.机械振动解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。
故A、B错,C正确。
简谐运动是最简单的、最基本的机械振动,D正确。
答案:CD简谐运动的描述一、学习目标1.知道简谐运动的振幅、周期和频率的含义。
2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。
二、知识点说明1.描述简谐振动的物理量,如图所示:(1)振幅:振动物体离开平衡位置的最大距离,。
(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。
(3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。
(4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。
(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。
高中物理竞赛机械振动和机械波知识点讲解
高中物理竞赛机械振动和机械波知识点讲解知识点击1.简谐运动的描述和基本模型⑴简谐振动的描述:当一质点,或一物体的质心偏离其平衡位置x,且其所受合力kk2???xx?a???0)kx??(k?F满足,故得,F mm则该物体将在其平衡位置附近作简谐振动。
⑵简谐运动的能量:一个弹簧振子的能量由振子的动能和弹簧的弹性势能构成,111?222??kx??mkAE即222?F??kx,那么这个物体⑶简谐运动的周期:如果能证明一个物体受的合外力?m2?2??T,式中m一定做简谐运动,而且振动的周期是振动物体的质量。
?k⑷弹簧振子:恒力对弹簧振子的作用:只要m和k都相同,则弹簧振子的振动周期T就是相同的,这就是说,一个振动方向上的恒力一般不会改变振动的周期。
多振子系统:如果在一个振动系统中有不止一个振子,那么我们一般要找振动系统的等效质量。
悬点不固定的弹簧振子:如果弹簧振子是有加速度的,那么在研究振子的运动时应加上惯性力.5⑸单摆及等效摆:单摆的运动在摆角小于l?l和0时可近似地看做是一个简谐运动,振g2T?的含义及值会发生变化。
,在一些“异型单摆”中,动的周期为g(6)同方向、同频率简谐振动的合成:若有两个同方向的简谐振动,它们的圆频率??,则它们的运动学方程分别为和和都是ω,振幅分别为AA,初相分别为2121??)cos(A?t?x111??)cos(A?t?x222x仍应在同一直线因振动是同方向的,所以这两个简谐振动在任一时刻的合位移x?x?x上,而且等于这两个分振动位移的代数和,即21??)tAcos(?x?由旋转矢量法,可求得合振动的运动学方程为这表明,合振动仍是简谐振动,它的圆频率与分振动的圆频率相同,而其合振幅为22??)Acos(?AA?A?2A?121122??sinsinA?A?2211?tan合振动的初相满足??cosA?Acos2112 2.机械波:(1)机械波的描述:如果有一列波沿x 方向传播,振源的振动方程为y=Acosωt,?,那么在离振源x波的传播速度为远处一个质点的振动方程便是x???(t??Acos)y,在此方程中有两个自变量:t和x,当t不变时,这个方程描写?????某一时刻波上各点相对平衡位置的位移;当x不变时,这个方程就是波中某一点的振动方程.(2)简谐波的波动方程:简谐振动在均匀、无吸收的弹性介质中传播所形成的波ox xyo?轴正方向传播,振沿平面内,以波速叫做平面简谐波。
《大学物理教程》郭振平主编第十章 机械振动和机械波
第十章 机械振动和机械波一、基本知识点机械振动:物体在平衡位置附近的往复运动叫做。
胡克定律: 弹簧弹性力F 的大小与位移x 的大小成正比,而且F 的方向与位移方向相反,即F kx =-式中,k 为弹簧的劲度系数。
具有这种性质的力称为线性回复力。
简谐振动的运动学方程:cos()x A t ωϕ=+式中A 为振幅,表示振动物体离开平衡位置的最大位移的绝对值;()t ωϕ+是决定简谐振动状态的物理量,称为在t 时刻振动的相位,单位是弧度()rad ;ϕ为初相位,是0t =时刻的相位;ω=角频率。
简谐振动的动力学方程:2220d x x dtω+=简谐振动的频率:振动物体在单位时间内完整振动的次数,单位是赫兹()Hz 。
简谐振动的周期:振动物体完成一次完整振动所经历的时间,单位是秒()s 。
关系:周期T 是频率ν的倒数;ω=2πν=2π/T简谐振动物体的速度:sin()cos()2dx A t A t dt πυωωϕωωϕ==-+=++ 简谐振动物体的加速度:22222cos()cos()d xa A t x A t dtωωϕωωωϕπ==-+=-=++振幅:A = 初相位:arctanx υϕω-= 式中,0x 为t=0时刻的初始位移,0υ为t=0s 时刻的初始速度。
