4.正比例图像PPT

合集下载

4.正比例函数的图象和性质-北师大版八年级数学上册课件

4.正比例函数的图象和性质-北师大版八年级数学上册课件
解析:因为函数图象经过第一、三象限,所以k+1>0, 解得k>-1. (2)若函数图象经过点(2,4),则k_=_1___.
解析:将坐标(2,4)带入函数表达式中,得4=(k+1)·2, 解得k=1.
练一练
1.已知正比例函数y=kx (k>0)的图象上有两点(x1,y1),(x2,y2), 若x1<x2,则y1 < y2.
4.已知正比例函数y=(2m+4)x. (1)当m >-2 ,函数图象经过第一、三象限; (2)当m <-2 ,y 随x 的增大而减小; (3)当m =0.5 ,函数图象经过点(2,10).
5. 如图分别是函数y=k1 x,y=k2 x,y=k3 x,y=k4 x的图象.
(1)k1 < k2,k3 < k4(填“>”或“<”或“=”);
3.什么是函数值?函数的图像?
一 正比例函数的图象的画法 例1:画出下面正比例函数y=2x的图象. 画函数图象的一般步骤: 解: ①列表
②描点 ③连线
以表中各组对应值作为点的坐标,在 直角坐标系内描出相应的点
练一练
1.请你画出y=-3x 的图像,并思考以下几个问题. (1)请你列出几个满足y=-3x 的x,y所对应的点(x,y),并 在图像上描出来,视察它们都在y=-3x 的图像上吗?
7. 已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油 为5元/ L . (1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间 的函数关系式. (2)在平面直角坐标系内描出大致的函数图象. (3)计算该汽车行驶220 km所需油费是多少.
解:(1)y=5×15x/100,

(2)用不等号将k1, k2, k3, k4及0依次连接起来.

北师大版六年级总复习《正比例与反比例》ppt课件

北师大版六年级总复习《正比例与反比例》ppt课件
(1)可以列表
时间/时 1 2 3 4 5 ---
路程/千米 100 200 300 400 500 ---
.
(2)可以画图
路程/千米
500 400 300 200 100
0 12 34 5
.
时间/分
(3)可以用式子表示
• 如果用t表示汽车行驶 的时间,S表示汽车行 驶的路程,那么
S÷t=100(一定)
.
三、正比例和反比例的相同点和不同点:
正比例
反比例
相同 两个相关联量,一个量变化,另一
点 个量也随着变化。
不 比值(商)一定 积一定
同 点
y x
k (一定)x×y=k(一定)
正比例图像是一条反比例图像是一条
直线。
曲线。
.
一辆汽车在高速路上行驶,速度保持 在100千米/时,说一说汽车行驶的路程随 时间变化的情况,并说说可以用哪些方式 来表示这两个量之间的关系?
(3)如果 c 一定, b 成反比例
c和 c和 a和
.
3、判断下面各数量关系中,当哪一个 量一定时,另外两个量成什么比例? • (1)时间、速度和路程 • (2)工作总量、工作效率和工作 时间 • (3)平行四边形的面积、底和高
.
二、判断下列各题(对的打“√”错的打“X”)
(1)圆的周长与直径成正比例
.
⑵如果y= 8,x和y成 ( 反)比例。 x
2、在一幅地图上,图上距离和实际距 离是不是成比例?成什么比例? 3、收入一定,支出和节余。
4、出油率一定,出油质量和花生仁的总质量。
.
练习与提高:
2、根据关系式判断各题中两种量是不 是成比例,成什么比例。 ⑴收入一定,支出和节余。 ⑵出米率一定,稻谷的重量和大米的重量。 ⑶圆柱的侧面积一定,它的底面周长和高。

