统计学概率和概率分布PPT课件

合集下载

统计学第3章-概率、概率分布与抽样分布

统计学第3章-概率、概率分布与抽样分布
3-15
互斥事件及其概率
(例题分析)

解:由于每一枚硬币出现正面或出现反面的概率 都是1/2,当抛掷的次数逐渐增大时,上面的4个 简单事件中每一事件发生的相对频数 (概率)将近 似等于 1/4 。因为仅当 H1T2 或 T1H2 发生时,才会 恰好有一枚硬币朝上的事件发生,而事件 H1T2 或 T1H2 又为互斥事件,两个事件中一个事件发 生或者另一个事件发生的概率便是 1/2(1/4+1/4) 。 因此,抛掷两枚硬币,恰好有一枚出现正面的概 率等于 H1T2 或 T1H2 发生的概率,也就是两种事 件中每个事件发生的概率之和
解:设 A = 某住户订阅了日报 B = 某个订阅了日报的住户订阅了晚报
依题意有:P(A)=0.75;P(B|A)=0.50
P(AB)=P(A)·P(B|A)=0.75×0.5=0.375
3-31
独立事件与乘法公式
(例题分析)
【例】从一个装有3个红球2个白球的盒子里摸球 (摸出后球不放回),求连续两次摸中红球的概率
3-17
互斥事件的加法规则
(例题分析)
【例】抛掷一颗骰子,并考察其结果。求出其点 数为1点或2点或3点或4点或5点或6点的概率
解:掷一颗骰子出现的点数(1,2,3,4,5,6)共有
6个互斥事件,而且每个事件出现的概率都为1/6 根据互斥事件的加法规则,得
P(1或2或3或4或5或6) P(1) P(2) P(3) P(4) P(5) P(6) 1 1 1 1 1 1 1 6 6 6 6 6 6


合计
从这200个配件中任取一个进行检查,求 (1) 取出的一个为正品的概率 (2) 取出的一个为供应商甲的配件的概率 (3) 取出一个为供应商甲的正品的概率 (4) 已知取出一个为供应商甲的配件,它是正品的概率

概率论与数理统计正态分布4-3二维正态分布课件

概率论与数理统计正态分布4-3二维正态分布课件

统计决策
基于二维正态分布,可以制定统 计决策规则,例如置信区间和预 测区间的确定。
在金融领域的应用
1 2 3
资产定价
二维正态分布可以用于资产定价模型,如期权定 价模型,以模拟两个相关资产的价格变动。
风险管理
在金融领域,二维正态分布可用于评估投资组合 的风险,例如计算投资组合的VaR值(风险价 值)。
例如,对于二维正态分布的均值向量,可以通过样本数据的均值向量进行检验, 判断其与理论值是否存在显著差异。
非参数检验
非参数检验是在总体分布形式未知或认为总体分布形式与理论分布形式存在较大差异的情况下,利用 样本数据对总体分布进行检验的方法。在二维正态分布的情境下,非参数检验通常包括核密度估计、 散点图和多维距离等方法。
特性
分布函数具有连续性、非负性和归一性等特性,能够完整描述随机向量的概率 分布。
03
二维正态分布的应用
在统计学中的应用
参数估计
二维正态分布可以用于估计两个 变量的联合概率分布,从而对参 数进行估计,如线性回归中的参 数估计。
假设检验
在统计分析中,二维正态分布可 以用于检验两个变量之间是否存 在某种关系,例如相关性检验或 因果关系检验。
金融数据分析
二维正态分布可以用于分析金融数据,例如股票 价格和交易量的关系。
在物理和工领域的应用
信号处理
在通信和雷达信号处理中,二维正态分布可用于 描述信号的功率谱密度。
地震学
在地震学中,二维正态分布可用于描述地震事件 的时空分布。
图像处理
在图像处理中,二维正态分布可用于描述图像的 像素强度分布。
边缘分布的特性
总结词
边缘分布是指将二维正态分布的其中一个随机变量固定,得到的另一个随机变量 的分布。

