八年级二次根式 教师讲义带答案

合集下载

八年级秋季班-第1讲:二次根式的概念及性质-教师版

八年级秋季班-第1讲:二次根式的概念及性质-教师版

二次根式是以实数中所学内容为基础,对开平方、开立方等运算进行扩展,基本要求是知道二次根式的取值范围、掌握二次根式的求值,二次根式中题目类型多变,方法多种多样.重点是掌握二次根式的概念、性质,难点是通过性质进行化简和求值.1、二次根式的概念(1)代数式a(0a )叫做二次根式,读作“根号a”,其中a是被开方数.(2)二次根式有意义的条件是被开方数是非负数.二次根式的概念及性质知识结构模块一:二次根式的概念知识精讲内容分析【例1】下列各式中,二次根式的个数有 ( )1.2;2xy ;22m n +;x;21030x x -+;6x .A .2个B .3个C .4个D .5个【难度】★ 【答案】B .【解析】 1.2、22m n +、21030x x -+是二次根式,2xy 、x、6x 不一定是二次 根式,当0x <时就不是.【总结】考查二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数.【例2】添加什么条件时,下列式子是二次根式?(1)4x -;(2)11||x -; (3)23x y ; (4)1||4x -. 【难度】★【答案】(1)4x ≥;(2)11x -<<;(3)0y ≥;(4)14x ≥或14x ≤-.【解析】(1)由40x -≥,得4x ≥; (2)由10x ->,得11x -<<; (3)由230x y ≥,得0y ≥;(4)由104x -≥,得14x ≥或14x ≤-. 【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【例3】对于a 下列说法中正确的是()A . 对于任意实数a ,它表示的是a 的算术平方根B . 对于任意的正实数a ,它表示的是a 的算术平方根C . 对于任意的正实数a ,它表示的是a 的平方根D . 对于任意的非负实数a ,它表示的是a 的算术平方根 【难度】★ 【答案】D .【解析】(0)a a ≥表示a 的算术平方根. 【总结】本题考查算术平方根的概念.例题解析【例4成立的条件是()A .02xx ≥- B .0x ≥ C .2x ≠ D .2x > 【难度】★ 【答案】D .【解析】由0x ≥,20x ->,得0x ≥,2x >,∴2x >.【总结】式子有意义的条件:①二次根式的被开方数为非负数;②分母不为零.【例5】求使下列二次根式有意义的实数x 的取值范围.(1(2 【难度】★★【答案】(1)1x ≥或0x <;(2)12x ≥-且1x ≠. 【解析】(1)由110x -+≥,得1x ≥或0x <; (2)由21010x x +≥⎧⎨-≠⎩,得12x ≥-且1x ≠. 【总结】二次根式有意义的条件:①二次根式的被开方数为非负数;②分母不为零.【例6】实数x 、y满足,xy y=,求的值.【难度】★★ 【答案】3.【解析】由0x ≥0x≥,得x =y =;∴3x y =.【总结】式子有意义的条件:①二次根式的被开方数为非负数;②分母不为零.【例72|313|0x y --=,求2016()x y +的值. 【难度】★★ 【答案】1.【解析】由题意得:2203130x x y -=⎧⎨--=⎩,解得:23x y =⎧⎨=-⎩,∴20162016()(1)1x y +=-=.【总结】考查非负数相加和为零的模型,则这几个式子都为零.【例8】如果代数式有意义,那么在平面直角坐标系中()P m n ,的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限 【难度】★★ 【答案】C .【解析】Q 0mn ≠,∴0m ≠且0n ≠,0m ∴->,0m ∴<. 0mn >Q 又, 0n ∴<.故点P 在第三象限. 【总结】二次根式的被开方数为非负数.【例9】如果2y =xy 的值. 【难度】★★ 【答案】6.【解析】33x x ≥≤∵,, 3x ∴=,2y ∴=, 6xy ∴=.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零.【例10】 已1()2x y z x y z ++,求、、的值.【难度】★★★【答案】1x =, 2y =,3z =.【解析】由题意得:x y z =++,∴0x y z ---, 即)))2221110++=,∴1x =, 2y =,3z =.【总结】本题主要考查利用配方将原式化为几个非负数和为零的形式.【例11】 若22223232()a b b c a b c ab bc ac -=+-=-++---,,求的值. 【难度】★★★ 【答案】30.【解析】Q 23a b -=+,23b c -=-,∴4a c -=. ∴ =原式222222222a b c ab bc ac ++--- =()()()222a b b c a c -+-+- =()()22223234++-+=74374316++-+ =30.【总结】本题主要考查三项完全平方式的运用以及二次根式的计算.【例12】 若z 适合352325320162016x y z x y z x y x y +--++-=-++--,求z 的值. 【难度】★★★【答案】3358.【解析】 Q 20160x y -+≥, ∴2016x y +≥.又 Q 20160x y --≥, ∴2016x y +≤, ∴2016x y +=. ∴35232530x y z x y z +--++-=.即35230125302x y z x y z +--=⎧⎨+-=⎩L L ()(), 解得:220143358x y z =⎧⎪=⎨⎪=⎩.【总结】本题先根据二次根式有意义的条件,得出2016x y +=,又考查当两个非负数的和为零时,则这两个式子必然都等于零.1、 二次根式有意义的条件是什么?师生总结1、二次根式的性质 (1)二次根式的性质:性质1:2(0)a a a =≥;性质2:2()(0)a a a =≥;性质3:ab a b =⨯(0a ≥,0b ≥);性质4:aa bb=(0a ≥,0b >).(2)2a 与a 的关系:2(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩.【例13】 计算下列各式的值:(1)23; (2)2(3)-;(3)2(3)--; (4)2(3)-;(5)21()5-; (6)221(0)x x x -+<.【难度】★【答案】(1) 3; (2) 3; (3) -3; (4)3; (5)15-;(6)1x -+.【解析】根据二次根式性质2即可得出结果. 【总结】考查二次根式性质2的运用.知识精讲模块二:二次根式的性质例题解析(10)a >; (2(30)a <;(400a b ><,).【难度】★【答案】(1)22)23)2ab c -4)a . 【解析】(1)原式2=;(2)原式2=;(3)原式2ab c =-(4)Q 00a b >>,,∴0a b ->,∴原式=()a bb a ---=.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例15】 化简:(1;(2(3)20a a <();(45)x <<.【难度】★★【答案】(1)21a +;(2)()()00(0)0a b a b a b a b ab ++>⎧⎪+=⎨⎪--+<⎩;(3)3a -;(4)3.【解析】(121a =+; (2()()00(0)0a b a b a b a b a ba b ++>⎧⎪+=+=⎨⎪--+<⎩;(3)()223a a a a =--=-; (4253x x -=+-=.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.(10)x >;(22+.. 【难度】★★【答案】(1)()()10111x x x x -<<⎧⎪⎨-≥⎪⎩; (2)1x -.【解析】(1()()101111x x x x x -<<⎧⎪-=⎨-≥⎪⎩; (2)Q 20x -≥,∴2x ≥.∴原式=122x x x ---+-=1221x x x x --++-=-.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例17】 把下列各式中根号外面的因式移到根号内,并使原式的值不变.(1(2)(3)2-(4)(1)x - 【难度】★★【答案】(1 (23)4)【解析】(1(2)=(3)2-(4)(1)x -== 【总结】把式子移入根号中,要保持式子的正负值不变化,同时注意题目中的隐含条件的发掘.(100)ab bc ><,;(20)a b << 【难度】★★【答案】(1)-;(2)22a b -.【解析】(1)原式=a c ac ⋅==- (2)原式=2222a b a b -=-.【总结】考查二次根式的化简,注意被开方出来的结果一定非负.【例19】 已0,求()x x y +的值. 【难度】★★ 【答案】9.【解析】由题意得:203280x y x y -=⎧⎨+-=⎩, ∴21x y =⎧⎨=⎩.∴()()2219x x y +=+=.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零.【例20】 已知x y 、是实数,且1|1|21y y y -<-,求的值. 【难度】★★ 【答案】1-.【解析】由题意得:1x =,12y <;∴|1|1111y y y y --==---.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,再利用去绝对值的知识就可以解决.【例21】 已知125x x -=-,求x 的取值范围. 【难度】★★ 【答案】14x ≤≤.【解析】由题意得:1425x x x ---=-;零点分段法分类讨论即可.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例22】 如7x y --成立,求xy 的值. 【难度】★★ 【答案】30.【解析】由题意得:3x =,10y =,∴30xy =.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,再利用去绝对值的知识就可以解决.【例23】 已知2x =+的值.【难度】★★.【解析】=又∵2x =,∴42420x -=+=<.∴原式=()()41411x x x x -=-==---【总结】考查二次根式的化简求值,注意被开方出来的结果一定非负.【例24】 已知2441310x x x x --+=+,求的个位数字. 【难度】★★ 【答案】7. 【解析】∵1130x x-+=, ∴113x x+=. ∴2222112132167x x x x ⎛⎫+=+-=-= ⎪⎝⎭,∴()2422421121672x x x x ⎛⎫+=+-=- ⎪⎝⎭,∴个位数字为7.【总结】本题考查了完全平方公式的变形及计算.【例25】 (1)在△ABC 中,a b c 、、0,求最大边c 的取值范围;(2)已知实数x y 、,满足2()x y +22x y +的平方根. 【难度】★★【答案】(1)814c ≤<;(2)±【解析】(1)根据题意,即为60a -,由此60a -=,80b -=,解得:6a =, 8b =,根据三角形三边关系,且c 为最大边,可知b c a b ≤<+,即814c ≤<.(2)由题意得:2()0x y +=,∴053160x y x y +=⎧⎨--=⎩,解得:22x y =⎧⎨=-⎩,∴=±【总结】考查非负数相加和为零的模型,则这几个式子都为零,然后根据三角形三边关系即可确定取值范围.