农业温室大棚监测控制系统设计方案

合集下载

农业温室大棚监控系统设计方案

农业温室大棚监控系统设计方案
1. 定期检查
定期对传感器、数据采集器、服务器 等设备进行检查,确保设备正常运行,
及时更换损坏部件。
3. 数据备份与安全
定期备份数据,确保数据安全。同时 ,加强系统安全防护,防止数据泄露
和篡改。
2. 软件更新
根据实际需求,对监控中心的软件进 行更新和升级,优化数据处理和分析 功能。
4. 扩展与升级
根据农业生产和监控需求,对系统进 行扩展和升级,如增加传感器种类、 提高数据传输速率等。
软件系统设计
01
数据采集与处理
设计数据采集程序,实时收集各传感器的数据,并进行预处理和异常检
测,确保数据的准确性和有效性。
02
控制策略设计
根据农业专家和农民的经验,设计智能控制策略,实现大棚环境的自动
调节和优化。
03
数据存储与分析
设计数据存储程序,对大棚环境和作物生长数据进行长期保存,并利用
数据分析工具,对历史数据进行分析和挖掘,术,实现温室大棚的 智能化管理和自动化控制 。
系统功能概述
数据采集功能
实时监测温室大棚内的温度、湿度、 光照、CO2浓度等环境参数,以及作 物的生长状况。
远程控制功能
用户可通过手机APP或电脑端远程控 制系统设备的开关,实现温室大棚的 智能化管理。
01
02
数据传输功能
传感器选择
选用温度、湿度、光照、CO2浓度等 传感器,确保对大棚环境进行全面监 测。
控制设备选择
采用智能控制器,根据传感器数据和 预设策略,对大棚内的通风、遮阳、 灌溉等设备进行精确控制。
数据存储设备
选用稳定可靠的数据存储模块,实时 保存传感器数据和控制记录,确保数 据安全和可追溯。
通信设备

《温室大棚分布式监控系统设计与实现》范文

《温室大棚分布式监控系统设计与实现》范文

《温室大棚分布式监控系统设计与实现》篇一一、引言随着现代农业技术的快速发展,温室大棚种植技术已成为提高农作物产量和品质的重要手段。

为了更好地对温室大棚进行管理,提高生产效率,降低人力成本,本文提出了一种温室大棚分布式监控系统的设计与实现方案。

该系统通过物联网技术,实现对温室大棚内环境参数的实时监测与控制,提高了农作物的生长环境,从而提升了农作物的产量和品质。

二、系统设计1. 硬件设计温室大棚分布式监控系统的硬件部分主要包括传感器、数据采集器、传输模块、中央处理器和控制设备等。

传感器负责实时采集温室大棚内的环境参数,如温度、湿度、光照强度、二氧化碳浓度等;数据采集器负责将传感器采集的数据进行整理和初步处理;传输模块将处理后的数据通过无线网络传输到中央处理器;中央处理器对接收到的数据进行进一步处理和存储,并通过控制设备对温室大棚内的环境进行调节。

2. 软件设计软件部分主要包括数据采集与处理模块、通信模块、控制模块和用户界面模块等。

数据采集与处理模块负责从传感器中获取数据并进行初步处理;通信模块负责将处理后的数据传输到中央处理器;控制模块根据处理后的数据对温室大棚内的环境进行调节;用户界面模块则提供友好的人机交互界面,方便用户对系统进行操作和管理。

三、系统实现1. 传感器布置与数据采集根据温室大棚的实际情况,合理布置传感器,确保能够全面、准确地采集到温室大棚内的环境参数。

通过数据采集器对传感器采集的数据进行整理和初步处理,为后续的数据分析和控制提供支持。

2. 数据传输与处理通过无线网络将处理后的数据传输到中央处理器。

中央处理器对接收到的数据进行进一步处理和存储,包括数据分析和存储等。

同时,中央处理器根据处理后的数据判断温室大棚内的环境是否符合农作物的生长需求,如果不符合,则通过控制设备对温室大棚内的环境进行调节。

3. 控制策略与实现根据农作物的生长需求和温室大棚内的环境参数,制定合理的控制策略。

通过控制设备对温室大棚内的环境进行调节,如调整温度、湿度、光照强度等,以满足农作物的生长需求。

智能温室大棚监测系统解决方案设计

智能温室大棚监测系统解决方案设计

智能温室大棚监测系统解决方案设计一、设计背景温室大棚是一种具备自动控制温度、湿度、光照等环境参数的农业生产设施,能够提供稳定的生长环境,优化农作物的生长条件,提高农作物产量和质量。