生物统计学课件1、概率及概率分布

生物统计学课件1、概率及概率分布
04
指数分布在统计分析中常用于计算随机事件的概率和期望值,如生存 分析和可靠性工程。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
概率分布的应用
在生物统计学中的应用
描述生物样本人群的特征
遗传学研究
通过概率分布,可以描述生物样本人 群的某些特征,如身高、体重、年龄 等。
在遗传学研究中,概率分布被广泛应 用于基因频率的分布和遗传疾病的分 布。
正态分布在统计学中的重要性在于许 多统计方法和假设检验都是基于正态 分布的假设。
泊松分布
泊松分布是一种离散概率分布 ,常用于描述单位时间内随机
事件发生的次数。
泊松分布的概率函数由两个参 数λ和k控制,其中λ表示单位时
间内随机事件发生的平均次数 ,k表示随机事件发生的次数。
泊松分布在生物统计学中常用 于描述某些离散变量的分布, 如遗传学中的基因突变频率、 流行病学中的疾病发病率等。
在社会科学研究中的应用
人口统计学研究
在人口统计学研究中,概率分布 被用于描述人口特征和分布情况

社会调查
在社会调查中,概率分布被用于描 述调查结果的分布情况,例如调查 结果的置信区间和抽样误差。
经济预测
在经济预测中,概率分布被用于预 测经济发展趋势和未来经济状况。
REPORT
CATALOG
DATE
描述随机变量取连续数值时的概率分布,如正态分布、指数 分布等。
离散概率分布
二项分布
描述在n次独立重复的伯努利试验中 成功的次数的概率分布,常用于描述 生物实验和调查中的成功次数。
泊松分布
描述单位时间内(或单位面积上)随 机事件发生的次数,常用于描述稀有 事件的概率模型。

第五章概率与概率分布

第五章概率与概率分布

P( A)
事件A发生的次数m 重复试验次数n

m n
英语字母出现频率
space 0.2 ; I 0.055 ; C 0.023 ; G 0.011 ; Q 0.001 ; E R U B Z 0.105 ; T 0.072 ; 0.054 ; S 0.052 ; 0.0225 ; M 0.021 ; 0.0105 ; V 0.008 ; 0.001 O H P K 0.0654 ; 0.047 ; 0.0175 ; 0.003 ; A D Y X 0.063 ; 0.035 ; 0.012 ; 0.002 ; N 0.059 L 0.029 W 0.012 J 0.001
一、概率(Probability)的定义
概率:0-1之间的数,衡量事件A发生可能 性(机会)的数值度量。记P(A) •Probability: A value between 0 and 1, inclusive, describing the relative possibility (chance or likelihood) an event will occur.
P ( A) A包 含 的 可 能 结 果 (偶 数 ) 全部可能结果 3 6
实际与理论分析不符时,实际中可能作弊。
如:河北银行人员为买奖券,盗2000万并没中大奖。
西安彩票中心人员中奖率极高,结果是作弊。
例:已知有148名学生统计表
专业
性别
男 女
金融学院 工商学院 经济学院 会计学院 15 15 22 14 30 12 25 15
摘自:概率论与数理统计简明教程1988》李贤平 卞国瑞 立鹏,高等教育出版社