【例26】 已知:1141r a b c r r ≥=-==+,,,试比较a 、b 、c 的大小. 【难度】★★★ 【答案】a b c <<. 【解析】由题意得:22a =-=,∵4r ≥, 1≤<,∴a b <;又∵11b r c ===, ∴b c <,∴a b c <<.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【例27】 已b 的式子表示). 【难度】★★★ 【答案】21b b -.21-=∴()211b y b-+=,∴原式=21bb-. 【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【例28】 化简:2222222222(20)a b a a b a b a b a b -+---->>. 【难度】★★★ 【答案】a b +. 【解析】原式=()()222222222ab a a b a a b b-+-+---=()()222222a b aa b b-+---=2222a b a a b b -+---,又∵20a b >>,∴原式=2222a b a a b b -+--+=a b +.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【例29】 已知:m =1465-,求43224882467m m m m m m --++-+的值.【难度】★★★ 【答案】8.【解析】由题意得:35m =-;∴35m -=,∴2(3)5m -=,∴264m m =-, 把264m m =-代入原式,合并同类项得:原式=8.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.师生总结1、 二次根式具有哪些性质?【习题1】 下列计算中正确的是( ).A .2(2)2=B .22(2)2=C .22(2)2-=-D .211()42-=-【难度】★ 【答案】A .【解析】根据二次根式性质1即可得出结果. 【总结】考查二次根式的性质1.【习题2】 判断下列哪些二次根式是二次根式? (1)4; (2)1a +;(3)2a ;(4)211a +;(5)223x x -+;(6)22(0)x x x -<.【难度】★【答案】(1)是; (2)不是 ; (3)是; (4)是; (5)是;(6)是. 【解析】二次根式有意义的条件,即被开方数为非负数即可. 【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【习题3】 当添加什么条件时,下列二次根式有意义?(1)43x -; (2)121a --;(3)2a ;(4)143x--;(5)22x x -+-;(6)x. 【难度】★ 【答案】(1)43x ≤;(2)12a <; (3)a 为任意实数;(4)43x >;(5)2x =; (6)0x ≥.【解析】(1)由430x -≥得:43x ≤; (2)由1021a -≥-得:12a <;(3)a 为任意实数; (4)由1043x -≥-得:43x >; (5)2x =; (6)0x ≥.【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.随堂检测【习题4】 化简:(1)24()9-;(2)22((2))a -;(32441x x -+12x ≥(;(42(3)a -【难度】★★【答案】(1)49; (2)24a ; (3)21x -; (4)()()()3330333a a a a a a ->⎧⎪-==⎨⎪-<⎩.【解析】(12444()=999--=; (2)222((2))4a a -=;(324412121x x x x -+-=-; (4()()()233(3)30333a a a a a a a ->⎧⎪-=-==⎨⎪-<⎩.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【习题5】 化简下列二次根式:(13275(00)x y x y ≥≥,;(22(3.14)-π(32(0)a a a <.【难度】★★【答案】(1)53x (2) 3.14π-; (3)2a -. 【解析】(132227525353x y x y x xy x == (22(3.14) 3.14 3.14π-=-=-ππ; (322a a a a a =--=-.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【习题6】 已知2+的整数部分是a ,小数部分是b ,那么(2b a ++的值是多少? 【难度】★★ 【答案】5.23<,∴425<<,∴4a =,242b ==,∴()224(52b a =++=.【总结】对于一个无理数的小数部分,没有办法完整写出来,只能用一种整体思想相应的表示出来.【习题7】 已知3x = 【难度】★★ 【答案】1.代入3x =, 原式.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【习题8】 222(2)023y x xy y +=-+,求的值. 【难度】★★ 【答案】40.【解析】∵3020x y -=⎧⎨+=⎩, ∴32x y =⎧⎨=-⎩.∴代入得:2223x xy y -+=()()2223332240⨯-⨯⨯-+-=.【总结】本题主要考查当两个非负数的和为零时,则说明这两个非负数均为零.【习题9】 已知非零实数x 、y 满足条件24224x y x -++=-,求x y +的值. 【难度】★★ 【答案】1.【解析】∵()230x y -≥,∴30x -≥,即3x ≥,∴240x ->, ∴24224x y x -++-,即20y +=,∴2030y x +=⎧⎨-=⎩, 解得:32x y =⎧⎨=-⎩.∴3(2)1xy +=+-=.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,另一方面考查了非负数和为零的基本模型.【习题10】 =a x y 、、是两两不同的实数,则22223x xy y x xy y +--+值等于 __________.【难度】★★★【答案】13.【解析】由题意知: ()()()()()()01020304a x a a y a x a a y -≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩L L L L L L L L , 解得:0a x y =⎧⎨=-⎩.∴22222222223313x xy y y y y x xy y y y y +---==-+++. 【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【习题11】 求满足26a x y -=-的自然数a x y 、、的值. 【难度】★★★【答案】617x y a ===,,或325x y a ===,,. 【解析】由题意得:262(1)a x y xy -=+-L∵26a -是无理数,假设xy 是有理数,则2x y xy +-是有理数,这与(1)式矛盾, ∴xy 为无理数,∴6x y a xy +=⎧⎨=⎩,又∵26a x y -=-,∴x y >.∴617x y a ===,,或325x y a ===,,.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【作业1】 判断下列式子哪些是二次根式?(1)x; (2)2; (3)1(1)x x -<; (4)244b b -+; (5)321a +; (6)222a +.【难度】★【答案】(1)不是; (2)不是; (3)不是; (4)是; (5)不是; (6)是. 【解析】根据二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数,即可判断出来.【总结】考查二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数.课后作业【作业2】 将x 移到根号内,不改变原来的式子的值:(11)x >;(2)(2)x x ->. 【难度】★【答案】(12)1.【解析】(1==(2)(1x -==.【总结】把式子移入根号中,要保持式子的正负值不变化,同时注意题目中的隐含条件的发掘.【作业3】 若11)-有意义,则x 的取值范围是______. 【难度】★【答案】10x x ≥≠且.【解析】∵11)-=∴101010x x x +≥⎧≥⎧⎪⎨≠≠⎩,解得:. 【总结】式子有意义的条件:①二次根式的被开方数为非负数;②分母不为零;③零没有零次幂.【作业4】 计算:201520162)2). 【难度】★★2.【解析】))2015201520162)2)222⎡⎤=⎣⎦2.【总结】当碰到次数较大的时候,想到去用公式,本题运用平方差公式和二次根式的计算即可.【作业5】 化简:(10)y <;(2)【难度】★★【答案】(1)(2【解析】(1)原式=(136y ⨯-=(2)原式()()00xx =>⎪<⎪⎩L L ,∴=. 【总结】考查二次根式的被开方数的非负性和二次根式的性质3、性质4,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【作业6】 已知x 为非零实数,且112221x x x a x-++=,则=________.【难度】★★ 【答案】22a -. 【解析】∵1122x xa -+=, a =, ∴212x a x++=, ∴212x a x +=-,∴22112x x a x x+=+=-.【总结】本题考查完全平方公式的变形和二次根式的综合.【作业7】 若代数式3|2|0a ab --,求的立方根. 【难度】★★【解析】由题意得:2,4a b ==,∴3a b -=【总结】本题主要考查当几个非负数的和为零时,则这两个式子必然都等于零的基本模型,还考查了去绝对值的知识.【作业8】 m 2 【难度】★★【答案】2.【解析】由题意得:1m =12m m-=. 【总结】考查根号中套根号类型的式子,注意观查,部分可转化为一个数字的平方,同时对于一个无理数的小数部分,没有办法完整写出来,只能用一种整体思想相应的表示出来.【作业9】 已知a b c 、、为有理数,且等式a +29991001a b c ++求的值.【难度】★★★【答案】2000.a +∴011a b c ===,,, ∴2999100199910012000a b c ++=+=.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【作业10】 已知14(01)a aa +=<<的值. 【难度】★★★【答案】【解析】212422aa=+-=-=,∵01a <<0<= 【总结】本题考查完全公式的变形和无理数、二次根式的综合.【作业11】 已知2|8|(41)0x y y -+-【难度】★★★【答案】1.【解析】由题意得:80410830x y y z x -=⎧⎪-=⎨⎪-=⎩,解得:21434x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩132122+-=. 【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,还考查了去绝对值的知识.【作业12】 化简:(1(2.【难度】★★★【答案】(12;(2. 【解析】(12;(2. 【总结】本题主要考查复合二次根式的化简,注意观察,部分可转化为一个数字的平方,即=,由此可进行化简计算,注意观察根号中数字的因数,分解即可得到相关计算结果,同时根据二次根式性质进行相关变形计算.。