旋转矢量法: 用一个旋转矢量末端在一条轴线上的投影点的运动来表示简谐振动的方法。
以简谐振动的平衡位置O 作为x 轴的坐标原点,自O 点出发作一矢量A(其长度等于简谐振动振幅A )。
设0t = 时刻,矢量A 与x 轴所成的角等于初相位ϕ。
若矢量A以角速度ω(其大小等于简谐振动角频率ω)匀速绕O 点逆时针旋转,则在任一时刻矢量A末端在x 轴上的投影点P 相对原点的位移为cos()x A t ωϕ=+,显然,P 在x 轴上做简谐振动。
如图10-1所示。
cos()x A t ωϕ=+图10-1 简谐振动的旋转矢量法弹簧振子的弹性势能:222211cos ()22p E kx mA t ωωϕ==+弹簧振子的动能:222211sin ()22k E m mA t υωωϕ==+ 系统的总机械能:2212p k E E E mA ω=+=表明总机械能总量守恒。
高中物理机械波知识点[高中物理机械振动和机械波考点]
高中物理机械波知识点[高中物理机械振动和机械波考点](一)机械振动1.机械振动①定义:物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
②产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
2.简谐振动①定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k某,其中“-”号表示力方向跟位移方向相反。
②简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
③简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
3.描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
①振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
②周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。
振动的周期T跟频率f之间是倒数关系,即T=1/f。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
4.单摆:摆角小于5°的单摆是典型的简谐振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械振动和机械波知识点总结
公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N] 机械振动和机械波 一、知识结构
二、重点知识回顾
1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。
(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振 动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
(四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重
力在圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。
(五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。
(六) 机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。
(2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。
(3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。
(4)描述机械波的物理量关系: 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。
2. 会用图像法分析机械振动和机械波。
振动图像,例: 波的图像,例: 振动图 像与波 的图像 横坐标表示质点的振动时间 横坐标表示介质中各质点的平衡位置
表征单个质点振动的位移随时间变化的规律 表征大量质点在同一时刻相对于平衡位置的位移 的区别 相邻的两个振动状态始终相同的质点间的距离表示振动质点的振动周期。例: 相邻的两个振动始终同向的质点间
的距离表示波长。例:
振动图像随时间而延伸,而以前的形状保持不变,例: 波动图像一般随时间的延续而改变()时的波形图保持不变,例:
方法1 方法2 质点振 动方向 与 平移波形法:如图所示,一列横波向右传播,判断M点的振动方向。设想在极短时间内波向右平移,则下一刻波形如虚线上M正下方向的M’点,由此知M点应向下振动。反之,已知M向下振动,波形应该右移,故波是向右传播的。 质点振动比较法:波向右传播,右边M点的振动落后于左边的P点,故M点重复P点的振动,P点在M点的下方,应“追随”P点的运动,故M点向下振动,即“波向右传,M点向下运动”;“波向左传,M点向上运动”。
波传播方向的 判定 三、【典型例题分析】 【例1】单摆的运动规律为:当摆球向平衡位置运动时位移变___,回复力变____,加速度变 ,加速度a与速度υ的方向 ,速度变 ,摆球的运动性质为_____________________,摆球的动能变_____,势能变___;当摆球远离平衡位置运动时位移变___,回复力变___,加速度变___,加速度a与速度υ的方向____,速度变___,摆球的运动性质为_____________________,摆球的动能变____,势能变_____
、 【例2】 如图6-1所示,一个轻弹簧竖直固定在水平地面上,将一个小球轻放在弹簧上,M点为轻弹簧竖直放置时弹簧顶端位置,在小球下落的过程中,小球以相同的动量通过A、B两点,历时1s,过B点后再经过1s,小球再一次通过B点,小球在2s内通过的路程为6cm,N点为小球下落的最低点,则小球在做简谐运动的过程中:(1)周期为 ;(2)振幅为 ;(3)小球由M点下落到N点的过程中,动能EK、重力势能EP、弹性势能EP’的变化为 ;(4)小球在最低点N点的加速度大小 重力加速度g(填>、=、<)。
分析:(1)小球以相同动量通过A、B两点,由空间上的对称性可知,平衡位置O在AB的中点;再由时间上的对称性可知,tAO=tBO=, tBN = tNB =,所以tON=tOB+tBN=1s,因此
小球做简谐运动的周期T=4tON=4s。
图6-1 M A O B
N (2)小球从A经B到N再返回B所经过的路程,与小球从B经A到M再返回A所经过的路程相等。因此小球在一个周期内所通过的路程是12cm,振幅为3cm。
(3)小球由M点下落到N点的过程中,重力做正功,重力势能减少;弹力做负功,弹性势能增加;小球在振幅处速度为零,在平衡位置处速率最大,所以动能先增大后减小。
(4)M点为小球的振幅位置,在该点小球只受重力的作用,加速度为g,方向竖直向下,由空间对称性可知,在另一个振幅位置(N点)小球的加速度大小为g,方向竖直向上。
解答:4s;3cm;EK先增大后减小,EP减少,EP’ 增加;=。 说明:分析解决本题的关键是正确认识和利用简谐运动的对称性,其对称中心是平衡位置O,尤其小球在最低点N点的加速度值,是通过另一个振动最大位移的位置M来判断的。如果小球是在离弹簧最上端一定高度处释放的,而且在整个运动过程中,弹簧始终处于弹性形变中,那么小球与弹簧接触并运动的过程可以看成是一个不完整的简谐运动。因为小球被弹簧弹起后,在弹簧处于原长时与弹簧分离,这个简谐运动有下方振动最大位移的位置,但无上方振动最大位移的位置,那么小球在运动过程中的最大加速度将大于重力加速度。
【例3】 已知某摆长为1m的单摆在竖直平面内做简谐运动,则:(1)该单摆的周期为 ;(2)若将该单摆移到表面重力加速度为地球表面重力加速度1/4倍的星球表面,则其振动周期为 ;(3)若在悬点正下方摆长中点处钉一光滑小钉,则该小球摆动的周期为 。 分析:第一问我们可以利用单摆周期公式计算出周期;第二问是通过改变当地重力加速度来改变周期的。只要找出等效重力加速度,代入周期公式即可得解。第三问的情况较为复杂,此时小球的摆动已不再是一个完整的单摆简谐运动。但我们注意到,小球在摆动过程中,摆线在与光滑小钉接触前后,分别做摆长不同的两个简谐运动,所以我们只要求出这两个摆长不同的简谐运动的周期,便可确定出摆动的周期。
解答:(1)依据gLT2,可得T=2s。
(2)等效重力加速度为4/'gg,则依据'2'gLT,可得4'Ts。 (3)钉钉后的等效摆长为:半周期摆长为L1=1m,另半周期摆长为L2=。 则该小球的摆动周期为:
222''21gLgLTs 说明:单摆做简谐运动的周期公式是我们学习各种简谐运动中唯一给出定量关系的周期公式。应该特别注意改变周期的因素:摆长和重力加速度。例如:双线摆没有明确给出摆长,需要你去找出等效摆长;再例如:把单摆放入有加速度的系统中,等效重力加速度将发生怎样的变化。比如把单摆放入在轨道上运行的航天器中,因为摆球完全失重,等效重力加速度为0,单摆不摆动。把单摆放入混合场中,比如摆球带电,单摆放入匀强电场中,这时就需要通过分析回复力的来源从而找出等效重力加速度。这类问题将在电学中遇到。