正比例图像正比和反比例PPT课件

正比例图像正比和反比例PPT课件

(2)连接图中各点,你有什么发现?
路程/千米
G F
答:图中各点都在一条直线上。
E D
C
(3)根据图像判断,这辆汽车2.5小时行驶多少千米?行驶440 千米需要多少小时?
路程/千米
G F
E D
C
这辆汽车2.5小时行驶 200千米,行驶440千米 需要5.5小时。
小玲用计算机打字的数量和所用的时间如下表:
小玲用计算机打字的数量和所用的时间如下表:
时间/分 2
4
6
8
10
12
14
……Biblioteka 数量/个 100 200 300 400 500 600 700 ……
(2)在下图中描出打字数量和时间所对应的点,再按顺序连接起来。
数量/个
时间/分
(3)根据图像判断,小玲5分钟可以打多少个字?打750个字 需要多少分钟?
例1表中的各组数据,可以用下图中的点表示。
路程/千米
G F
E D
C
(1)图中的点 A 表示1小时 行 80千米,点 B 表示5小时 行400千米。其他各点呢?
1 2 3 4 5 6 7 8 时间/小时
点C 表示2小时行160千米 点D 表示3小时行240千米 点E 表示4小时行320千米 点 F 表示6小时行480千米 点 G 表示7小时行560千米
答:购买彩带的总价和长度成正比例,因为它们的比值一定。
(4)根据图像判断,购买3.5米彩带需要多少元?
答:购买3.5米彩带需 要17.5元。
总价/元
长度/米
正比例的图像
正比例的图像
1.是一条直线。 2.作图时,先描点,再连线。
一根弹簧挂上物体后长度会伸长,(所挂物体的质量不超过20 千克)物体的质量与伸长的长度如下:

正比例函数的图象和性质课件

正比例函数的图象和性质课件

们只相交于原点。
06
CHAPTER
03
正比例函数的性质
增减性
01
02
03
增减性
正比例函数在定义域内是 单调的,即随着x的增大 (或减小),y也相应增 大(或减小)。
增减性的判断
根据斜率k的正负来判断 。当k>0时,函数为增函 数;当k<0时,函数为减 函数。
增减性的应用
在解决实际问题时,可以 利用增减性判断函数的值 域或最值。
y=-3/x
提升练习题
01
总结词
深化理解与运用
02
03
04
题目1
已知某物体的速度v与时间t的 关系为v=kt,其中k为常数。 求该物体在t=3时的速度v。
题目2
画出函数y=0.5x和y=-0.2x的 图象,并比较它们的性质。
题目3
已知某物体的位移s与时间t的 关系为s=2t^2,求该物体在
t=5时的位移s。
斜率
1 2 3
斜率定义
正比例函数y=kx(k≠0)的斜率是k。
斜率与函数图像的关系
斜率决定了函数图像的形状和倾斜程度。当k>0 时,图像从左下到右上上升;当k<0时,图像从 左上到右下下降。
斜率的应用
在解决实际问题时,可以利用斜率判断函数的单 调性和变化趋势。
截距
截距定义
正比例函数y=kx(k≠0)的截距是0。
正比例函数的图象和性 质ppt课件
CONTENTS
目录
• 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 正比例函数的应用 • 练习与思考
CHAPTER
01
正比例函数的概念
正比例函数的定义

《正比例与反比例》课件

《正比例与反比例》课件

当x增大时,y也按相 同的比例增大,反之 亦然。
反比例的数学表达
反比例关系可以用等式表示为 xy = k,其中k是常数。 当x增大时,y减小,反之亦然。
例如,当x=2时,y=4;当x=4时,y=2,表示y与x成反比。
正反比例数学表达的对比分析
正比例关系中,y与x的比例是恒定的,而反比例关系中,xy的值是恒定 的。
应用
正比例和反比例关系在日常生活和科学实验中广泛存在, 如速度与距离、电量与电流等。通过理解这两种关系,可 以更好地解释和预测自然现象和实验结果。
05
正比例与反比例的数学表达
正比例的数学表达
正比例关系可以用等 式表示为 y/x = k, 其中k是常数。
例如,当x=2时, y=4;当x=4时, y=8,表示y与x成正 比。
正比例关系中,y随x增大而增大或减小而减小,而反比例关系中,y随x 增大而减小或减小而增大。
正反比例关系在数学和实际生活中都有广泛的应用,例如速度与时间的 关系、密度与体积的关系等。
THANKS。
详细描述
当我们购买一定数量的物品时,随着数量的增加,所需支付的总价也会按比例 增加,这就是正比例的体现。例如,购买铅笔时,每增加一支铅笔,总价也会 相应增加。
生活中的反比例
总结词
反比例关系则描述了两个量之间的反比关系,即一个量增加时,另一个量会按比 例减少。
详细描述
在乘坐公共交通工具时,乘客数量增加会导致人均空间减少,这就是反比例的体 现。例如,当一列火车满员后,每增加一名乘客,每个人可用的座位空间就会相 应减少。
03
正比例与反比例的性质
正比例的性质
正比例是指两个量之间的比值保 持不变,即y/x=k(k为常数)。

《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)