八年级数学下册第十六章二次根式知识点梳理(带答案)

八年级数学下册第十六章二次根式知识点梳理(带答案)

八年级数学下册第十六章二次根式知识点梳理单选题1、√2×√8=()A.4√2B.4C.√10D.2√2答案:B分析:直接利用二次根式的乘法运算法则计算得出答案.解:√2×√8=√16=4.故选B.小提示:此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.2、如果最简二次根式√3x−5与√x+3是同类二次根式,那么x的值是()A.1B.2C.3D.4答案:D分析:根据最简二次根式的定义:二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.进行求解即可.∵最简二次根式√3x−5与√x+3是同类二次根式,∴3x−5=x+3,∴x=4,故选:D.小提示:本题考查同类二次根式,熟练掌握同类二次根式的定义是解题的关键.3、二次根式√2x+4中的x的取值范围是()A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2答案:D分析:根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.由题意,得2x+4≥0,解得x ≥-2,故选:D .小提示:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.4、已知a =√5−2,b =2+√5,则a ,b 的关系是( )A .相等B .互为相反数C .互为倒数D .互为有理化因式答案:A分析:求出a 与b 的值即可求出答案.解:∵a =√5−2=√5+2(√5+2)(√5−2)=√5+2,b =2+√5, ∴a =b ,故选:A .小提示:本题考查了分母有理化,解题的关键是求出a 与b 的值,本题属于基础题型.5、已知:a=2−√3,b=2+√3,则a 与b 的关系是( )A .相等B .互为相反数C .互为倒数D .平方相等答案:C 因为a ×b =2−√32+√3=1,故选C.6、计算√8+√18的值等于( ) A .√26B .4√2C .5√2D .2√2+2√3答案:C 分析:根据二次根式的运算法则即可求出答案.解:原式=2√2+3√2=5√2故选C .小提示:本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.7、已知max {√x,x 2,x}表示取三个数中最大的那个数,例如:当x =9时,max {√x,x 2,x}=max{√9,92,9}=81.当max {√x,x 2,x}=12时,则x 的值为( ) A .−14B .116C .14D .12答案:C分析:利用max {√x,x 2,x}的定义分情况讨论即可求解.解:当max {√x,x 2,x}=12时,x≥0①√x =12,解得:x =14,此时√x >x >x 2,符合题意; ②x 2=12,解得:x =√22;此时√x >x >x 2,不合题意; ③x =12,√x >x >x 2,不合题意; 故只有x =14时,max {√x,x 2,x}=12. 故选:C .小提示:此题主要考查了新定义,正确理解题意分类讨论是解题关键.8、下列各式中,无意义的是( )A .√(−3)2B .√(−3)33C .√−32D .√−(−3)答案:C分析:根据二次根式的被开方数是非负数判断即可.解:A .原式=√9=3,故该选项不符合题意;B .原式=−3,故该选项不符合题意;C .原式=√−9,−9是负数,二次根式无意义,故该选项符合题意;D .原式=√3,故该选项不符合题意;故选:C .小提示:本题考查了二次根式有意义的条件,立方根,掌握二次根式的被开方数是非负数是解题的关键.9、观察下列等式:第1个等式:a 1=1+√2=√2−1, 第2个等式:a 2=√2+√3=√3−√2,第3个等式:a3=√3+2=2−√3,第4个等式:a4=2+√5=√5−2,按照上述规律,计算:a1+a2+a3+⋯+a n=()A.√n+1−1B.√n+1−√n C.√n+1D.√n−1答案:A分析:首先根据题意,可得a1=1+√2=√2−1,a2=√2+√3=√3−√2,a3=√3+2=2−√3,a4=2+√5=√5−2⋯⋯a n=√n+1+√n=√n+1−√n,再相加即可得解.解:第1个等式:a1=1+√2=√2−1,第2个等式:a2=√2+√3=√3−√2,第3个等式:a3=√3+2=2−√3,第4个等式:a4=2+√5=√5−2,……第n个等式:a n=√n+1+√n=√n+1−√n,∴a1+a2+a3+⋯⋯+a n=√2−1+√3−√2+2−√3+⋯+√n+1−√n=√n+1−1,故A正确.故选:A.小提示:本题主要考查了数字的变化规律以及分母有理化,首先要理解题意,找到规律,并进行推导得到答案.10、如图,数轴上的点可近似表示(4√6−√30)÷√6的值是( )A.点A B.点B C.点C D.点D答案:A分析:先化简原式得4−√5,再对√5进行估算,确定√5在哪两个相邻的整数之间,继而确定4−√5在哪两个相邻的整数之间即可.原式=4−√5,由于2<√5<3,∴1<4−√5<2.故选:A.小提示:本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.填空题11、若a+6√3=(m+n√3)2,当a,m,n均为正整数时,则√a的值为__________.答案:2√7或2√3##2√3或2√7分析:先利用完全平方公式将(m+n√3)2展开,再根据等式左右两边对应项相等得到关于m、n的方程组,进而可求解.解:∵a+6√3=(m+n√3)2=m2+3n2+2√3mn,∴a=m2+3n2,2mn=6,∵a、m、n均为正整数,∴m=1,n=3,或m=3,n=1,当m=1,n=3时,a=12+3×32=28,则√a=√28=2√7;当m=3,n=1时,a=32+3×12=12,则√a=√12=2√3.所以答案是:2√7或2√3.小提示:本题主要考查了完全平方公式在二次根式混合运算中的运用,熟记完全平方公式,以及分类讨论思想的运用,是解答的关键.12、将√45化为最简二次根式,其结果是 __.2答案:3√102分析:将分母有理化后进行化简即可.解:√452=√45×22×2=√3×3×5×22×2=3√102,所以答案是:3√102.小提示:本题考查二次根式的化简,熟练掌握二次根式的化简方法解决本题的关键.13、已知√x+5有意义,如果关于x的方程√x+5+a=3没有实数根,那么a的取值范围是__.答案:a>3.分析:把方程变形为√x+5=3−a,根据方程没有实数根可得3−a<0,解不等式即可.解:由√x+5+a=3得√x+5=3−a,∵√x+5有意义,且√x+5⩾0,∴方程√x+5=3−a没有实数根,即3−a<0,∴a>3,所以答案是:a>3.小提示:本题考查了二次根式的性质,解题关键是利用二次根式的非负性确定a的取值范围.14、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7,则(1)用含x的式子表示m=___;(2)当y=2时,n的值为_____.答案:32x 11 4分析:(1)根据题意,可以用含x的式子表示出m;(2)根据图形,可以用x的代数式表示出y,列出关于x的分式方程,从而可以求得x的值,进而得到n的值.解:(1)由图可得m=1x +12x=32x,所以答案是:32x;(2)∵y=m+n=(1x +12x)+(12x+3)=2x+3,y=2,∴2x+3=2,解得,x=−2,∴n=12x +3=114,所以答案是:114.小提示:本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,列出相应的代数式及分式方程及求出方程的解.15、√27+√3的结果是_________.答案:4√3分析:直接化简二次根式进而合并得出答案.原式=3√3+√3=4√3.所以答案是:4√3.小提示:此题主要考查了二次根式的加减,正确化简二次根式是解题关键.解答题16、在一个边长为(√3+√5)cm的正方形内部挖去一个边长为(√5−√3)cm的正方形(如图所示),求剩余阴影部分图形的面积.答案:4√15( cm2).分析:用大正方形的面积减去小正方形的面积即可求出剩余部分的面积.解:剩余部分的面积为:(√3+√5)2-(√5-√3)2,=(√3+√5+√5−√3)(√3+√5−√5+√3),=2√5×2√3,=4√15( cm2).小提示:此题考查了二次根式的应用,熟练掌握二次根式的运算法则和平方差公式是解本题的关键.17、计算:(1)(4√12−2√20)−(√48+√5)(2)(√48−√27)÷√3+√6×2√3答案:(1)4√3−5√5(2)1+6√2分析:(1)直接化简二次根式,进而利用二次根式的加减运算法则计算得出答案;(2)直接化简二次根式,再利用二次根式的乘除运算法则计算得出答案.(1)(4√12−2√20)−(√48+√5)=(8√3−4√5)−(4√3+√5)=8√3−4√5−4√3−√5=4√3−5√5(2)(√48−√27)÷√3+√6×2√3=(4√3−3√3)÷√3+6√2=√3÷√3+6√2=1+6√2小提示:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18、已知a满足|2021−a|+√a−2022=a.(1)√a−2022有意义,a的取值范围是______;则在这个条件下将|2021−a|去掉绝对值符号可得|2021−a|=______.(2)根据(1)的分析,求a−20212的值.答案:(1)a≥2022;a−2021(2)a−20212=2022分析:(1)先根据二次根式有意义的条件求出a的范围,再根据绝对值的性质化简;(2)去掉绝对值符号,然后根据二次根式的性质求解即可.(1)解:∵√a−2022有意义,∴a−2022≥0,∴a≥2022,∴2021−a<0,∴|2021−a|=a−2021;所以答案是:a≥2022;a−2021;(2)∵|2021−a|+√a−2022=a,∴a−2021+√a−2022=a,∴√a−2022=2021,∴a−2022=20212,∴a−20212=2022.小提示:本题考查了绝对值的意义,二次根式有意义的条件,二次根式的性质与化简,能求出a≥2022是解此题的关键.。

人教版八年级数学下册第十六章二次根式课件+测试题含答案ppt3

人教版八年级数学下册第十六章二次根式课件+测试题含答案ppt3

(A)x≥1
(B)x≥-1
(C)-1≤x≤1 (D)x≥1 或 x≤-1
人 教 版 八 年 级数学 下册第 十六章 二次根 式课件 +测试题 含答案 ppt3( PPT优 秀课件 )
人 教 版 八 年 级数学 下册第 十六章 二次根 式课件 +测试题 含答案 ppt3( PPT优 秀课件 )
4.计算 12 × 3 的值是 6 . 5.计算:
人 教 版 八 年 级数学 下册第 十六章 二次根 式课件 +测试题 含答案 ppt3( PPT优 秀课件 )
知识点 二次根式的乘法运算
例 1 计算:
(1) 5 × 7 ;(2) 1 × 9 ;(3) 9 × 27 ;(4) 1 × 6 .
3
2
【思路点拨】运用法则 a · b = ab (a≥0,b≥0). 解:(1) 5 × 7 = 57 = 35 .
人 教 版 八 年 级数学 下册第 十六章 二次根 式课件 +测试题 含答案 ppt3( PPT优 秀课件 )
16.2 二次根式的乘· b = a b (a≥0,b≥0), 反之 ab = a · b (a≥0,b≥0).
人 教 版 八 年 级数学 下册第 十六章 二次根 式课件 +测试题 含答案 ppt3( PPT优 秀课件 )
(2) 1 × 9 = 1 9 = 3 .
3
3
人 教 版 八 年 级数学 下册第 十六章 二次根 式课件 +测试题 含答案 ppt3( PPT优 秀课件 )
人 教 版 八 年 级数学 下册第 十六章 二次根 式课件 +测试题 含答案 ppt3( PPT优 秀课件 )
(3) 9 × 27 = 9 27 = 92 3 =9 3 .