大量统计的结果,用于破解密码
美国正常人血型分布

概率论与数理统计正态分布4-3二维正态分布课件

概率论与数理统计正态分布4-3二维正态分布课件
对于二维正态分布的随机变量(X, Y),X和Y的边缘分布都是一维正 态分布。
二维正态分布的应用场景
金融领域
在金融领域中,二维正态分布常 用于描述股票价格或其他金融变 量的联合分布,帮助投资者进行 风险评估和投资组合优化。
自然学科
在物理、化学、生物等自然学科 中,二维正态分布可用于描述实 验数据的误差分布、气象数据的 联合概率分布等。
概率论与数理统计正态分 布4-3二维正态分布课件源自目录CONTENTS
• 二维正态分布概述 • 4-3二维正态分布特性 • 4-3二维正态分布的性质 • 4-3二维正态分布的统计推断 • 4-3二维正态分布的实际应用
01 二维正态分布概述
二维正态分布的定义
二维正态分布是概率论与数理统计中 一种重要的概率分布,描述了两个随 机变量之间相互独立且具有相同的正 态分布关系。
03
4-3二维正态分布描述了两个随机变量之间线性关系 的情况。
4-3二维正态分布的数学表达式
1
4-3二维正态分布的数学表达式为f(x1, x2) = (1 / (2πσ1σ2)) * exp(-((x1-μ1)^2/2σ1^2 + (x2μ2)^2/2σ2^2))。
2
该表达式描述了两个随机变量x1和x2的概率密度 函数,其中μ1, μ2, σ1^2 和σ2^2是常数。
方差齐性检验
通过检验各组数据的方差是否相等,判断数据是 否满足方差分析的前提条件。
方差分析表
列出各组数据的均值、方差、自由度和贡献度等 信息,用于比较不同组之间的差异。
05 4-3二维正态分布的实际 应用
在金融领域的应用
资产定价
二维正态分布可以用于资产定价模型,例如Black-Scholes模型, 以评估衍生品的价值。

心理统计学课件第六章 概率分布

心理统计学课件第六章 概率分布

(三)正态分布的特征
正态分布的形式是对称的,它的对称轴是 经过平均数点的垂线。
正态分布的中央点(即平均数点)最高, 然后逐渐向两侧下降。
正态曲线下的面积为1,平均数点的垂线 将面积划分为相等的两部分0.50。
正态分布曲线,标准差与概率有一定的数 量关系。
二、正态分布表的结构与使用
2、已知P值,求Z分数
已知从平均数开始的概率值,求Z值 已知位于两端的概率值,求该概率分界点
上的Z值 已知正态曲线中间部分的概率,特定区间的人数 求考试成绩中某一特定人数比率的分数界
限 按能力分组或等级评定时确定人数 将等级评定结果转化为测量数据
按能力分组或等级评定时确定人数
要把100人在某一能力上分成5个等级, 各等级应该有多少人?
将等级评定结果转化为测量数据
某教师评价全班50人的作文,有8人优, 17人良,20人中,5人及格,求各等级的 标准分数
求考试成绩中特定区间的人数
已知某年级200名学生考试呈正态分布, 平均分为85分,标准差为10分,学生甲 的成绩为70分,问全年级成绩比学生甲低 的学生人数是多少?
求考试成绩中某一特定人数比率的分数界限
某次招生考试,学生成绩符合正态分布, 学生成绩的平均分为80分,标准差为10 分,要择优录取25%的学生进入高一级学 校学习,问最低分数线应是多少?
第六章 概率分布 第三节 正态分布
一、正态分布特征
(一)正态分布的概念 与二项概率分布对比 变量类型 图形
正态分布:
在一个概率分布中,中间频数多,两 端频数对称地减少,成为一种“钟”形对 称的理论概率分布。
(二)正态分布曲线
标准正态分布的密度函数:

2024全新统计学ppt课件(2024)

2024全新统计学ppt课件(2024)

非平稳时间序列转换方法
01
02
03
转换后时间序列建模与 预测
对转换后序列进行平稳 性检验
选择合适模型进行建模 与预测
2024/1/29
33
组合预测模型应用
2024/1/29
组合预测模型原理
综合多个单一模型预测结果,提高预测精度和 稳定性。 组合预测模型构建步骤
34
组合预测模型应用
选择合适的单一预测模型
单侧检验与双侧检验
介绍单侧检验与双侧检验的概 念,根据实际问题选择合适的 检验类型。
常见的假设检验方法
列举并介绍常见的Z检验、t检 验、F检验和χ²检验等方法,阐 述其适用条件和计算步骤。
假设检验的注意事项
讨论假设检验中可能犯的第一 类错误和第二类错误,阐述样
本容量对假设检验的影响。
17
04
方差分析与回归分析应用举例
数据输入与格式设置
快速输入数据、设置数据格式、使用数据验 证等技巧。
数据可视化
创建图表、修改图表样式、添加数据标签等 可视化操作。
2024/1/29
数据整理与清洗
利用筛选、排序、查找替换等功能进行数据 清洗。
数据分析工具
使用Excel内置的数据分析工具进行描述性 统计、回归分析等。
38
SPSS软件操作界面简介
分布函数与概率密度函数
02
定义分布函数,介绍离散型随机变量的概率分布列及连续型随
机变量的概率密度函数。
常见的随机变量分布
03
列举并介绍常见的离散型(如二项分布、泊松分布)和连续型
(如正态分布、指数分布)随机变量分布。
15
参数估计方法
2024/1/29

