惯性约束聚变(ICF)
惯性约束聚变

惯性约束聚变又称靶丸聚变,为实现受控核聚变的一种途径。
它是利用高功率的脉冲能束均匀照射微球靶丸,由靶面物质的消融喷离产生的反冲力使靶内氘氚燃料快速地爆聚至超高密度(塼103倍氘氚的液态密度)和热核温度(塼10keV),从而点燃的高效率释放聚变能的微型热核爆炸。
在惯性约束聚变中,约束由聚变物质的惯性所提供,聚变反应必须在等离子体以高速(约108cm/s)从反应区飞散前的短暂时间 (约10-10~10-11s)内完成。
所以是一种以短脉冲方式运行的受控核聚变。
通常是采用聚焦的强激光束或高能的带电粒子(电子、轻离子或重离子)束,作为加热与压缩燃料靶丸的驱动器。
所以,又可以将惯性约束聚变分为激光聚变和粒子束(电子、轻离子或重离子束)聚变。
惯性约束聚变研究的长远目标是建成聚变电站,探索受控热核新能源;因其能够产生与核武器中心相近的高能量密度状态,所以又有着较近期的军事上的应用目标,这是指在实验室中研究核武器物理并模拟核爆炸效应;另外,惯性约束聚变形成的高压、高温的物质状态,也能为这些极端条件下的物性研究提供可能。
早在1952年,就已成功地将惯性约束的方式应用于氢弹的热核爆炸;然而,利用激光或带电粒子束照射燃料靶丸而实现惯性约束聚变的建议,是到60年代初激光问世后才提出的。
随后,由于调Q脉冲激光器的出现,开始了激光聚变的研究。
在开始的前10年,还只是停留在简单地用激光提高物质的温度以达到产生核聚变反应的条件;1968年,苏联列别捷夫研究所的Η.Γ.巴索夫等首次报道从氘化锂平面型靶上获得了中子。
直到1972年,美国利弗莫尔国家实验室的J.纳科尔斯等公开发表了高密度爆聚的理论,重点于是转向多束激光辐照微球靶的高压缩爆聚实验;激光聚变研究的规模也相应有了相当大的扩充。
另外,在脉冲功率技术发展的基础上,70年代后又相继开始了相对论性电子束、轻离子束与重离子束聚变的研究。
不过,与激光聚变已达到的水平相比较,它们都还处在发展的初期。
惯性约束聚变激光驱动装置用光学元器件的研究进展

惯性约束聚变激光驱动装置用光学元器件的研究进展邵建达;戴亚平;许乔【摘要】介绍了为提高惯性约束聚变(ICF)激光驱动装置的光束质量和输出功率,我国在神光系列激光装置的建设、运行和性能提升方面开展的工作.综述了我国近年来ICF激光装置用光学元器件的重要研究进展.文中涉及了高纯金属铪和磷酸二氢钾(KDP)等原材料的制备和四大主材(钕玻璃、高纯度KDP、熔石英和KDP/高掺氘KDP(KDP/DKDP晶体)的熔炼、加工和生长.描述了元器件的冷加工(针对钕玻璃、白玻璃、KDP晶体)技术和镀膜技术(针对介质膜和化学膜).最后,给出了针对大口径光学元件工序检及终检开展的多项关键检测技术.文中介绍的关键技术与工艺满足了绝大部分光学元器件的需求,显著提升了光学元器件的研发和生产能力.【期刊名称】《光学精密工程》【年(卷),期】2016(024)012【总页数】7页(P2889-2895)【关键词】惯性约束核聚变(ICF)激光装置;光学元器件;材料制备;光学检测;综述【作者】邵建达;戴亚平;许乔【作者单位】中国科学院上海光学精密机械研究所,上海201800;中国工程物理研究院激光聚变研究中心,四川绵阳621000;成都精密光学工程研究中心,四川成都610000【正文语种】中文【中图分类】TL632;TN305.2惯性约束聚变(Inertial Confinement,ICF)激光驱动装置是一项庞大、复杂且系统性极强的超大型光学工程,这个大型光学系统中包含片状玻璃放大器、反射镜、透镜、偏振元件、晶体、窗口以及衍射光学元件等各种性能的光学元器件。