(精品)数学讲义8Q-1二次根式(教师)

(精品)数学讲义8Q-1二次根式(教师)

第1课时二次根式课时目标1. 了解二次根式的概念及二次根式有意义的条件;2. 掌握二次根式的四个基本性质;3. 会根据二次根式的性质化简二次根式;4. 了解什么是同类二次根式,并会合并同类二次根式;5. 掌握二次根式的加法和减法运算法则;6. 掌握二次根式的乘法和除法法则.知识精要1. 定义)0a≥叫做二次根式,其中aa≥.2. 二次根式的性质性质1 ()0a a=≥(双重非负性)性质2 ()20a a=≥()()()00a aa aa a≥⎧⎪===⎨⎪-<⎩性质3 =()0,0a b≥≥性质4 =)0,0(>≥ba3. 化简二次根式把二次根式里被开方数所含的完全平方因式移到根号外,或者化去被开方数的分母的过程,称为化简二次根式.化简关键:将被开方数因式分解或因数分解,使出现完全平方数或偶次方因式,最后结果的被开方数中不含能开得尽方的因数或因式,即化成最简二次根式. 化简二次根式同时满足两个条件:(1)被开方数中各因式的指数都为1; (2)被开方数不含分母. 4. 同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个根式叫做同类二次根式,同类二次根式可以进行合并. 5. 二次根式的加法和减法一般过程:先把各个二次根式化为最简二次根式,再把同类二次根式分别合并.(化简,合并))0()(≥+=+c c b a c b c a6. 二次根式的乘法和除法(1)两个二次根式相乘,被开方数相乘,根指数不变;)0,0(≥≥=⋅b a ab b a(2)两个二次根式相除,被开方数相除,根指数不变.)0,0(>≥=b a baba 7. 分母有理化把分母中的根号化去就是分母有理化.一般方法是把分子和分母都乘以同一个适当的代数式,使分母不含根号. 8. 有理化因式两个含有二次根式的非零代数式相乘,如果它们的积不含有二次根式,我们就称这两个含有二次根式的非零代数式叫做互为有理化因式. 注:有理化因式不唯一(1)如单独一项 ;(2);;热身练习1. 当x 取何值时,下列各式有意义.(确定字母的取值范围)(1 32x ⎛⎫⇒≥⎪⎝⎭(2()0x ⇒≤(3( x 是任意实数) (4)()2x ⇒>(5)3x - ()43x x ⇒≥-≠且 (6()3x ⇒=2. 二次根式的运算(1)(48-814)-(313-5.02) (2)(548+12-76)÷3; 解:原式 =33 解:原式=(203+23-76)×31=20+2-76×33=22-221.(3)50+122+-421+2(2-1)0;解:原式=52+2(2-1)-4×22+2×1 =52+22-2-22+2 =52.精讲名题例1:)0(323543<a c b a解:易知0c ≤,则原式=()2234a b c =⨯⨯-⨯⨯212ab c =-练习:化简二次根式(1 (20)m ≤ 解:0a <易知, 解:原式=m 7-则原式=3=3=-;(3)已知,02x <<解:原式 =22x x =++-2222x x x x +-==例2:解不等式)1x x ≥+解:3x ≤--练习:解方程和不等式(1)=- (2)54215323->+y yx =61211<y(3)-+5x >例3分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷. 解:设422-++=n n a ,422--+=n n b ,那么 )2(2+=+n b a ,)2(4)4()2(22+=--+=n n n ab ,n abb a ab ab b a ab b a a b b a =-+=-+=+=+=∴2)(2)(2222原式练习: 有这样一道题,计算:x x x x x x x x x x +---+--+-->2222244442()的值,其中x =1005,某同学把“x =1005”错抄成“x =1050”,但他的计算结果是正确的.请回答这是怎么回事?试说明理由.解析:这是一道说理型试题,既然x 的值取错,计算结果仍是正确.那么可以猜测此二次根式化简后与x 的值无关.这时应化简二次根式,揭开它神秘的面纱. 解:设42-+=x x a ,42--=x x b ,那么 x b a 2=+,4)4(22=--=x x ab ,22)(2)(22222-=-+=-+=+=+∴x abb a ab ab b a ab b a a b b a 22-=-+=∴x abb a 原式 计算结果不含x ∴即使抄错x 的值,计算结果依然是正确的.备选例题例1. 已知:x +y =-5,xy =4,求xyy x +的值. 分析:因为xy =4,所以x 、y 同号,又因为x +y =-5,所以x 、y 同为负数. 解法一:经分析知,x <0,y <0 原式=xyxy y x x xy y xy x xy y xy xxy yxy )(22+-=-+-=+=+ 当x +y =-5,xy =4时,原式=25解法二:设xy yx +=m 两边平方得:22)(222222+-+=++=++=xyxyy x xy y x x y y x m 当x +y =-5,xy =4时,4252=m ,即原式=25例2. 一类特殊的二次根式求和问题+⋅⋅⋅+解:原式=9900100999910063223222-++-+-=10010099993322221-++-+-=1001001- =910巩固练习1.如图所示,数轴上点A 与点B 分别对应实数a 、b ,下列四个等式中正确的个数有( B )(1)a a -=2 (2)a a =2)((3)b a b a +=+2)((4)a b a b -=-2)( A 、1 B 、 2 C 、 3 D 、42. 若0,0x y >>,则化简 C ) A、BCD、3.设24-的整数部分为a ,小整数部分为b ,则ba 1-的值为( A ) A 、221-B 、2 C、12+ D 、2- 4.把(a -1中根号外的(a -1)移入根号内得( D ) A、 BCD5.设a =,则 ( A ) A 、01a << B 、1a = C 、12a << D 、2a >6. 当m为何值时,二次根式. 解:由已知得:m m 61232624-=-,32234326-=-m m · 0· 1· A· B32612-=-∴m m815=∴m7. 看下列解题过程是否正确,如果错误请说明理由并改正.(1)1解:原式1=同一级运算中,要按从左到又的顺序进行,正确答案是423-.(2解:原式= 乘法对加法的分配律在除法中不能随便套用,正确答案是3223+.8.已知a =和代数式(1)上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?解:2222)1(214)1(a a a a a a +=++=+-,2222)1(214)1(aa a a a a -=-+=-+.(2)如何确定1a a -和1a a+的值是正值还是负值?解:23231-=+=a ,231+=a∴0321>=+aa ,0221<-=-a a(3解:原式=2232211|1||1|-==-++=--+a aa a a a a a a自我测试1. 下列函数中,自变量x 的取值范围是x ≥3的是( D ) A 、31-=x y B 、31-=x yC 、3-=x yD 、3-=x y2. 下列变形中,正确的是………( D )A 、(23)2=2×3=6B 、2)52(-=-52C 、169+=169+D 、)4()9(-⨯-=49⨯ 3. 下列各组二次根式中,不是同类二次根式的是( D ) A 、45与20 B 、3x 与2xy C 、x5与2345y x D 、xy 与y x 11+4. 下列根式中,不属于最简二次根式的是( D )A 、a 3B 、22y x +C 、x 331D 、9 5. 若0,0x y >>,则化简 C ) A、BCD、6. 如果最简二次根式83-a 和a 217-是同类二次根式,那么求使a x 42-有意义的x 的取值范围.解:由已知得:a a 21783-=- 解得 5=a0202≥-∴a 即 10x ≥7. 分母有理化:10321032-+解:原式(2221122+===+8. 解方程:)35(3)51(5+=+x x解:x =x =25)35(54⨯+=x515210+=x9. 解不等式:x x 181)83(21+<-解: 12>16x >10. 02)+02)+(11|1=++.111=.1=。