《正比例函数的图像和性质》 人教版 八年级下册 (示范课课件)
用数形结合的思想方法,通过画图观察,概括 正比 例函数的图象特征及性质.
y =2x
6
4
y= 1 x
2
3
-5
O
-2
5
x
三.类比学习
当k<0 时,正比例函数的图象特征及 性质又怎样呢?
请各小组画出函数y =-3x 和y =-1.5x 的 图象,进行小组合作研究.
总结提升
y=kx (k是常数,k≠0)的图象是一条经过 原点的直线
函数 大致图象 经过的象限 从左 y随x的 向右 增大而
y=kx k>0
第三、一象限 上升 增大
y=kx k<0
第二、四象限 下降 减小
现在,我们有画正比例函数图象的简便 画法了吗?
四.正比例函数的性质
正比例函数的图象都是经过原点的一条直线 (1)当k>0时,函数y=kx的图象经过三、一象限
从左到右上升,即函数y随x的增大而增大 (2)当k<0时,函数y=kx的图象经过二、四象限,
点(0, 0 )与点( 1,-3 ), y随x的增大 而 减小 。 3.下列图象哪个可能是函数y=-1.2x的图象( B)
A
B
C
D
你一定行!
4.请用两点画出直线 y 4x 的图象。
5.若点 (-1,m),(2,n)都在直线y=-4x上, 试比较m,n的大小
你一定行!
五、知识回顾 谈谈本节课你的收获。
六、分层作业
必做题:P120第一、二题。 选做题:若点 (-1,a),(2,b)都在 直线y=kx上,试比较a,b的大小
课件说明
本课是在上一节课学习正比例函数概念的基础上,进 一步研究其图象及其性质.
学习目标: 1.会画正比例函数的图象; 2.能根据正比例函数的图象和表达式 y =k(k≠0)

正比例函数(第一课时)课件

正比例函数(第一课时)课件
中应用
直线运动问题
路程、速度和时间的关系
当物体做匀速直线运动时,路程与时间成正比例关系,即s=vt,其中s表示路 程,v表示速度,t表示时间。
相遇和追及问题
当两个物体在同一直线上运动时,它们之间的相对速度等于两物体速度之和或 之差。因此,相遇问题和追及问题可以通过正比例函数来求解。
题目:一辆汽车以60千米/小时的速度匀速行驶,行驶 路程s(千米)与行驶时间t(小时)之间的关系式为s = 60t,求当t = 2时,汽车行驶的路程s。 解答过程
2. 将v = 60和t = 2代入上式,得到s = 60 × 2 = 120 。
分析:本题主要考察正比例函数在实际问题中的应用。 根据题意,速度v = 60千米/小时,时间t = 2小时,我 们需要求出路程s。 1. 根据正比例函数的定义,我们有s = vt。
比例系数 k 决定了直线的斜率,即 k = tanα (α 为直线与 x 轴正方向的夹角)。
函数图像是一条经过原点的直线。
性质:正比例函数具有以下性质
当 x > 0 时,y 与 x 同号;当 x < 0 时 ,y 与 x 异号。
图像特征
图像形状
01
正比例函数的图像是一条直线。
图像位置
02
该直线经过坐标原点 (0,0)。
结合实际问题进行求解
01
仔细阅读题目,理解题 意,将实际问题抽象成 数学模型。
02
根据题意列出方程或方 程组,注意方程两边的 量要对应。
03
解方程或方程组,求出 未知数的值,并对结果 进行验证和取舍。
04
将求得的未知数的值代 回原方程进行检验,确 保答案的正确性。
06
典型例题分析与解答过程展示

人教版六年级下册数学《正比例 》课件

人教版六年级下册数学《正比例 》课件

新知 探究
用字母y和x表示两种相关联的量
用k表示它们的比值(一定)
正比例关系可以用下面的式子表示:
k表示一个固定不变的数 路程 = 速度=90 k
时间
小 组 合作
仿照例子,将公式变为正比例 例: 根h一据定S侧时=,c—hc,—=h(一定),
S侧 所以S侧和c是一对正比例关系
小 组 合作
用字母y和x表示两种相关联的量 用k表示它们的比值(一定)
1.下面是小林家去年上 半年每月用电量情况。
(1)分别写出各月电费与用电量的比, 比较比值的大小。
60∶120=65∶130=55∶110=60∶120=65∶130=75∶150= (02.)5 说明这个比值所表示的意义。比值表示每千瓦时的电费。 (3)电费与相应的用电量成正比例关系吗? 为什么?
例:
根据