以当前世界上规模最大、能量最强的激光器——美国国家点火装置(NIF)为例,它包含了大约7 500块大尺寸光学元件(直径在600~1 000 mm)和30 000块小尺寸光学元件[1]。
对用于ICF驱动的高功率激光装置而言,获得更高输出能量和功率的激光束一直是研究人员追求的目标。
惯性约束聚变(ICF)

这张图是X射线从辐射空 腔两端射向靶球的模拟图
NIF有世界上最大的光学仪器。这是KDP晶体(磷酸二氢 钾),重360kg。整个装置需要约600个这样的晶体。
• 这是粗切成块的激光放大器玻璃薄片,整 个装置需要3072块这样的钕磷酸盐玻璃。
NIF的主要任务
• 模拟核爆炸,研究核武器的性能情况,使 得美国在不进行核试验的情况下保持核武 器的先进性。
• 从这里我们看到,该技术的核心就是怎样获得 均匀的高能的射线作为点火装置。
美国国家点火装置(NIF)
• 这部激光器于2009年启 用,它可以将192束激光 的能量转换为X射线,聚
焦到一个胡椒粒大小的
燃料球上,在十亿分之 三秒内,以近5*1014W的 功率,输出约180万焦耳
的能量,产生一亿开的 高温和1016Pa的高压。
1990年,神光I获得国家科技进步奖一等奖。 1994年,神光-Ⅰ退役。神光-Ⅰ连续运行8年,在激 光惯性约束核聚变和X射线激光等前沿领域取得了一 批国际一流水平的物理成果。
神光Ⅱ 1993年,国家“863”计划确立了惯性约束聚变主题,进一步推动了 国家惯性约束聚变研究和高功率激光技术的发展。
1994年5月18日,神光Ⅱ装置立项,工程正式启动,规模比神光-Ⅰ装 置扩大4倍。
目前,神光-Ⅲ原型装置“十五”建设目标已圆满完成,达到“8束出光,脉 冲-万焦耳”的水平,标志着我国成为继美、法后世界上第三个系统掌握新一 代高功率激光驱动器总体技术的国家,使我国成为继美国之后世界上第二个具 备独立研究、建设新一代高功率激光驱动器能力的国家。
1964年,王淦昌提出了研究激光聚变的倡议。 1965年,上海光机所开始用高功率钕玻璃激光产生激光聚变 的研究。 1973年5月,上海光机所建成两台功率达到万兆瓦级的高功率 钕玻璃行波放大激光系统。 1974年,上海光机所研制成功毫微秒10万兆瓦级6路高功率钕 玻璃激光系统,激光输出功率提高了10倍。 1980年,王淦昌提出建造脉冲功率为1万亿瓦固体激光装置的 建议,称为激光12号实验装置。 1987年6月27日,神光I通过了国家级鉴定。 1994年,神光I退役,神光I连续运行8年。 1994年5月18日,神光Ⅱ装置立项,工程正式启动。 2001年8月,神光Ⅱ装置建成,总体性能达到国际同类装置的 先进水平。 2007年2月4日,中物院神光Ⅲ激光装置实验室工程举行了开 工奠基仪式。
惯性约束聚变

)
从经济观点出发,Pn/Pg值必须大于0.75; 中子反应因子M在1.05~1.25之间,热电转换效率ε在
0.3~0.4之间,可知ηG值必须在10~16之间, η取决于 驱动器的类型,G取决于靶的设计和射到靶上的能 量; 当 η=0.05 时 , 要 求 G=200~320 , 高 增 益 靶 , 达 到 η=0.05的只有氟化氪激光、半导体泵浦的固体激光 和轻重粒子束; 当η=0.25时,要求G=40~60,达到η=0.25的只有轻粒 子束和重离子束驱动器。
聚变靶丸
高z壁
泡沫塑料
吸收 辐射体