八年级秋季班-第3讲:二次根式的综合-教师版

八年级秋季班-第3讲:二次根式的综合-教师版

本章节的综合性较强,首先讲解的是分母有理化,它是数与代数的重要内容,是二次根式运算的依据;其次是综合运算,融合了加、减、乘、除四种运算以及化简求值类,解题的技巧和计算的准确度是关键点;再次是复习与提高,二次根式这章节的主要内容做一整体的回顾和提升,针对重难点及易错、常考的进行总结,帮助学生更好的巩固本章所学的内容.1.分母有理化:(1)把分母中的根号化去就是分母有理化,即是指分母中不含二次根式的运算.(2)分母有理化的方法:是把分子和分母都乘以同一个适当的代数式,使分母不含根号.2.有理化因式:(1)两个含有二次根式的非零代数式相乘,如果它们的积不含有二次根式,我们就说这两个含有二次根式的非零代数式互为有理化因式.二次根式的综合知识结构模块一:分母有理化知识精讲内容分析【例1】下列各式中,不是互为有理化因式的是()A .11a a ---和B .x y x y -+-和C .3232--和-D .a x b y a x b y -+和【难度】★ 【答案】B【解析】互为有理化因式指两个含有二次根式的代数式乘积不再含有二次根式,B 选项不满 足定义,对于单独的二次根式,常见的有理化因式是它本身,对于二次根式的和差,可以利用平方差公式找它的二次根式.【总结】本题考察了有理化因式的概念.【例2】下列各式分母有理化正确的是() A .x xy x xy=-+B .2211a a a a =+-++C .a b a b=--D .22x y x yx y--=+【难度】★ 【答案】D【解析】选项A 应为:()y x xy -;B 选项正确; C 选项应为:a b +,D 选项应为22x y x y -+.【总结】本题考察了分母有理化的概念及运用.【例3】把下列各式分母有理化.(1)5632-; (2)4232-;(3)a a b-; (4)aa b b a-.【难度】★例题解析【答案】(1; (2)8+; (3; (4【解析】(1)原式==;(2)原式8==;(3)原式=;(4)原式==.【总结】本题考察了分母有理化,注意分子分母同乘有理化因式.【例4】已知:x =是一元二次方程20ax =的解,求a 的值.【难度】★★【答案】5-+.【解析】由已知得:x 21)0a -=,即(51a -,所以a =,化简,得:5a =+. 【总结】本题考察了含有二次根式的方程的解法.【例5】实数6-a ,小数部分是b ,求2211()b a b -的值.【难度】★★【答案】-【解析】由已知得:42a b ==,. ∴原式=21[(24=221[(2(2]4-+ =-【总结】本题考察了二次根式的估算和代值求解问题.【例6】比较下列各式的大小.(1 (21.【难度】★★★【答案】(1 (21.【解析】(1)213=+Q 213=+又1313++;(2)=Q 11,1.【总结】本题考察了二次根式的大小比较,常见的方法为平方法和倒数法.【例7...+.【难度】★★★【解析】原式++L【总结】本题考察了利用分母有理化简化运算.【例8】先化简,再求值x ÷=,其中【难度】★★★1.【解析】原式=121x -,当x 时,原式1=. 【总结】本题考察了二次根式的混合运算.1、二次根式的混合运算(1)实数的运算律、运算性质以及运算顺序规定,在二次根式运算中都适用; (2)二次根式的运算中要灵活运用运算律、运算性质、乘法公式等进行解题.【例9】化简求值:(1)(221)(221)x x ---+;(2)20162016(154)(154)-+.【难度】★★【答案】(1)24421x x -+; (2)1.【解析】(1)原式=222(22)1442214421x x x x x --=-+-=-+; (2)原式=20162016[(154)(154)](1)1-+=-=. 【总结】本题考察了含有根式的平方差公式.【例10】 计算:(1)11227612(23)3223⎡⎤--÷-÷+⎢⎥-⎣⎦; (2)(23326)(23326)+--+. 【难度】★★【答案】(1)464-; (2)12123-+.【解析】(1)原式=23332323223-++⋅-+ =(232)223(23)+⋅+-=262266++- =464-;例题解析知识精讲模块二:二次根式混合运算(2)22=-原式 12(186)=--12=-+ 【总结】本题考察了二次根式的混合运算.【例11】 化简(1)(2-【难度】★★【答案】(1) (2)-【解析】(1)原式=-=b -+ =(2)原式=-=-【总结】本题考察了二次根式的混合运算.【例12】 已知214(3)(2)(1)(2)0()33x x x x x x x x x x--+--=-÷-+,求. 【难度】★★【答案】6;【解析】由已知得:1212x x ==,(舍去)原式=(1)(4)(3)(3)(3)(3)(2)x x x x x x x x x x ----+⋅-+-=22712132x x x x x x --+-⋅-- =6(2)132x x x -⋅-- =63x -当1x =时,原式== 【总结】本题考察了代值求解问题以及分式的除法运算,注意分式有意义的条件.【例13】解下列方程或方程组:(11-=;(2)xy⎧=⎪-=【难度】★★【答案】(1)2x=+-;(2)xy⎧=⎪⎪⎨⎪=⎪⎩.【解析】(1)1x=,x,x=2x=+-;(2)①34y=-y=,①+②36x=,所以x=所以原方程组的解为:xy⎧=⎪⎪⎨⎪=⎪⎩.【总结】本题考察了含有二次根式的方程以及方程组的解法,注意计算过程中的符号变化.【例14】判断下列三个等式是否成立,并解答以下两个问题:(1=;(2=(3=果,并加以说明;试用含n(n为大于1的自然数)的式子表示这一规律.【难度】★★【答案】(12===n为大于1的自然数)==【总结】本题考察了二次根式的化简以及对规律的总结与归纳.(1); (2【难度】★★★【答案】(1)6- (2)1;【解析】(1)原式=22-=82-=6-(2)原式=4(3+--=1. 【总结】本题考察了二次根式的混合运算.【例16】 已知x ,y ,求32432232x xy x y x y x y -++的值. 【难度】★★★.【解析】由已知得:5x =+5y =-,原式=22()()()()x x y x y x y x y x y xy x y +--===++【总结】本题考察了代值求解问题和二次根式的化简.【例17】 计算:()+).【难度】★★★【答案】9.【解析】原式=1+L=1)(101)-=9+.【总结】本题考察了二次根式的运算,分母有理化时注意符号问题.(1)20152016-⋅+;(635)(635)(2)1021+⋅-.(322)(12)【难度】★★★【答案】(1)635-.+;(2)12【解析】(1)原式=2015-+⋅+=+;[(635)(635)](635)635(2)原式=10210(322)[(12)](12)+⋅-⋅-=1010+⋅-⋅-(322)(322)(12)=10+-⋅-[(322)(322)](12)=12-.【总结】本题考察了二次根式的混合运算.师生总结1、二次根式混合运算的法则是什么?1、二次根式的概念2、二次根式的性质3、分母有理化4、二次根式的混合运算【例19】 使等式3322x x x x++=--成立的条件时________. 【难度】★【答案】32x -≤<.【解析】由已知得:3020x x +≥⎧⎨->⎩, 解得:32x x ≥-⎧⎨<⎩ , 32x ∴-≤<.【总结】本题考察了二次根式成立的条件.【例20】 下列运算中正确的是( ) A .532-=B .12274953+=+=C .22a b b a b += C .2222a b a b a b -=-=-【难度】★ 【答案】B【解析】A 选项不是同类二次根式,不能运算; C 选项结果应为(2)a b +; D 选项根号内不含平方式不能化简. 【总结】本题考察了二次根式的运算.例题解析知识精讲模块三:复习与提高【例21】 根据下列计算,确定字母的取值范围:(1(2- 【难度】★★【答案】(1)0x ≥;(2)00x y ≤≤,.【解析】(1)由已知得:010x x ≥⎧⎨+≥⎩ , 解得:0x ≥;(2)由已知得:00x y -≥⎧⎨-≥⎩; 解得:00x y ≤≤,.【总结】本题考察了二次根式有意义的条件.【例22】 能够合并,求2a b -的值. 【难度】★★ 【答案】-2.【解析】由已知得:22a b a b +-=-,解得:22a b -=-. 【总结】本题考察了同类二次根式的概念.【例23】 已知111a a+,求 【难度】★★. 【解析】由已知得:11a a-=, 当0a <时,原式化为:11a a+=,矛盾,舍去;当0a >时,原式化为:11a a -=,则1a1a a +【总结】本题考察了完全平方公式的应用和二次根式的化简.【例24】32y =,求代数式2y x 的值. 【难度】★★【答案】6427.【解析】由已知得:3202x -=,解得:3342x y ==-,. ∴原式=3364()427-=.【总结】本题考察了二次根式有意义的条件,当两个二次根式的被开方数互为相反数时,这个被开方数等于0.【例25】 化简: (1)(0)b a >>; (2(7)a <.【难度】★★【答案】(1; (2.【解析】(1)原式==; (2)原式=【总结】本题考察了二次根式的化简,注意被开方数的正负.【例26】 解下列方程或方程组: (11+=(2)1x ==⎪⎩.【难度】★★【答案】(1)x = (2)x y ⎧=⎪⎪⎨⎪=⎪⎩.【解析】(1)34x x=,x=(2)由①21x=,则x;由①-②=y=,所以原方程组的解为:xy⎧=⎪⎪⎨⎪=⎪⎩.【总结】本题考察了含有根式的方程的解法.【例27】0.2且小于0.3的数有哪些?分别求出,并写出做法.【难度】★★★【解析】220.20.040.30.09==Q,,又0.040.04840.09<<,0.20.3∴<<.【总结】本题考察了二次根式比较大下,被开方数越大,二次根式的值越大.【例28】计算:...1).【难度】★★★【答案】2015.【解析】原式=11)++L=1)=2015.【总结】本题考察了二次根式的化简与计算.【例29】 观察与思考:因为2(21)222132232221-=-+=--=-,所以;同样,因为2(32)443374374332+=++=++=+,所以.试根据以上规律,化简下列各式: (1)526-; (2)924+. 【难度】★★★【答案】(1)32-; (2)2212+. 【解析】(1)原式=2263(23)32-+=-=-; (2)原式=2942928(18)2214442++++===. 【总结】本题考察了多重根号的化简,关键是对二次项的拆分.【习题1】 直接写出下列各式的取值范围. (1)35x -; (2)222y y -+; (3)21a a -; (4)21x x+-. 【难度】★ 【答案】(1)53x ≥; (2)y 取任意实数;(3)12a >;(4)21x -≤<. 【解析】(1)由350x -≥,得:53x ≥; (2)2222(1)10y y y -+=-+>Q 恒成立,∴x 取任意实数; (3)由210a ->,得:12a >; (4)由已知,得:201x x +≥-, 所以①2010x x +≥⎧⎨->⎩或2010x x +≤⎧⎨-<⎩, 解得:21x -≤<. 【总结】本题考察了二次根式有意义的条件.随堂检测【习题2】 化简:(10)mn <;(2;(3)(a -. 【难度】★【答案】(1)- (2 (3)【解析】(1)由200mn mn ⎧≥⎨<⎩,得:0m ≥,0n <,∴原式==-(2)由4102xy ≥,得:0x >,y 取任意实数,∴原式==;(3)由10a ->,得:1a <,∴原式(1)a =- 【总结】本题考察了二次根式的化简,注意二次根式有意义的条件.【习题3】 下列各组根式是同类二次根式的是().A 、 BCD 、2【难度】★ 【答案】D【解析】A 、B 、C 选项化简后被开方数不相同,不符合同类二次根式的定义,故选择D . 【总结】本题考察了同类二次根式的概念.【习题4】 化简下列各式(字母均为正数).(1(2;(3 (4))a b >. 【难度】★★【答案】(1 (2; (3) (4【解析】(1)原式; (2)原式=;(3)原式=(4)原式=== 【总结】本题考察了二次根式的化简.【习题5】 将下列各式分母有理化.(1 (2;(3; (4.【难度】★★【答案】(1; (2(3; (4.【解析】(1)原式 (2)原式(3)原式===(4)原式===.【总结】本题主要考察利用分母有理化化简二次根式.【习题6】 计算.(1);(2)(3- (4)((|1⨯-.【难度】★★【答案】(1)10; (2)2110 (3)7- (4)【解析】(1)原式=2080902010=-+=;(2)原式=212122010⨯-=(3)原式=(12(17++=(4)原式=11=【总结】本题考察了二次根式的混合运算,注意先化简再合并.【习题7】 已知22x y x xy y ==++的值.【难度】★★ 【答案】483.【解析】由已知,得:1111x y =-=+ ∴原式=22()221483x y xy +-=-=.【总结】本题考察了二次根式的化简求解问题,注意对所求的代数式进行变形,使计算变得简单.【习题8】 xy ,其中x =y =【难度】★★★【答案】5-【解析】原式++ =x y,当x y =5- 【总结】本题综合性较强,主要考察了二次根式的化简求值.【习题9】 求值:(1)设222204m n mn m n mn mn-≠+=,且,求的值;(2)若22116a a a a+=+,求的值.【难度】★★★【答案】(1)23±; (2)22±.【解析】(1)由已知得:222()26m n m mn n mn +=++=, 222()22m n m mn n mn -=-+=, ∴原式=()()6223m n m n mn mnmn -+±⋅==±;(2)原式=221222a a±++=±.【总结】本题考察了完全平方式的变形在二次根式中的应用.【习题10】 若51a =+,求201820172016242016a a a --+的值. 【难度】★★★ 【答案】2016.【解析】原式=20162(24)2016a a a --+,当51a =+时,原式=201622016(51)[(51)2(51)4]2016(51)020162016++-+-+=+⋅+=. 【总结】本题考察了代值求解问题,通过恰当的变形,使计算变的简单.【作业1】 下列各式中一定正确的是 ()A .2(2.5) 2.5-=B .22()a a =C .2111x x x -=-⋅+D .(1)(1)1x x x +-=-【难度】★ 【答案】A【解析】B 选项:2a a =; C 选项:当1010x x -≥+≥且才成立;D 选项:不能化简. 【总结】本题考察了二次根式的化简.课后作业【作业2】 下列各式中是同类二次根式的是()A . BCD 【难度】★ 【答案】B【解析】A 、C 、D 选项化简后被开方数不相同,不符合同类二次根式的定义,故选择B . 【总结】本题考察了同类二次根式的概念.【作业3】 写出下列各式的有理化因式:(1); (2(3(4)+【难度】★【答案】(1等; (2等; (3 (4) 【解析】略.【总结】本题考察了有理化因式的概念.【作业4】 计算:(1(-;(2);(3)(⋅(4.【难度】★★【答案】(1)4-;(2);(3)54-;(4.【解析】(1)原式=4-=-;(2)原式=13-=;(3)原式=1932()125442⨯⨯-⨯=-⨯=-;(4)原式=(4+【总结】本题考察了二次根式的混合运算,注意简便方法的运用.【作业5】 计算:(11-; (21<+;(3)24x x >(4)25x x +<+.【难度】★★【答案】(1)x >(2)18x >;(3)x <;(4)x >.【解析】(1)1x <-,x ,所以x >(2)32<+1-<-,所以x ;(3)2x ->,即2x ->,所以x <;(4)3x -<-x【总结】本题考察了含有二次根式的不等式解法,注意符号的变化.【作业6】 已知2623x x x x -+=-的值. 【难度】★★【答案】4.【解析】由已知得:3x =-原式=26977(3)(334x x x x x -+-=--=-=--.【总结】本题考察了二次根式的化简求解问题.【作业7】 化简求值:(1) 已知22x y x y ==-,的值;(2) 若1(1x x y y ==-,,则的值. 【难度】★★【答案】(1) (2).【解析】(1)由已知得:33x y =+=-∴原式=()()6x y x y +-=⨯=(2)由已知得:1)x =-,∴1y = ,∴y = 【总结】本题考察了二次根式的化简求解问题,注意计算时的符号问题.【作业8】 1的整数部分为a ,小数部分为b ,求2a b +的值. 【难度】★★【解析】由已知得:32a b ==,,所以原式=. 【总结】本题考察了二次根式的估值及其计算.【作业9】 互为倒数,求a y 与的关系. 【难度】★★【答案】2a y -=.【解析】由已知得:1=, ∴122a y -=, ∴2a y -=.【总结】本题考察了二次根式的运算.【作业10】 A ,B ,试比较A 、B 的大小. 【难度】★★★【答案】A B <.【解析】∵1A = 1B =, ∴11A B>, 又∵00A B >>,,∴A B <. 【总结】本题考察了二次根式的比较大小,求倒数是比较大小常用的一种方法.。