为了实现自动监测和控制,提高温室大棚的生产效益和资源利用效率,智能温室大棚监测系统应运而生。

二、系统目标1.实时监测温室大棚的环境参数,包括温度、湿度、光照等;2.自动控制温室大棚的温度、湿度、光照等环境参数,以维持最佳的生长条件;3.提供远程监测和控制功能,方便用户随时随地查看和操作;4.数据存储和分析,为用户提供决策依据和生产指导。

三、系统组成1.传感器网络:布置在温室大棚内部的各个位置,用于感知温度、湿度、光照等环境参数;2.控制器:通过与传感器网络连接,获取环境参数数据,并控制灯光、风机、喷灌等设备,实现环境参数的调控;3.数据中心:负责接收和存储传感器数据,并进行分析和处理,生成报告和统计分析结果;4.用户界面:提供给用户查看温室大棚的当前状态和历史数据,并进行控制操作的界面;5.通信模块:实现传感器数据的传输和远程控制命令的下发。

四、系统工作流程1.传感器网络感知温室大棚内的环境参数,将数据通过通信模块传输给数据中心;2.数据中心接收数据并存储,进行数据分析和处理,生成报告和统计分析结果;3.用户可以通过用户界面查看温室大棚的当前状态和历史数据;4.用户可以通过用户界面进行控制操作,下发控制命令到控制器;5.控制器接收控制命令,控制相应的设备,调节温室大棚的环境参数。

五、系统特点与优势1.实时性:通过传感器网络和通信模块的配合,实现对温室大棚环境参数的实时监测和控制;2.自动化:传感器数据的自动处理和控制器的自动调节,降低了人工的参与度,提高了生产效率;3.远程监测和控制:用户可以通过互联网远程查看和操作温室大棚,方便灵活;4.数据分析和决策支持:数据中心对传感器数据进行分析和处理,生成报告和统计分析结果,为用户提供决策支持和生产指导。