柱面高z腔壁
3、惯性聚变能电站中两个重要的循环
(1)功率循环
驱动效率η:电能转变成激光或粒子束的能量 增益G:激光或粒子束打在靶上发生聚变产生
热核反应 M因子:靶外物质与中子反应放出能量 热电转换效率ε:热核能量转变为热能,送到发
电机发电 Pg:总的输出功率 Pa:电站用电量,占总输出功率比例为fa(~5%) Pd:给激光和粒子束驱动器提供功率产生激光
将激光或粒子束的能量照射在黑洞靶的内壁(对 激光)、泡沫塑料(对轻离子束)和吸收辐射体 (对重粒子束),并加热这些物质到高温,发射出X 射线,靶丸放置在中间位置上,激光或粒子束在转 换体上产生很强的X射线,照射在靶丸上再引起靶丸 表面加热、压缩、点火和燃烧。
柱面高z腔壁 激光束
聚变靶丸
入口孔
重离子束
这两个成功的实验进一步激发了国际ICF界研究快 点火物理和相关PW激光技术的热情,增强了信心。
令人鼓舞的金锥管加CD壳靶快点火原理示范实验结果
一、获得惯性聚变能的基本原理
激光技术的出现,给人们带来了希望,1963年巴 索夫和道森首先提出了可以利用激光将等离子体 加热到引发热核聚变的温度。
核聚变

• 20世纪70年代,科学家开始利用强大的激光束进 行试验,压缩和加热氢的同位素,使其达到它们 的熔点,这一技术被称作惯性约束核聚变。利用 激光束快速加热,导致目标物的最外层发生爆炸。 根据牛顿的第三定律,目标物的剩余部分在强烈 内爆的驱使下,内部的燃料受压缩,形成一个冲 击波,这会进一步加热中心区域的燃料,导致可 持续性燃烧,即已知的点火。 • 当激光束的热和压力达到足以熔化小圆柱目标中 氢原子的时候,所释能量要比激光本身产生的能 量更多。氢弹爆炸和太阳核心会发生这类反应。
• 国家点火装置是美国能源部国家核军工管理局(NNSA)的构想,是世 界上最大的激光科学建设项目。 • 在国家点火装置内部是130吨重的目标靶室,192个激光器发射的中 子,最终将会引发核聚变反应。 • 靶室里的洞的直径是10米,用30厘米厚的混凝土掩埋,使192束激光 可以进入靶室内。这一过程被称作正在进行的惯性约束核聚变(ICF), 一旦反应堆被点燃,它将促使目标材料(由一个玻璃球盛放的材料)里 产生空前高温和高压。靶室里的温度将会超过1亿华氏度,内部压力 将超过地球大气压的1千亿倍。这些条件与恒星和巨型行星核心的环 境更加类似,而不是位于旧金山东部的一个国家机构里的科研装置。 • 国家点火装置是一个面积是足球场的3倍的10层楼高的建筑物的 所在地,它不仅是美国能源学家,而且是全球能源研究人员的一个长 期梦想。国家点火装置的一位发言人说:“为了在实验室里产生核聚 变燃烧和增益进行的长达10年的研究,促使国家点火装置的构想诞生。 目前利用核聚变或原子裂变产生能量的核电站,在过去50多年已经大 大增加了发电量。但是迄今仍未证明利用核子融合燃烧和增益产生能 源的方法是可行的。”
• •
激光惯性约束聚变(ICF)聚苯乙烯(PS)靶材料研究进展

isl w e st n t mi u t o d n i a d a o c n mb r t a e r a e t ei s a i t fp e e t d f e n y r me h n c n t e c u s f y e .I n d c e s h n t b l y o r h a e u l d h d o c a is i h o r eo c i a r d a td ie i l so a i n rv mp o