八年级数学下册第十六章二次根式总结(重点)超详细(带答案)

八年级数学下册第十六章二次根式总结(重点)超详细(带答案)

八年级数学下册第十六章二次根式总结(重点)超详细单选题1、若a =√2﹣1,则a +1a 的整数部分是( )A .0B .1C .2D .3答案:C分析:把a 的值代入,利用二次根式的混合运算法则计算得出最简结果,再估算即可求解.解:∵a =√2−1,∴a +1a =√2−1+√2−1=√2−1+√2+1=2√2,∵4<8<9, ∴2<2√2<3,∴a +1a 的整数部分是2,故选:C小提示:本题主要考查了二次根式的混合运算,无理数的估算能力,掌握二次根式的混合运算法则是解决问题的关键.2、下列计算正确的是( )A .32=6B .(﹣25)3=﹣85C .(﹣2a 2)2=2a 4D .√3+2√3=3√3答案:D分析:由有理数的乘方运算可判断A ,B ,由积的乘方运算与幂的乘方运算可判断C ,由二次根式的加法运算可判断D ,从而可得答案.解:32=9,故A 不符合题意;(−25)3=−8125, 故B 不符合题意;(−2a 2)2=4a 4, 故C 不符合题意;√3+2√3=3√3, 故D 符合题意;故选D小提示:本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.3、下列各式中,无意义的是( )A .√(−3)2B .√(−3)33C .√−32D .√−(−3)答案:C分析:根据二次根式的被开方数是非负数判断即可.解:A .原式=√9=3,故该选项不符合题意;B .原式=−3,故该选项不符合题意;C .原式=√−9,−9是负数,二次根式无意义,故该选项符合题意;D .原式=√3,故该选项不符合题意;故选:C .小提示:本题考查了二次根式有意义的条件,立方根,掌握二次根式的被开方数是非负数是解题的关键.4、当x >2时,√(2−x )2= ( )A .2−xB .x −2C .2+xD .±(x −2)答案:B分析:根据√a 2=|a |的进行计算即可.∵x >2,∴√(2−x )2=|2−x |=x −2,故B 正确.故选:B .小提示:本题考查了二次根式的性质与化简,熟练掌握√a 2=|a |是解题的关键.5、对于无理数√3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是( ).A .2√3−3√2B .√3+√3C .(√3)3D .0×√3答案:D分析:分别计算出各选项的结果再进行判断即可.A .2√3−3√2不能再计算了,是无理数,不符合题意;B .√3+√3=2√3,是无理数,不符合题意;C .(√3)3=3√3,是无理数,不符合题意;D .0×√3=0,是有理数,正确.故选:D .小提示:此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.6、若式子√m+2(m−1)2有意义,则实数m 的取值范围是( )A .m >﹣2B .m >﹣2且m ≠1C.m ≥﹣2D .m ≥﹣2且m ≠1答案:D分析:根据二次根式有意义的条件即可求出答案.由题意可知:{m +2≥0m −1≠0, ∴m≥﹣2且m≠1,故选D .小提示:本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件.7、下列计算:(1)(√2)2=2;(2)√(−2)2=2;(3)(−2√3)2=12;(4)(√2+√3)(√2−√3)=−1,其中结果正确的个数为( )A .1B .2C .3D .4答案:D分析:根据二次根式的运算法则即可进行判断.(1)(√2)2=2,正确;(2)√(−2)2=2正确;(3)(−2√3)2=12正确;(4)(√2+√3)(√2−√3)=−1,正确,故选D.小提示:此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:(√a)2=a;√a2=|a|.8、下列二次根式中,最简二次根式是()D.√a2A.−√2B.√12C.√15答案:A分析:根据最简二次根式的两个条件逐项判定即可.解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.小提示:本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、化简2√5−√5×(2−√5)的结果是()A.5B.−5C.√5D.−√5答案:A分析:先进行二次根式乘法,再合并同类二次根式即可.解: 2√5−√5×(2−√5),=2√5−2√5+5,=5.故选择A.小提示:本题考查二次根式乘除加减混合运算,掌握二次根式混合运算法则是解题关键.10、√(−3)2化简后的结果是()A.√3B.3C.±√3D.±3答案:B试题分析:“√a”表示的是a的算术平方根,“±√a”表示的是a的平方根.√(−3)2=√9=3,故选B.填空题11、实数2﹣√3的倒数是_____.答案:2+√3分析:先根据倒数的定义写出2﹣√3的倒数,再分母有理化即可.解:2−√3的倒数是2−√3=√3(2−√3)(2+√3)=2+√34−3=2+√3,所以答案是:2+√3.小提示:本题考查实数的倒数,分母有理化.掌握利用平方差公式分母有理化的方法是解题关键.12、我们知道√5是一个无理数,设它的整数部分为a,小数部分为b,则(√5+a)·b的值是_________.答案:1分析:先根据2<√5<3,确定a=2,b=√5-2,代入所求代数式,运用平方差公式计算即可.∵2<√5<3,∴a=2,b=√5-2,∴(√5+a)·b=(√5+2)(√5-2)=5-4=1,所以答案是:1.小提示:本题考查了无理数的估算,无理数整数部分的表示法,平方差公式,正确进行无理数的估算,灵活运用平方差公式是解题的关键.13、若a>√2a+1,化简|a+√2|−√(a+√2+1)2=_____.答案:1分析:先根据a>√2a+1,判断出a<−1−√2,据此可得a+√2<−1,a+√2+1<0,再依据绝对值性质和二次根式的性质化简可得.解:∵a>√2a+1,∴(1−√2)a>1,则a<1−√2,即a<−1−√2,∴a+√2<−1,a+√2+1<0,原式=−a−√2+a+√2+1=1,所以答案是:1 .小提示:本题主要考查二次根式的应用,解题的关键是掌握二次根式的性质、绝对值的性质和解一元一次不等式的步骤.14、计算√(−2)2的结果是_________.答案:2分析:根据二次根式的性质进行化简即可.解:√(−2)2=2.所以答案是:2.小提示:此题主要考查了二次根式的化简,注意:√a2=|a|={a(a>0)0(a=0)−a(a<0).15、计算√5×√15−√12的结果是_______.答案:3√3分析:根据二次根式的运算法则计算即可得出答案.原式=√5×15−2√3=5√3−2√3=3√3,故答案为3√3.小提示:本题考查的是二次根式,比较简单,需要熟练掌握二次根式的运算法则.解答题16、计算:(1)√32−√18−√18;(2)(7+4√3)(7−4√3)−(√3−1)2.答案:(1)34√2 (2)√3−3分析:(1)先把二次根式化为最简二次根式,然后合并同类项;(2)利用平方差和完全平方公式计算.(1)原式=4√2−3√2−√24=3√24 (2)原式=49−48−(3−2√3+1)=2√3−3小提示:本题考察了二次根式的混合运算和乘法公式.先把二次根式化为最近二次根式,然后再合并同类项,平方差公式(a −b)(a +b)=a 2−b 2,完全平方公式(a ±b)2=a 2±2ab +b 2,正确化简二次根式和使用乘法公式是解题的关键.17、计算:(1)√100+√−273−2×√14(2)−√(−3)2+√6+|√6−3|答案:(1)6(2)0分析:(1)先计算算术平方根与立方根,再合并即可;(2)先求解算术平方根与绝对值,再合并即可.(1)解:√100+√−273−2×√14=10−3−2×12=10−3−1=6;(2)−√(−3)2+√6+|√6−3|=−3+√6+3−√6=0小提示:本题考查的是化简绝对值,算术平方根与立方根的含义,二次根式的加减运算,掌握以上运算是解本题的关键.18、在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.(1)√45,(2)√13,(3)√52,(4)√0.5,(5)√145.答案:(1)不是,3√5;(2)不是,√33;(3)是;(4)不是,√22;(5)不是,3√55. 分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.(1)√45=3√5,含有开得尽方的因数,因此不是最简二次根式.(2)√13=√33,被开方数中含有分母,因此它不是最简二次根式; (3)√52,被开方数不含分母,被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)√0.5=√12=√22,在二次根式的被开方数中,含有小数,不是最简二次根式; (5)√145=√95=3√55,被开方数中含有分母,因此它不是最简二次根式. 小提示:本题考查最简二次根式的定义.解决此题的关键,是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.。