第五章 概率及概率分布

第五章 概率及概率分布

P A B P ( A) P ( B)
16
第一节 概率的一般概念
三、概率的加法和乘法 1、概率的加法 例如:抛掷一枚硬币,正面朝上和正面朝下的概率各为0.50, 问在实验中,硬币正面朝上或朝下的概率是多少? 答:硬币正面朝上或朝下的概率是1。 获得一、二、三等奖的概率分别为:0.002、0.005和0.993, 获奖的概率是多少? 答:获奖的概率为1。
17
第一节 概率的一般概念
三、概率的加法和乘法 2、概率的乘法 A事件出现的概率不影响B事件出现的概率,这两个事件为独 立事件。 两个独立事件积的概率,等于这两个事件概率的乘积。表示 两个事件同时出现的概率。 用公式可表示为:
P ( A B ) P ( A) P ( B)
18
第一节 概率的一般概念
npq 101/ 2 1/ 2 1.58
31
第二节 二项分布
四、二项分布的平均数和标准差 例如:有一份试卷,共有50道选择题,并且都为四选一,假 定一个学生一点都不会,只能凭猜测来回答。问凭猜测来回 答,平均能猜对几道题,猜对题目数的标准差为多少。 分析:因为完全不会做而只是靠猜测,因此属于二项分布的 运用条件。
8
第一节 概率的一般概念
一、概率的定义 (2)后验概率——
表5.1 抛掷硬币试验中正面朝上的频率 试验者 德摩根 蒲丰 皮尔逊 皮尔逊 抛硬币次数 2048 4040 12000 24000 正面朝上次数 1061 2048 6019 12012 正面朝上频率 0.5181 0.5069 0.5016 0.5005
职教学院 刘春雷 E-mail:lcl2156@
1
第五章
概率及概率分布
第一节 概率的一般概念 第二节 二项分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 连续型随机变量在试验中可以取某一区间内 的任何值,这些数值构成不可数的无穷集合。
❖特点1:任一确定的x概率都是0,但 并非该事件不发生。不能给随机变 量X的每一个值得出一个概率,只能 给X中的任意区间给出概率。
概率函数
概率
❖ 连续型概率的特点2:
X的任何一个精确值的概率都等于0,如P (X=a)=0, P(X=b)=0,所以
概率的一般运算
1. 概率加法法则
2. 条件概率
❖ 前面所讲的都是在某一组规定的条件下,事 件A出现的概率。有时需研究在事件B已经发 生的条件下,事件A发生的概率。这时的概率 称为已知事件B发生条条件下,事件A发生的 条件概率(conditional probability),记为 P(A | B)。
4. 独立事件
5. 贝叶斯定理(Bayes’ theorem)
1.先用符号/等式列出题目中的所给的信息; 2.再用符号/等式写出要求什么; 3.找公式计算。
❖变量1、可是变定量量—§的—2,.可2也以概可测以率是量分定的布性任的何。特征或属
定量性变A量ny(cqhuaarnactitte随artii机svtei变cvao量rriaabtlter)ibu:te亦t称ha为t c数an 随 观•定机 测值 一 变性b2变变 值变般 量、e变量量 (m量有,随量e(o,度其a机b(srsu变量变ea变qrrnuev量衡量d量adaol。t值单 值i—mitoa是位 是nt(—vi)av定。 定在re不iva量e性概同a.bgr的的l.率ei个a身),,b论体高l表e表中)、结现现称:体果为某变亦重数个可量称。值体能为为大属不分随小于同类机,)
概统计率量::样随本机的统事计件指标发,生如样的本可均数能、性标准大差小,采,用用英 大写文字的母P分表别记示为;x取、值s。[0参,数附1]近。波动的随机变量 。
❖ 事件的频率与该事件的概率有关。事件发生 的概率愈大,它的频率就愈高。同样,当它 的频率较高时,说明它的概率较大。因此, 在试验次数较多时,可以用频率作为概率的 近似值。