in,i c e s h fi in y,a d i i v i b e t ig o e i x e i e t o ,P a g ti m u h a — n r a e t ee fce c n a a l l o d a n s e p r n .S ts a n m S tr e c c s c u td a e e o s r p d y o n e n d v l p a i l .Th s p p rr v e o s i a v r e s P a g tma e ili CF. d i a e e iws d me t n o e s a S t r e t ra n I c d
维普资讯
・
ቤተ መጻሕፍቲ ባይዱ26 ・ 2
材料 导报
20 0 6年 5月 第 2 O卷专辑 Ⅵ
激 光 惯 性 约束 聚 变 (C 聚苯 乙烯 ( S 靶 材料 研 究进 展 I F) P )
丁建旭 , 廖其龙 , 杨定明
( 西南科技大学材料科学 与工程学院 , 阳 6 1 1 ) 绵 2 0 0 摘要 在 I F靶 丸研究 中, S空心微球是 主要 的靶 型之 一 , C P 由于 P 靶 具有低 密度 、 原子序数 , S 低 可以降低辐射
惯性约束核聚变_刘红

惯性约束核聚变刘红(中国工程物理研究院研究生部100088)/每个研究理论问题的人,,不可抗拒地被迫接受近代自然科学的成果0。
我们正处在一个知识爆炸、高新技术迅猛发展的时代,2001年2月26日到3月6日,在北京展览馆举办的/八六三计划50周年成就展0,向人们展示了中国在新世纪所拥有的高科技与新技术。
1986年为了迎接世界新技术革命和高技术竞争的挑战,王大珩、王淦昌、杨嘉墀、陈芳允4位科学家,提出加快发展我国高技术的建议,邓小平同志高瞻远瞩,果断决策,于同年3月亲自批准启动了我国高技术研究发展计划,即863计划,中国的高技术研究发展由此掀开了崭新的篇章。
863计划实施15年以来,在生物技术、航天技术、信息技术、激光技术、自动化技术、能源技术、材料技术、海洋技术等领域,在超导,信息安全等专项取得了令人瞩目的进展与成就,智能机器人/青青0、组织重组/人耳0老鼠、克隆羊/滔滔0、高温超导磁悬浮实验车/世纪号0等等成了展览会上的名星,小朋友们牵挂的宠物。
一个新技术、一个高科技给人们带来多少生活的信心和喜悦。
高技术/惯性约束核聚变0军民两用项目,更是受到国家领导人的高度重视。
一、惯性约束核聚变的简介惯性约束核聚变(Inertial C onfinement Fusion,简称ICF),研究的目标是在21世纪实现干净的聚变能源和军事应用,在实现高增益聚变反应堆之前,在中期应用上,也可以利用实验室微聚变设施进行国防和科学方面的重要研究。
ICF是不同于磁约束的另一种可控热核聚变,它的基本思想是:利用激光或离子束作驱动源,脉冲式地提供高强度能量,均匀地作用于装填氘氚(DT)燃料的微型球状靶丸外壳表面,形成高温高压等离子体,利用反冲压力,使靶的外壳极快地向心运动,压缩氘氚主燃料层到每立方厘米的几百克质量的极高密度,并使局部氘氚区域形成高温高密度热斑,达到点火条件,驱动脉冲宽度为纳秒级,在高温高密度热核燃料来不及飞散之前,进行充分热核燃烧,放出大量聚变能。
惯性约束聚变装置真空靶室组件结构稳定性优化设计