二次根式(讲义及答案)附解析

二次根式(讲义及答案)附解析

二次根式(讲义及答案)附解析一、选择题1.下列计算结果正确的是( )A .2+5=7B .3223-=C .2510⨯=D .25105= 2.下列计算正确的是( )A .2+3=5B .8=42C .32﹣2=3D .23⋅=6 3.下列二次根式中,最简二次根式是( )A . 1.5B .13C .10D .274.下列计算正确的是( )A .325+=B .2222+=C .2651-=D .822-= 5.在函数y=23x x +-中,自变量x 的取值范围是( ) A .x≥-2且x≠3B .x≤2且x≠3C .x≠3D .x≤-2 6.下列各式中,正确的是( )A .16=±4B .±16=4C .2668⨯=D .42783+⨯= - 47.设等式()()a x a a y a x a a y -+-=---在实数范围内成立,其中a 、x 、y 是两两不同的实数,则22223x xy y x xy y+--+的值是( ) A .3 B .13 C .2 D .538.当4x =时,22232343124312x x x x x x -+--+++的值为( ) A .1 B .3 C .2 D .39.若化简|1-x|-2816x x -+的结果为2x ﹣5,则x 的取值范围是( )A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤4 10.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定11.1272a -是同类二次根式,那么a 的值是( ) A .﹣2 B .﹣1 C .1 D .212.下列计算正确的是( )A .235+=B .2332-=C .()222=D .393=二、填空题13.设42-的整数部分为 a,小数部分为 b.则1a b -= __________________________. 14.化简322+=___________.15.已知13x x+=,且01x <<,则2691x x x =+-______. 16.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.17.已知|a ﹣2007|+2008a -=a ,则a ﹣20072的值是_____.18.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.19.4102541025-+++=_______.20.3a ,小数部分是b 3a b -=______.三、解答题21.小明在解决问题:已知a 23+2a 2-8a +1的值,他是这样分析与解答的: 因为a 23+()()232323-+-=23, 所以a -23所以(a -2)2=3,即a 2-4a +4=3.所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:= - . (2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;(3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可.【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===, 则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==23.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.24.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可.【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.26.计算(1+(2+-(3÷ (4)(【答案】(1)23)4;(4)7. 【分析】 (1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+22=+=;(2==;(3÷2b==;(4)((22=-=7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.27.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.28.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.29.计算:(1 ;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.30.计算:(1 (2)()()2221-【答案】2)1443【分析】(1)先化成最简二次根式,然后再进行加减运算即可;(2)套用平方差公式和完全平方式进行运算即可.【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A 不能合并,故A 选项错误;B .-=B 选项错误;C =D==D 选项错误, 故选C .【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.解析:D【解析】解:A A错误;B==,所以B错误;C.=C错误;D==D正确.故选D.3.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:A,不是最简二次根式;2B,不是最简二次根式;C是最简二次根式;D故选:C.【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.4.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.5.A解析:A根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式组求解.【详解】解:根据题意,有2030x x +≥⎧⎨-≠⎩, 解得:x ≥-2且x ≠3;故选:A .【点睛】当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数为非负数.6.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A 4=,此项错误B 、4=±,此项错误C ==,此项正确D == 故选:C .【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.7.B解析:B【分析】根据根号下的数要是非负数,得到a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x ,把y=-x 代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a (x-a )≥0,a (y-a )≥0,x-a≥0,a-y≥0,a (x-a )≥0和x-a≥0可以得到a≥0,a (y-a )≥0和a-y≥0可以得到a≤0,所以a 只能等于0,代入等式得,所以有x=-y ,即:y=-x ,由于x ,y ,a 是两两不同的实数,∴x >0,y <0.将x=-y 代入原式得:原式=()()()()2222313x x x x x x x x +---=--+-. 故选B .【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.8.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x 将4x =代入得, 原式11423423 221113133113 3331131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.9.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.10.B解析:B【解析】因=,所以a=0,b=1,c=1,即可得2a+999b+1001c=999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.11.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】123由题意,得7-2a=3,解得a=2,故选D.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.A 、非同类二次根式,不能合并,故错误;B 、=C 、22=,正确;D故选C .【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.【分析】根据实数的估算求出a,b ,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=2222=-=1故填:12-.此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.14.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 15..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运解析:12.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====.故答案是:12.【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.16.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a ac c b b =()aa cbc b =aa cbc b =-2a .【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号. 17.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a ﹣2007|+=a ,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a ﹣2007=a ,∴a ≥2008,∴a ﹣2007=a ,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.18.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为19.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)t∴=.1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.20.【详解】若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a,小数部分为b,∴a=1,b1,∴-b1)=1.故答案为1.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