❖ 相对于条件概率,把没有附加条件时的概率 称为无条件概率(unconditional probability)。
条件
3. 概率乘法法则
将(2.11)式稍加改动,可以得到概率乘法公式:
概率乘法法则(multiplicative law of probability) 可以叙述为:两事件交的概率,等于其中一事件 (其概率必须不为0)的概率乘以另一事件在已知 前一事件发生条件下的条件概率。
1. 事件的和(并,union)
2. 事件的交(intersection)
3. 互不相容事件(mutually exclusive event)
概率的统计定义
频率与概率
frequency and probability
参数:总体的统计指标,
样本的实际发生率称为如频总体率均。数、设标在准差相,同采 条件下,独立重复进行k次用希试腊验字母,分事别记件为Aμ出、 现l次,则事件A出现的频σ率。为固定l/的k。常数
P(a<X<b)= P(a≤X≤b)
(2.21)
对于离散型随机变量是否成立?
如何通过 分布函数 求某一区 间概率:
概率分布与频率分布的关系
❖ 统计分布(经验分布)--频率分布 ❖ 理论分布(总体分布)--概率分布
• 几3种、互观不测相值容(的o类b型ser中ve的d 一va种lu。e )e.g、. 血变型量,值 豌(豆va花lu的e 颜of色v。ariable)、资料(data) ——
离散变型量随的机测变得量值(。discrete random variable)
连常续数型(随co机n变sta量nt()c:on是tin不u能ou给s r予an不do同m数va值ri的ab变le) 量,代表事物特征和性质的数值。e.g.样本平 均数,标准差。
概率函数
概率
Certainபைடு நூலகம்
1
小概率事件
必然事件 随机事件 不可能事件
P=1
0.5
0<P<1
P=0
Impossible
0
P ≤ 0.05(5%)或P ≤ 0.01(1%)称为
小概率事件(习惯),统计学上认为不大可能发生。
是指随机变量小 于等于某一可能 值(x0)的概率
连续型概率分布
❖ 不同于离散型随机变量任何值都可以求出它 的概率。
❖ 试验(trial):同一组综合条件的实现。
❖随机试验(random trial)
❖ 试验的每一最基本的结果称为基本事件 (elementary event)。基本事件用小写 拉丁字母a,b,x等表示。
❖ 基本事件的集合称为事件(event),通 常用大写的拉丁字母A,B,…表示。
事件的几种基本运算
❖ 概率是事件在试验结果中出现可能性大小的 定量计量,是事件固有的属性。
Certain
1
小概率事件
必然事件 随机事件 不可能事件
P=1
0.5
0<P<1
P=0
Impossible
0
P ≤ 0.05(5%)或P ≤ 0.01(1%)称为
小概率事件(习惯),统计学上认为不大可能发生。
概率的古典定义 了解
❖以大写拉丁字母,如X、Y、U等表 示随机变量。
❖以小写拉丁字母如xi、yi、等表示第i 次观测值。
离散型概率分布
❖ 离散型随机变量X,可能取得的数值为有限 个或可数无穷个孤立的值。因此,对于X的 每一个值都能得出一个概率值。可以将随机 变量X所取得值x的概率P(X=x)写成x的函 数p(x),这样的函数称为随机变量X的概 率函数(probability function)。
生物统计学
第二章 概率和概率分布
2010.9
2.1 概率的基本概念
❖ 概率(probability) 确定性现象 非确定性现象 -- 随机现象
❖ 随机现象也并非不可认识,当我们对某一随机现象 做了大量的研究之后,就能从其偶然性中揭示出内 在的规律。研究偶然现象本身规律性的科学称为概 率论。基于实际观测结果,利用概率论得出的规律, 揭示偶然性中所寄寓的必然性的科学就是统计学。 概率论与统计学都是研究随机现象规律性的科学, 概率论是统计学的基础,而统计学则是概率论所得 出的规律在各领域中的实际应用。
相关文档
最新文档