惯性约束聚变装置真空靶室组件结构稳定性优化设计佚名【摘要】真空靶室组件的结构稳定性对惯性约束聚变(ICF)装置的束靶耦合精度有重要影响,本文对真空靶室组件的结构稳定性进行优化设计.首先研究真空靶室组件的动态特性,求解其固有频率和振型;其次,分析支墩不同结构参数对真空靶室组件前三阶固有频率的影响,并由此建立结构参数影响固有频率的数学模型;最后,进行真空靶室组件的结构稳定性设计优化,求解真空靶室组件的最优结构.结果表明,优化后真空靶室组件的一阶固有频率为14.44 Hz,满足ICF装置的设计要求.【期刊名称】《光学精密工程》【年(卷),期】2018(026)011【总页数】8页(P2695-2702)【关键词】ICF装置;真空靶室组件;结构稳定性【正文语种】中文【中图分类】TH1221 引言惯性约束聚变(Inertial Confinement Fusion,ICF)是可控核聚变的重要研究领域,多个国家建立了高功率激光驱动装置,其中以美国的“国家点火装置”(National Ignition Facility,NIF)[1]、法国的“兆焦耳级装置”(Laser Megajoule,LMJ) [2]和中国的神光II[3]、神光III装置[4]为代表。
这些装置的重要功能之一是导向多路高能激光束,使其焦点汇聚于靶点,实现高精度束靶耦合[5]。
束靶耦合的关键在于多路激光束的指向精度,即保证每一路激光束的焦点位于要求的范围之内。
在ICF装置中,激光束在入射至真空靶室实现焦点汇聚前[8-9]。
导向传输需要经过反射镜、透镜光学元器件[6-7],而在振动环境中,光学元器件会因结构响应而改变位置,导致激光束焦点出现偏离。
由于光学元器件由支撑结构直接或间接支撑,因此支撑结构的结构稳定性是保证激光束指向精度的关键因素[10]。
根据激光束的指向精度要求,对不同光学元器件的稳定性指标进行分配,进而确定相应支撑结构的稳定性要求,是进行支撑结构稳定性研究的基础[11-13]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题4
为什么激光的照射时间要极短?
• 实际操作中无法达到完全均匀照射,必须 控制这部分能量在极短的时间内输出,使 粒子来不及飞散就已经开始核聚变。
• 节约能量。核聚变开始后就不需要外界提 供能量了,这时候没必要再用激光照射。
• NIF目前还没有真正实现“点火”,只能
释放燃料的部分能量。理论上产出与投 入的能量比为15:1,但是实际上只能做 到稍大于1:1。
• 进行高能物理实验,模拟超新星、恒星和 巨大行星内核的环境,探索宇宙的奥秘。
• 发展可控核聚变。
问题1 2012年3月的一次实验中,NIF以 4.11*1014W的功率输出203万焦耳的能量,
这相当于全美国所有电站发电功率的500 倍,这怎么可能?就算其他美国人当时都
不用电也远远不够啊?
• 2.03*106J其实并不多,1度电(1kW·h)是 3.6*106J,这次实验用电量连五毛钱都还不到。
下面让我们看一下 我国在这方面的研究历程
神光计划
—惯性驱动核聚变激光约束装置
工程期限 1980-2030
下图为神光高能激光系统的球形真空靶室和光学设备
图为2008年11月16日晚,中央电视台新闻联 播曝光的中国工程物理研究院的惯性约束核 聚变激光驱动装置原型
我国从上世纪60年代即开始惯性约束聚变 的研究,在王淦[gàn]昌、王大珩[héng]的 指导下,中国科学院和中国工程物理研究 院从80年代开始联合攻关,上海光机和长 春光机都是协作单位。六十年代初,我国 激光聚变研究刚刚起步的时候,钱学森院 士就形像地指出:你们的事业是在地球上 人造一个小太阳!