现代设施农业温室大棚温湿度监测系统方案设计

现代设施农业温室大棚温湿度监测系统方案设计

现代设施农业温室大棚温湿度监测系统方案设计一、方案背景随着经济和科技的快速发展,现代农业正面临新的挑战和机遇。

为了提高农产品生产的效益和质量,现代农业温室大棚成为一种重要的种植方式。

然而,温室大棚内部的温湿度控制成为一项关键任务。

为了高效、准确地监测温湿度,本方案设计了一套现代设施农业温室大棚温湿度监测系统。

二、系统组成1.传感器:使用温湿度传感器来实时监测温湿度情况。

通过将传感器布置在温室大棚内的不同位置,可以全面、准确地获取温湿度数据。

2.数据采集设备:采用嵌入式系统或物联网技术,将传感器获取的温湿度数据进行采集、处理和存储。

该设备需要具备高速、稳定的数据传输和处理能力。

3.数据显示与控制终端:设计一个用户友好的数据显示界面,用于展示温湿度数据的实时变化情况。

同时,用户可以通过该终端对温湿度进行远程监控和控制。

4.数据云存储与分析平台:将采集到的温湿度数据上传至云平台进行存储和分析。

通过对数据进行分析,可以为温室大棚的温湿度控制提供参考和决策依据。

三、系统工作原理1.传感器实时监测:温湿度传感器布置在温室大棚内的不同位置,实时监测温湿度数据,并将数据传输给数据采集设备。

2.数据采集与存储:数据采集设备将传感器获取的温湿度数据进行采集和处理,并将数据存储在本地或云平台的数据库中。

3.数据显示与操作:用户通过数据显示与控制终端可以实时查看温湿度数据的曲线图和实时数值。

用户可以远程监控和控制温湿度值。

4.数据存储与分析:采集到的温湿度数据上传至云平台,进行存储和分析。

利用数据分析算法,可以得出温湿度的变化规律和趋势,为大棚温度控制提供参考。

四、系统优势与特点1.精确可靠:传感器选择性能优良的温湿度传感器,能够实时、准确地监测温湿度值。

2.高效便捷:数据采集设备采用嵌入式系统或物联网技术,具备高速、稳定的数据传输和处理能力,确保数据的高效采集和及时处理。

3.远程控制:采用数据显示与控制终端,用户可以远程监控和控制温湿度数值,无需亲临现场。

农业大棚监控系统设计方案

农业大棚监控系统设计方案

农业大棚监控系统设计方案
**一、引言**
随着农业生产的现代化和智能化进程的推进,农业大棚作为一种重要的农业生产方式,得到了广泛应用。

但是,传统的农业大棚管理存在一些问题,如温湿度控制不稳定、水肥管理困难、病虫害防治不及时等。

为了解决这些问题,设计一个农业大棚监控系统能够提高农业生产的效率和产量,也能够减少农业生产中的风险和损失。

**二、系统需求分析**
1. 温湿度监测:监测农业大棚的温度和湿度,及时反馈数据,确保农作物在适宜的生长环境中。

2. 光照监测:监测农业大棚的光照强度,合理调节光照,提高农作物的生长质量。

3. CO2浓度监测:监测农业大棚的CO2浓度,合理控制CO2浓度,促进植物光合作用。

4. 水肥控制:监测农业大棚的水分和肥料的使用情况,自动化调节水肥供应量。

5. 病虫害监测:监测农业大棚的病虫害情况,及时预警并采取措施进行防治。

6. 远程监控:能够通过手机或电脑远程监控农业大棚的运行情况,方便及时调整管理策略。

**三、系统设计方案**
1. 硬件部分
为了实现农业大棚监控系统的各项功能,需要搭建以下硬件设施:
- 温湿度传感器:安装在农业大棚内部,实时监测温湿度数据。

- 光照传感器:安装在农业大棚内部,实时监测光照强度。

- CO2传感器:安装在农业大棚内部,实时监测CO2浓度。

- 水肥控制装置:根据水肥浓度和农作物需求,自动化调节水肥供应量。

《2024年智慧农业大棚监控系统的设计与实现》范文

《2024年智慧农业大棚监控系统的设计与实现》范文

《智慧农业大棚监控系统的设计与实现》篇一一、引言随着科技的飞速发展,智慧农业已成为现代农业发展的重要方向。

智慧农业大棚监控系统是智慧农业的重要组成部分,它可以实时监测大棚内的环境参数,如温度、湿度、光照等,同时还能控制大棚内的设备,如灌溉系统、通风系统等,以实现大棚内的智能化管理。

本文将详细介绍智慧农业大棚监控系统的设计与实现过程。

二、系统设计1. 硬件设计智慧农业大棚监控系统的硬件部分主要包括传感器、控制器、执行器等。

传感器用于实时监测大棚内的环境参数,如温度、湿度、光照等;控制器用于接收传感器数据并处理,同时通过执行器控制大棚内的设备。

在硬件设计过程中,我们首先需要根据大棚的实际情况选择合适的传感器和执行器。

传感器的选择要考虑其精度、稳定性、抗干扰能力等因素;执行器的选择要考虑其响应速度、控制精度等因素。

此外,我们还需要设计合理的电路连接方式,以保证系统的稳定性和可靠性。

2. 软件设计智慧农业大棚监控系统的软件部分主要包括数据采集、数据处理、控制算法等。

数据采集部分负责从传感器中获取环境参数数据;数据处理部分负责对采集到的数据进行处理和分析,如数据滤波、数据存储等;控制算法部分根据处理后的数据,通过执行器控制大棚内的设备。

在软件设计过程中,我们需要采用合适的数据处理和控制算法,以保证系统的实时性和准确性。

此外,我们还需要设计友好的人机交互界面,以便用户可以方便地操作和管理系统。

三、系统实现1. 硬件实现在硬件实现过程中,我们需要根据设计图纸和选定的硬件设备进行组装和调试。

在组装过程中,我们要注意各部分的连接方式和连接点的稳定性;在调试过程中,我们要对传感器和执行器进行测试,以保证其正常工作。

2. 软件实现在软件实现过程中,我们需要编写相应的程序代码,以实现数据采集、数据处理和控制算法等功能。

在编写程序代码时,我们要注意程序的逻辑性和可读性,以保证程序的稳定性和可靠性。

此外,我们还需要对程序进行测试和调试,以确保其能够正常工作。

智能温室大棚监测控制系统开发设计

智能温室大棚监测控制系统开发设计

智能温室大棚监测控制系统开发设计1、开发背景近年来,随着温室大棚化种植、工厂化育秧和设施栽培等农业生产技术的广泛应用,快速准确地环境参数的收集和分析就成为现实的需求,利用计算机技术对相应的农业气象参数进行采集,则一方面可及时了解作物生长的环境参数,另一方面也可根据采集的参数控制大棚环境的调节从而为农作物的生长提供适宜的生长环境。