初中数学二次根式(讲义及答案)及解析

初中数学二次根式(讲义及答案)及解析

初中数学二次根式(讲义及答案)及解析一、选择题1.下列计算正确的是( )A 3=±B 2=C .2=D 2=2.,a ==b a 、b 可以表示为 ( ) A .10a b+ B .10-b aC .10ab D .b a3.在实数范围内有意义,则x 的取值范围是( ) A .x >3B .x >-3C .x≥-3D .x≤-34.下列二次根式是最简二次根式的是( )A BCD 5.下列运算中,正确的是( )A =B 1=C =D 2=6.下列各式中正确的是( )A 6B 2=-C 4D .2(=77.已知m 、n m ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是8.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( )A .3B .13C .2D .539.下列二次根式中,是最简二次根式的是( ).A .BC D10.已知12x =⋅,n 是大于1的自然数,那么(nx 的值是( ). A .12007B .12007-C .()112007n- D .()112007n--11.要使等式230x x +-=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对12.下列运算中正确的是( ) A .27?3767=B .()24423233333=== C .3313939===D .155315151÷⨯=÷=二、填空题13.已知()2117932x x x y ---+-=-,则2x ﹣18y 2=_____.14.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.15.观察下列等式:第1个等式:a 12112=+, 第2个等式:a 23223=+, 第3个等式:a 332+3, 第4个等式:a 45225=+, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________ 16.已知函数1x f xx,那么21f _____.17.若613x ,小数部分为y ,则(213)x y 的值是___. 18.化简二次根式2a 1a+-_____. 19.已知1<x <2,171x x +=-11x x --_____.20.化简(32)(322)+-的结果为_________.三、解答题21.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S =同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(12) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:S ==(2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b cb c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.22.计算:10099+【答案】910【解析】 【分析】先对代数式的每一部分分母有理化,然后再进行运算 【详解】10099++=21009926129900-++++=991224-+-++-=1- =1110- =910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章二次根式知识网络知识点一:二次根式的概念形如的式子叫做二次根式;注:在二次根式中,被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式;知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可;2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义;知识点三:二次根式的非负性表示a的算术平方根,也就是说,是一个非负数,即0;注:因为二次根式表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数的算术平方根是非负数,即0,这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似;这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0;知识点四:二次根式的性质文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数;注:二次根式的性质公式是逆用平方根的定义得出的结论;上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值;注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简;知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数;但与都是非负数,即,;因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的运算1.二次根式的乘除运算1运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.2注意知道每一步运算的算理;3乘法公式的推广:2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算1对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;2二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.1加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简.例如进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,43+=+=+通过约分达到化简目的;2多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用.如:221+-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化. 4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:2a a +-互为有理化因式;一般地a a +--互为有理化因式;一般地+-式.专题总结及应用一、知识性专题专题1 二次根式的最值问题专题解读涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解.例1 当x 取何值时,3的值最小最小值是多少分析 00,因为3是常数,3的最小值为3.0,33≥,∴当9x +1=0,即19x =-时,3有最小值,最小值为3.解题策略解决此类问题一定要熟练掌握二次根式的非负性,0a ≥0. 专题2 二次根式的化简及混合运算专题解读对于二次根式的化简问题,可根据定义,也可以利用||a =这一性质,但应用性质时,要根据具体情况对有关字母的取值范围进行讨论.例2 下列计算正确的是 分析 根据具体选项,应先进行化简,再计算. A 选项中,==B 选若可化为=,C 选项逆用平方差公式可求得2(=4-5=-1,而D 得22=.故选A.例3 计算2006200721)21)的结果是 分析 本题可逆用公式ab m=a m b m及平方差公式,将原式化为2006[(21)(21)]21)2 1.=故选D.例4 书知2228442142x x y x x x y y x x++=--+,求的值. 分析 本题主要利用二次根式的定义及非负性确定x 的值,但要注意所得x 的值应使分式有意义.解:由二次根式的定义及分式性质,得2240,4,2,20,x x x x ⎧-⎪-∴=⎨⎪+⎩≥≥0≠解题策略 本题中所求字母x 的取值必须使原代数式有意义. 例5 223541294-202522a a a a a -++-(≤≤).解题策略 本题应根据条件直接进行化简,2(0)||-(0).a a a a a a ⎧==⎨⎩≥,<例6 已知实数,a ,b ,c 在数轴上的位置如图21-8所示,化简222||()().a a c c a b -+-解:由a ,b ,c 在数轴上的位置可知:解题策略 利用间接给出的或隐含的条件进行化简时,要充分挖掘题目中的隐含条件,再进行化简.规律·方法 对于无约束条件的化简问题需要分类讨论,用这种方法解题分为以下步骤:首先,求出绝对值为零时未知数的值,这些未知数的值在数轴上的对应点称为零点;其次,以这些零点为分点,把数轴划分为若干部分,即把实数集划分为若干个集合,在每个集合中分别进行化简,简称“零点分区间法”.例8 已知3,12,.a ba b ab ba b a+=-=求的值 图21-8分析 这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉,a ,b 的符号,但可从a +b =-3,ab =12中分析得到.解:∵a +b =-3,ab =12,∴a <0,b <0.解题策略 本题最容易出现的错误就是不考虑a ,b 的符号,把所求的式子化简,直接代入.专题3 利用二次根式比较大小、进行计算或化简例9 的运算结果应在 A. 6到7之间 B. 7到8之间 C. 8到9之间D. 9到10之间分析 本题应计算出所给算式的结果,原式4==+,由于即2 2.5849+,所以<. 故选C.例10 已知m 是,n ,求m nm n-+的值. 解:∵9<13<16,即3 43,即m =3,3,即,∴m n m n -===+ 二、规律方法专题专题4 配方法专题解读 把被开方数配方,a |化简.例11 化简规律·方法一般地,对于a±型的根式,可采用观察法进行配方,即找出x,yx>y>0,使得xy=b,x+y=a,则2a±=,于是==,.例12 若a,b为实数,且b15,值.分析本题中根据b15可以求出a,b,对.解:由二次根式的性质得3503350..5305aa aa-⎧∴-=∴=⎨-⎩≥,≥,当3215.55a b====,时,原式解题策略对于形如22b a b aa b a b++-+或形式的代数式都要变为2()a bab+或2()a bab-的形式,当它们作为被开方式进行化简时,要注意.a b a b ab+-和以及的符号专题5 换元法专题解读通过换元将根式的化简和计算问题转化为方程问题.例13计算解:令x两边同时平方得:∴x2=33专题6 代入法专题解读通过代入求代数式的值.例14 已知22==a b ab2400,5760,.专题7 约分法专题解读通过约去分子和分母的公因式将第二次根式化简.例15 化简例16 化简).≠x y三、思想方法专题专题8 类比思想专题解读类比是根据两对象都具有一些相同或类似的属性,并且其中一个对象还具有另外某一些属性,从而推出另一对象也具有与该对象相同或相似的性质.本章类比同类项的概念,得到同类二次根式的概念,即把二次根式化简成最简二次根式后,若被开方数相同,则这样的二次根式叫做同类二次根式.我们还可以类比合并同类项去合并同类二次根式.例17 计算.解:1原式2原式=3+2.解题策略对于二次根式的加减法,应先将各式化为最简二次根式,再类比合并同类项的方法去合同类二次根式.专题9 转化思想专题解读当问题比较复杂难于解决时,一般应采取转化思想,化繁为简,化难为易,本章在研究二次根式有意义的条件及一些化简求值问题时,常转化为不等式或分式等知识加以解决.例18 函数y 24x -中,自变量x 的取值范围是 .分析 本题比较容易,主要考查函数自变量的取值范围的求法,24x -是二次根式,所以被开方数2x -4≥0,所以x ≥2.故填x ≥2.例19 如图21-9所示的是一个简单的数值运算程序,若输入x 3,则输出的数值为 .图21-9分析 本题比较容易,根据程序给定的运算顺序将问题化为二次根式求值问题,易知图中所表示的代数式为21x -,3-1=2.故填2.专题10 分类讨论思想专题解读 当遇到某些数学问题存在多种情况时,应进行分类讨论.本意在运用公式2||a a =进行化简时,若字母的取值范围不确定,应进行分类讨论.例20 若化简2|1|816x x x ---+25x -,则x 的取值范围是 A. x 为任意实数 B. 1≤x ≤4 C. x ≥1 D. x ≤4分析 由题意可知|1||4|25x x x ---=-,由此可知|1|1x x -=-,且|4|4x x -=-,由绝对值的意义可知10x -≥,且40x -≥,所以14x x ≤≤,即的取值范围是14x ≤≤.故选B.解题策略 2a |a |形式的式子的化简都应分类讨论.例21 如图21-10所示的是一块长、宽、高分别为7cm,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少分析 这是一个求最短路径的问题,一个长方体有六个面,蚂蚁有三种不同的爬行方法,计算时要分类讨论各种方法,进而确定最佳方案.解:沿前、右两个面爬,=cm. 沿前、上两个面爬,=cm. 沿左、上两个面爬,=cm.所以它要爬行的最短路径长为规律·方法 沿表面从长方体的一个顶点爬到相对的顶点去,共有三个爬行路线,每个路线长分别是它爬行两个展开图的对角线的长.二次根式单元测试题一判断题:每小题1分,共5分1.ab 2)2(-=-2ab .………………… 2.3-2的倒数是3+2. 3.2)1(-x =2)1(-x .… 4.ab 、31b a 3、bax 2-是同类二次根式.… 5.x 8,31,29x +都不是最简二次根式. 二填空题:每小题2分,共20分 6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a= . 8.a -12-a 的有理化因式是____________.9.当1<x <4时,|x -4|+122+-x x =________________.10.方程2x -1=x +1的解是____________. 11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.12.比较大小:-721_________-341.13.化简:7-522000·-7-522001=______________. 14.若1+x +3-y =0,则x -12+y +32=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________. 三选择题:每小题3分,共15分16.已知233x x +=-x 3+x ,则………………A x ≤0B x ≤-3C x ≥-3D -3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=……………………… A2x B2y C -2x D -2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于……………………… A x2 B -x2 C -2x D2x19.化简aa 3-(a <0)得……………………………………………………………… A a - B -a C -a - D a20.当a <0,b <0时,-a +2ab -b 可变形为……………………………………… A 2)(b a + B -2)(b a - C 2)(b a -+- D 2)(b a ---四计算题:每小题6分,共24分 21.235+-235--;22.1145--7114--732+;23.a 2m n -m ab mn +m n n m ÷a 2b 2mn ; 24.a +ba abb +-÷b ab a ++a ab b --ab b a +a ≠b .五求值:每小题7分,共14分25.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值. 26.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.六、 解答题:每小题8分,共16分 27.计算25+1211++321++431++…+100991+. 28. 若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xyy x +-2的值. 一判断题:每小题1分,共5分 1、提示2)2(-=|-2|=2.答案×. 2、提示231-=4323-+=-3+2.答案×.3、提示2)1(-x =|x -1|,2)1(-x =x -1x ≥1.两式相等,必须x ≥1.但等式左边x 可取任何数.答案×. 4、提示31b a 3、bax 2-化成最简二次根式后再判断.答案√.5、29x +是最简二次根式.答案×. 二填空题:每小题2分,共20分6、提示x 何时有意义x ≥0.分式何时有意义分母不等于零.答案x ≥0且x ≠9.7、答案-2a a .点评注意除法法则和积的算术平方根性质的运用.8、提示a -12-a ________=a 2-22)1(-a .a +12-a .答案a +12-a . 9、提示x 2-2x +1= 2,x -1.当1<x <4时,x -4,x -1是正数还是负数 x -4是负数,x -1是正数.答案3.10、提示把方程整理成ax =b 的形式后,a 、b 分别是多少12-,12+.答案x =3+22.11、提示22d c =|cd |=-cd .答案ab +cd .点评∵ ab =2)(ab ab >0,∴ ab -c 2d 2=cd ab +cd ab -.12、提示27=28,43=48.答案<.点评先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13、提示-7-522001=-7-522000·_________-7-52.7-52·-7-52=1.答案-7-52.点评注意在化简过程中运用幂的运算法则和平方差公式. 14、答案40.点评1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0. 15、提示∵ 3<11<4,∴ _______<8-11<__________.4,5.由于8-11介于4与5之间,则其整数部分x =小数部分y =x =4,y =4-11答案5.点评求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. 三选择题:每小题3分,共15分 16、答案D .点评本题考查积的算术平方根性质成立的条件,A 、C 不正确是因为只考虑了其中一个算术平方根的意义.17、提示∵ x <y <0,∴ x -y <0,x +y <0. ∴222y xy x +-=2)(y x -=|x -y |=y -x . 222y xy x ++=2)(y x +=|x +y |=-x -y .答案C .点评本题考查二次根式的性质2a =|a |.18、提示x -x 12+4=x +x 12,x +x 12-4=x -x 12.又∵ 0<x <1, ∴ x +x 1>0,x -x1<0.答案D .点评本题考查完全平方公式和二次根式的性质.A 不正确是因为用性质时没有注意当0<x <1时,x -x1<0.19、提示3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.答案C . 20、提示∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 答案C .点评本题考查逆向运用公式2)(a =aa ≥0和完全平方公式.注意A 、B 不正确是因为a <0,b <0时,a 、b 都没有意义. 四计算题:每小题6分,共24分21、提示将35-看成一个整体,先用平方差公式,再用完全平方公式. 解原式=35-2-2)2(=5-215+3-2=6-215. 22、提示先分别分母有理化,再合并同类二次根式. 解原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.23、提示先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 解原式=a 2m n -m ab mn +m n n m ·221b a n m=21b n m m n ⋅-mab 1n m mn ⋅+22b ma n nmn m ⋅ =21b-ab 1+221ba =2221b a ab a +-.24、提示本题应先将两个括号内的分式分别通分,然后分解因式并约分. 解原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +. 点评本题如果先分母有理化,那么计算较烦琐. 五求值:每小题7分,共14分25、提示先将已知条件化简,再将分式化简最后将已知条件代入求值. 解∵ x =2323-+=2)23(+=5+26, y =2323+-=2)23(-=5-26. ∴ x +y =10,x -y =46,xy =52-262=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 点评本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷.26、提示注意:x 2+a 2=222)(a x +, ∴ x 2+a 2-x 22a x +=22a x +22a x +-x ,x 2-x 22a x +=-x 22a x +-x .解原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x-++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.点评本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x 1. 六、解答题:每小题8分,共16分27、提示先将每个部分分母有理化后,再计算.解原式=25+11212--+2323--+3434--+…+9910099100--=25+112-+23-+34-+…+99100- =25+11100- =925+1.点评本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、提示要使y 有意义,必须满足什么条件].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗].2141[⎪⎪⎩⎪⎪⎨⎧==y x 解要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵ xy y x ++2-xy y x +-2=2)(xy y x+-2)(xy y x -=|xy yx+|-|xy y x-|∵ x =41,y =21,∴y x <x y . ∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.点评解本题的关键是利用二次根式的意义求出x 的值,进而求出y的值.。

相关文档
最新文档