目前,神光-Ⅲ原型装置“十五”建设目标已圆满完成,达到“8束出光,脉 冲-万焦耳”的水平,标志着我国成为继美、法后世界上第三个系统掌握新一 代高功率激光驱动器总体技术的国家,使我国成为继美国之后世界上第二个具 备独立研究、建设新一代高功率激光驱动器能力的国家。
我国激光核聚变大事记 1964年,王淦昌提出了研究激光聚变的倡议。
1990年,神光I获得国家科技进步奖一等奖。 1994年,神光-Ⅰ退役。神光-Ⅰ连续运行8年,在激 光惯性约束核聚变和X射线激光等前沿领域取得了一 批国际一流水平的物理成果。
神光Ⅱ
1993年,国家“863”计划确立了惯性约束聚变主题,进一步推动了 国家惯性约束聚变研究和高功率激光技术的发展。
1994年5月18日,神光Ⅱ装置立项,工程正式启动,规模比神光-Ⅰ装 置扩大4倍。
“神光Ⅱ”的数百台光学设备集成在一个足球场大小的空间内。神光 Ⅱ能同步发射8束激光,在约150米的光程内逐级放大:每束激光的口 径能从5毫米扩为近240毫米,输出能量从几十个微焦耳增至750焦耳/ 束。当8束强激光通过空间立体排布的放大链聚集到一个小小的燃料靶 球时,在十亿分之ห้องสมุดไป่ตู้秒的超短瞬间内可发射出相当于全球电网电力总 和数倍的强大功率,从而释放出极端压力和高温,辐照充满热核燃料 气体的玻璃球壳,急速压缩燃料气体,使它瞬间达到极高的密度和温 度,从而引发热核聚变。神光Ⅱ已实现“全光路自动准值定位”,实 验中能及时纠正因震动和温度变化而带来的仪器微偏,使输出激光经 聚焦后可精确穿过一个约0.3毫米的小孔,仅比一根头发丝略粗一点。
1965年,上海光机所开始用高功率钕玻璃激光产生激光聚变 的研究。
1973年5月,上海光机所建成两台功率达到万兆瓦级的高功率 钕玻璃行波放大激光系统。
1974年,上海光机所研制成功毫微秒10万兆瓦级6路高功率钕 玻璃激光系统,激光输出功率提高了10倍。 1980年,王淦昌提出建造脉冲功率为1万亿瓦固体激光装置的 建议,称为激光12号实验装置。 1987年6月27日,神光I通过了国家级鉴定。 1994年,神光I退役,神光I连续运行8年。 1994年5月18日,神光Ⅱ装置立项,工程正式启动。 2001年8月,神光Ⅱ装置建成,总体性能达到国际同类装置的 先进水平。
2007年2月4日,中物院神光Ⅲ激光装置实验室工程举行了开 工奠基仪式。
惯性约束核聚变的优劣
因为现在可控核聚变的主流方式就是惯性约束和磁约束,所以这里 我们聊惯性约束核聚变的优劣,主要是和磁性约束核聚变的对比之 下的结果。
首先从,这惯里性约,束我的设们备可可以以做看的到相这对较两小种(这思是路因进为磁行约束由于 要 应 另提 用 一可我供 更 方们控足 加 面只核够广,大泛惯能聚足。性说变够约强束在各的 的未有磁 开来千场 、) 关不秋, 火同,在 控未 制的不来 的领能的 更域说飞 好行 ,各孰器 这有优等 一优孰移点动易势劣装于。,置理可解能,
这张图是X射线从辐射空 腔两端射向靶球的模拟图
NIF有世界上最大的光学仪器。这是KDP晶体(磷酸二氢 钾),重360kg。整个装置需要约600个这样的晶体。
• 这是粗切成块的激光放大器玻璃薄片,整 个装置需要3072块这样的钕磷酸盐玻璃。
NIF的主要任务
• 模拟核爆炸,研究核武器的性能情况,使 得美国在不进行核试验的情况下保持核武 器的先进性。
神光-Ⅲ
1995年,激光惯性约束核聚变在“863计划”中立项,我国科研人员开始研制 跨世纪的巨型激光驱动器——“神光-Ⅲ”装置,计划建成十万焦耳级的激光 装置。