由于温室内的湿度、温度等环境条件不适合于普通PC 机工作,故这里选用单片机进行数据采集,而采集的数据可通过串口发射接收设备传送给上位PC 机进行分析处理。

2、系统介绍农业大棚环境远程监控系统由前端部分来完成对环境监测因子的含量的监测与汇总、转换、传输等工作,监测因子包括温度、湿度、光照、烟雾、有无人员进入等环境参数,这些监测因子由数据采集终端使用不同的方法进行测量获得一个非常准确的测量数据,此结果通过数据处理转换后经由串口向在线监测数据平台传输数据,在线监测数据传输平台来实现数据的接收、过滤、存储、处理、统计分析并提供实时数据查询等任务,当温湿度超过设定值的时候,自动开启或者关闭指定设备。

整个系统可达到:安全、可靠、准确、实时、全面、快速、高效的将真实的蔬菜大棚环境信息展现在管理人员的面前。

农业大棚环境远程监控系统由两大部分:控制中心、大棚监控点(信息采集一号,信息采集二号,信息采集三号)。

结构说明该智能监控系统是由PC机作为总监控室的控制机,由IAP15F61S2和STC90C51单片机分别负责收集数据信息,它们之间通过串口进行通讯。

与单片机相连的包括:12864液晶显示模块、温度传感器DS18B20、湿度传感器HS1101、光敏传感器、人体红外感应传感器、烟雾传感器MQ-2、PCF8591A/D 转换器等。

3、功能与使用说明(1)农业大棚智能监控系统上装有液晶屏,可在线实时采集和记录监测点位的温度、湿度、烟雾、光照等各项环境参数情况。

当该系统接通电源时,液晶屏上会显示三个大棚内的各项环境参数。

农业大棚智能温室监测系统设计方案

农业大棚智能温室监测系统设计方案

农业大棚智能温室监测系统设计方案随着现代化农业的发展,农业大棚建设越来越普及,但是由于天气等客观因素不能完全掌控,农业生产效率难以保证。

因此,农业大棚智能监测系统的应用显得尤为重要。

本文将从以下三个方面阐述农业大棚智能温室监测系统的设计方案:系统方案的设计、硬件和软件的实现及监控效果的实现。

一、系统方案的设计农业大棚是一个相对比较封闭的环境,可以通过解决温度、湿度、光照、二氧化碳等多个环境参数来提高大棚温度、湿度等环境参数的控制,提高种植效率。

因此,为了保障农业生产,设计一个可以全天候监测,记录及分析大棚内不同的环境数据的智能监测系统是可行的。

智能监测系统方案的设计应该包括硬件和软件两个方面。

二、硬件和软件的实现系统的硬件实现主要有传感器、单片机、电源、通讯模块等四个组件。

这些组件分别应用于不同领域,但是通过互相配合,最终形成了一个可有效监测环境变化的系统。

其中的传感器可以实现对于不同环境参数的监测,单片机负责收集传感器获取的数据,并根据实际情况进行控制。

电源则提供系统使用的能量,使得系统能够持续运行。

通讯模块则将数据传输到云端,方便维护以及数据分析,使得用户能够更加便捷地了解大棚内的环境变化。

软件的实现包括了传感器数据管理软件,程序逻辑控制软件,数据分析软件以及信息管理软件。

在实现这些软件的同时,需要考虑数据管理的安全问题。

因此通讯模式的选择成为了考虑的重点。

本系统选择了基于物联网的信号传输方式,使用模数转换器,将传感器检测到的物理信号转化成数字信号,再通过网络传输的方式将这些数字信号发送到云端进行采集分析。

在传输上采用了安全加密技术,以保证数据安全性。

三、监控效果的实现系统能够实现对高温、低温、干燥、潮湿等环境的自动报警,并能够在系统数据分析的基础上,提供对农业大棚的管护建议。

同时,该系统可以通过数据记录等方式,为农业生产前期生产者提供参考,帮助农业生产者更好地进行规划,提高生产水平。

因此,该系统具有较高的实用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

农业温室大棚监测控制系统设计方案
一、概述
温室大棚智能控制系统是利用环境数据与作物信息,指导用户进行正确的栽培管理。

物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。

农业温室大棚监测控制系统通过实时采集农业大棚内空气温度、湿度、光照、土壤温度、土壤水分等环境参数,根据农作物生长需要进行实时智能决策,并自动开启或者关闭指定的环境调节设备。