2007年2月4日,中物院神光Ⅲ激光装置实验室工程举行了盛大的开工奠基仪 式。该工程位于绵阳中国工程物理研究院内,建筑面积28154m2,平面布置 :呈长方形布置,建筑物总长178m,总宽75m,建筑结构十分复杂。规划中 的“神光-Ⅲ”装置是一个巨型的激光系统,比当前世界最大的NOVA装置还 要大一倍多。原计划它具有60束强光束,紫外激光能量达60KJ,质量和精密性要 达到21世纪的国际先进水平,现在该计划可能已经进一步修改,以提高能量 规模。惯性约束聚变点火工程(2020年)被已确定为《国家中长期科学和技 术发展规划》的十六项重大专项之一。
• 从这里我们看到,该技术的核心就是怎样 获得均匀的高能的射线作为点火装置。
美国国家点火装置(NIF)
• 这部激光器于2009年启 用,它可以将192束激光 的能量转换为X射线,聚
焦到一个胡椒粒大小的
燃料球上,在十亿分之 三秒内,以近5*1014W的 功率,输出约180万焦耳
的能量,产生一亿开的 高温和1016Pa的高压。
发展历程
1964年,我国著名核物理学家王淦昌院士独立地 提出激光聚变思想,并建议了具体方案.按照这一 创议,在我国第一个激光专业研究所-中国科学院 上海光机所开始了高功率激光驱动器的研制和应 用并于 1971年获得氘-氘碰撞中子. 1978年中国 工程物理研究院和中国科学院携手合作, ICF研究 进入了全面发展的新阶段。
这是由于惯性约束是通过激光来控制聚变的启动和关闭的。
惯性约束耗能高、成本高。由于要得到高能的激光这需要消耗大 量的能量,而磁场的成本会相对较低。此外,靶丸的成本也很难 降下来。 惯性约束的持续性差。得到持续的高能粒子的难度较得到稳定磁 场的难度要大的多,实际应用中可能需要重复点火。
谢谢观赏
• 功率是经过放大的,不可能直接由国家电网输 出。
就算功率是经过放大的,初始功率也至 少几千千瓦(寝室连一千瓦的吹风机都
不让我们用),这怎么办?
问题 2
这是NIF的电容、高压电线和7680个闪光灯
问题3
太阳内核温度也只有1500万开, 为什么实验室要将燃料加热到1
亿开呢?
• 太阳内核压强高达2.3*1016Pa,使得原子核 之间靠得很近而发生核聚变,实验室无法 达到这样的高压,只能通过提高温度来弥 补。
惯性约束聚变(ICF)
第二组
为了能够利用核聚变的巨大能量,现代 对于核聚变的研究大都集中在可控核聚 变,而这其中利用惯性约束核聚变 (ICF)就是一种重要的方向。
下面让我们简单了解惯性约束核聚变的 的基本情况。
基本原理
• ICF的基本思想是利用激光、X-射线或者高 能粒子束作为能量驱动源,脉冲式地提供 高能量,均匀地作用于装填氘氚燃料的微 型球状靶丸外壳表面,进而形成高温高压 等离子体。利用反冲击力,使靶外壳极快 向心运动,压缩燃料,使其产生高温高密 度热斑。由于脉冲时间极短,热核燃料因 惯性而来不及飞散,从而充分发生聚变。
近年来, 致力于研制和应用钕玻璃激光驱动器 “ 神光”系列装置, 取得了显著进展, 推动了我国惯 性约束聚变实验和理论研究, 并在国际上占有一 席之地。
神光Ⅰ
神光I建成为进行世界前沿领域的激光物理试验提供 了有利的手段,对尖端科研和国民经济建设均具有 重要意义。1986年夏天,张爱萍将军为激光12号实 验装置亲笔题词“神光”。于是,该装置正式命名 为神光-Ⅰ。1989年起,神光I直接驱动获5000000中 子产额,间接驱动获10000中子产额,冲击波压强达 0.8TPa,获近衍射极限类氖锗X光激光增益饱和。