通过该系统的部署实施,可以为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据和有效手段。

大棚监控及智能控制解决方案是通过可在大棚内灵活部署的各类无线传感器和网络传输设备,对农作物温室内的温度,湿度、光照、土壤温度、土壤含水量、CO2浓度等与农作物生长密切相关环境参数进行实时采集,在数据服务器上对实时监测数据进行存储和智能分析与决策,并自动开启或者关闭指定设备(如远程控制浇灌、开关卷帘等)。

二、工程需求
在每个智能农业大棚内部署无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等,分别用来监测大棚内空气温湿度、土壤温度、土壤水分、光照度、CO2浓度等环境参数。

为了方便部署和调整位置,所有传感器均应采用电池供电、无线数据传输。

大棚内仅需在少量固定位置提供交流220V市电(如:风机、水泵、加热器、电动卷帘)。

每个农业大棚园区部署1套采集传输设备(包含路由节点、长距离无线网关节点、Wi-Fi无线网关等),用来覆盖整个园区的所有农业大棚,传输园区内各农业大棚的传感器数据、设备控制指令数据等到Internet上与平台服务器交互。

在每个需要智能控制功能的大棚内安装智能控制设备(包含一体化控
制器、扩展控制配电箱、电磁阀、电源转换适配设备等),用来接受控制指令、响应控制执行设备。

实现对大棚内的电动卷帘、智能喷水、智能通风等行为的实现。

三、系统架构设计
(1)总体架构
系统的总体架构分为现场数据采集、网络传输、智能数据处理平台和远程控制四部分。

(2)系统有两种典型配置结构
■两层网络,系统由两类点构成:
无线传感器节点,包括无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等;
无线网关节点,包括Wi-Fi无线网关或GPRS无线网关。

该结构适用于园区已经有Wi-Fi局域网覆盖,或是可以采用GPRS直接上传数据的场景。

在此结构中,只需要在合适的区域部署无线网关,即可实现传感器数据的采集和上传。

■三层网络,系统由三类点构成:
无线传感器节点,包括无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等;
无线网关节点;
数据路由器。

该结构适用于园区没有Wi-Fi局域网覆盖,也不准备采用GPRS直接上传数据的场景。

在此结构中,需要部署数据路由节点和无线网关,无线网关与数据路由节点之间以长距离无线通信方式进行数据的交换,在区域较大,节点间通信距离不足时,无线网关还可以相互之间进行自动数据中继,扩大监控网络的覆盖范围。

(3)传感信息采集
在监控网络中,无线空气温湿度传感器、无线土壤温度传感器、无线土壤含水量传感器、无线光照度传感器、无线CO2传感器等传感器均支持低功耗运行,可使用廉价的干电池供电长期工作。

同时,所有的无线传感器节点均.
运行SleepTree低功耗多跳自组网协议,可为其它节点提供数据的自动中继转发,以扩大监测网络的覆盖范围,增加部署灵活性。

SleepTree低功耗多跳自组网协议是在IEEE802.15.4协议的基础上建立的,无线通信的频率选择可以是2.4GHz或780MHz。

传感器数据通过SleepTree协议传送到无线网关节点上,无线网关节点再经过数据路由节点或直接将传感器数据发送到数据平台的服务器上。

用户可以通过有线网络/无线网络访问数据平台,实时监测大棚现场的传感器参数,控制大棚现场的相关设备。

四、大棚现场布点
大棚现场主要负责大棚内部环境参数的采集和控制设备的执行,采集的数据主要包括农业生产所需的光照、空气温度、空气湿度、土壤温度、土壤水分、CO2浓度等参数。

传感器的数据上传采用低功耗无线传输模式,传感器数据通过无线发送模块,采用SleepTree协议将数据无线传送到无线网关节点上,用户终端和一体化控制器间传送的控制指令也通过无线发送模块传送到中心节点上,省却了通讯线缆的部署工作。

中心节点再经过边缘网关将传感器数据、控制指令封装并发送到位于internet上的系统业务平台。

用户可以通过有线网络/无线网络访问系统业务平台,实时监测大棚现场的传感器参数,控制大棚现场的相关设备。

低功耗无线传输模式使得大棚现场内各传感器部署灵活、扩展方便。

控制系统主要由一体化控制器、执行设备和相关线路组成,通过一体化控制器可以自由控制各种农业生产执行设备,包括喷水系统和空气调节系统等,喷水系统可支持喷淋、滴灌等多种设备,空气调节系统可支持卷帘、风机等设备。

采集传输部分主要将设备采集到的数值传送到服务器上,现有大棚设备支持Wi-Fi、GPRS、长距离无线传输等多种数据传输方式,在传输协议上支持IPv4
联网协议。

业务平台负责对用户提供智能大棚的所有功能展示,主要功能包括环境数据监测、数据空间/时间分布、历史数据、超阈值告警和远程控制五个方时间/面。

用户还可以根据需要添加视频设备实现远程视频监控功能。

数据空间.
分布将系统采集到的数值通过直观的形式向用户展示时间分布状况(折线图)和空间分布状况(场图)、历史数据可以向用户提供历史一段时间的数值展示;超阈值告警则允许用户制定自定义的数据范围,并将超出范围的情况反映给用户。

五、平台软件
系统平台软件共由以下4个部分组成:
(1)数据收集、存储服务软件
完成传感器数据的获取、解读、分类,最后按预设的格式存入数据库。

(2)展示、决策软件
图形化界面,从数据库中读取相应数据,以表格和曲线的方式将传感器数据显示出来,支持多种查询显示方式。

可自定义决策系统控制对象及决策算法,与对象控制软件互联实现自动化控制。

(3)远程控制软件
完成现场控制对象的操作,图形化操作界面,支持重定义远端开关名称等信息,可与决策软件进行对接,实现自动化控制。

(4)SDK二次开发包
通过SDK开发包,用户可以完全用自己熟悉的开发平台开发自主知识产权的数据展示和决策平台。

通过SDK开发包,使用户无需了解本系统的硬件等底层信息的前提下,完成一套环境监测应用系统的开发。

我们的SDK提供了:
①数据收集、存储服务软件的详细编程接口及说明
②对象控制软件的编程接口及说明
③曲线显示界面例程
④数据库数据检索例程
⑤设备对象控制例程
上述4个组成软件中,数据收集、存储服务软件和对象控制软件是与底层硬件直接联系的,用户无需对该部分软件进行任何的编程开发,只需要通
过SDK开发自己的展示、决策软件,与我们的数据收集、存储服务软件和对象控制软件进行数据交互即可。

托普物联网简介
托普物联网是浙江托普仪器有限公司旗下的重要工程。

浙江托普仪器是国内领先的农业仪器研发生产商,依据自身在农业领域的研发实力,和自主研发的配套设备,在农业物联网领域崭露头角!
托普物联网以客户需求为源头,结合现代农业科技、通信技术、计算机技术、GIS 信息技术,以及物联网技术,竭诚为传统行业提供信息化、智能化的产品与端到端的解决方案。

主要有:大田种植智能解决方案、畜牧养殖管理解决方案、食品安全溯源解决方案、食用菌种植智能化管理解决方案、水产养殖管理解决方案、温室大棚智能控制解决方案等。

托普物联网三大系统产品
我们知道物联网主要包括三大层次,即感知层、传输层和应用层。

因此托普物联网产品主要以这三个层次延伸,涵盖了感知系统(环境监测传感设备)、传输系统(数据传输处理网络)、应用系统(终端智能控制平台。


托普物联网模块化智能集成系统
托普物联网依据自身研发优势,开发了多种模块化智能集成系统。

1、传感模块:即环境传感监测系统。

它依据各类传感设备可以完成整个园区或完成对异地园区所需数据监测的功能。

2、终端模块:即终端智能控制系统。

它可以完成整个园区或远程控制异地园区进行自动灌溉、自动降温、自动开启风机,自动补光及遮阳,自动卷帘,自动开窗关窗,自动液体肥料施肥、自动喷药等各类农业生产所需的自动控制。

3、视频监控模块:即实时视频监控系统。

主要是通过监控中心实时得到植物生长信息,在监控中心或异地互联网上既可随时看到作物的实时生长状况。

、预警模块:即远程植保预警系统。

可以通过声光报警、短信报警、语音报警4.等方式进行预警。

5、溯源模块:即农产品安全溯源系统。

该系统对农产品从种植准备阶段、种植和培育阶段、生长阶段、收获阶段等对作物生长环境、喷药施肥情况、病虫害状况等实施实时信息自动记录,有据可查,在储藏、运输、销售阶段采用二维码或者RFID射频技术对各个阶段数据记录,这样就能实现消费者拿到农产品时通过终端设备或网络就能查看到各类信息,才能放心食用。

6、作业模块:即中央控制室。

可通过总控室对整个区域情况进行监测,包括各个区域采集点参数、控制作业状态、实时视频图像、施肥喷药状况、报警信息等。

相关文档
最新文档