______一定时,——=
(一定),
所以____和____(__是)一(对正)比例关系
()
数形 结合 正比例图像,找到正比例图像的特点
公式不好记,有没有 直观的办法判断正比
例呢?
数形 结合
正比例图像特点 1.(0,0)出发 2.无限延伸 3.一条射线
巩 固 练 习 [教材第49页练习九 第1题]
课后 作业 练习九 1---7题
成正比例关系,因为电费∶用电量=每千瓦时的电费(一定),比值 一定。
[教材第49页练习九 第4题] 巩 固 练 习
2.已知y与x成正比例关系,在下表中的空格中填写合适的。
x和y两个量成这正比例 关系,则正比例关系式
y÷x=k,再求出k=2.5。
随堂 作业
课时练:课后练习1,2,3,4 数学书:练习九2题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上课了,
请保持肃静!
认真听讲,积极发言 !
1、什么叫做成正比 例的量?
还记得吗?
两种相关联的量,一种量变化,另一 种量也随着变化,而且这两种量相对应 的两个数的比值(也就是商)一定,这 两种量就叫做成正比例的量,它们的关 系叫做正比例关系。
2、怎样判断两个量 是否成正比例?
还记得吗?
判定两个量是不是成正比例,主 要是看它们的商(也就是比值)是不是
张家集镇宋营小学 邵秀良
一辆汽车在公路上行驶,行驶的 时间和路程如下表。
时间和路程是两种相关联的量,路程随着时间 的变化而变化。时间扩大,路程随着扩大;时间缩 小,路程也随着缩小。它们扩大、缩小的规律是: 路程和时间的比的比值是一定。所以路程和时间是 成正比例
路程 时间=速度(一定)
一辆汽车在公路上行驶,行驶的 时间和路程如下表。
1、单价一定,判断彩带的长度和需要的 钱数是否成正比例,说明理由。
总价 数量=单价(一定)
数量/米 1 2 3 4 5 6 7 8 … 总价/元 3.5 7 10.5 14 17.5 21 24.5 28 …
2.把上面的数据在方格纸上表示出来。
24.5 21
17.5 14
10.5
7 3.5
.......
1200=50 2400=50 3600=50 4800=50
工时作间总量=工作效率(一定)
(3)估计小玲5分钟打了多少个字?打750 个字要多少分钟?
表中的数据用图像(如下图)所示:
数量/米 1 2 3 4 5 6 7 8 … 总价/元 3.5 7 10.5 14 17.5 21 24.5 28 …
0 1 2 3 4 56 7

图中的红点表 示什么?你发 现了什么?
24.5 21 17.5 14 10.5 7 3.5
.......
0 1 2 3 4 56 7
3.不计算,看图估计:买1.5米的彩带 大约要花多少元?买5.5米呢?。
(3)不计算,根据图像判断,如果买9米彩带,总价是多少? 49元能买多少米彩带?
一定的。
y x =k (一定)
它们是相关联的量吗?
1、沈梦烨买《钱江晚报》,数量与总价 2、沈张怡同学的体重和身高 3、同样一台织布机,工作时间和工作总量 4、圆的直径和周长
c=πd
d C d =π (一定)
c=2πr
r C r =2π (一定)
s=πr2
r
S r 2 =π (一定)
想一想:
(4)小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几 倍?
总价/元
49
(1 , 3.5) 42
(2 , 7) 35 31.5
(10 , 35) 28
21
(12 , 42)
14
(9 , 31.5)
7
( 14 , 49)
024
6 8 10 12 14
数量/m
购买彩带的长度和需要的钱数成正比例 吗?你是根据什么来判断的?
答:购买彩带的长度和需要的钱数成正比 例。我是根据 :总价 :数量=单价 (一定) 来判断的。
也可以根据正比例的图像是成一条直线来判断。
成正比例的量有什么特征? 1、相关联
2、比值一定 判定两个相关联量是不是成正比例
主要是看它们的比值是不是一定的。
正比例关系式:
y x
=k (一定)
画图表示正比例的量,你学会了吗?
表中的数据,可以用图像表示。
B
A
图中A点表示什么?B点表示什么?其他各点呢?
你发现正比例的图形有什么特点? 正比例的图像是从0开始的一条直线!
根据图像判断,这辆汽车2.5小时行驶多少 千米?
答:这辆汽车2.5小时行驶200千米。
行驶440千米需要多少小时? 答:行驶440千米需要5.5小时。
正方形的周长与边长成正比例吗?面积与边长 呢?为什么?
(1)
边长/cm 周长/cm
1

2

3
12
4
16
(2)
边长/cm 面积/cm
1

2

3

4
16
周长与边长的比值不变,所以周长与边长成正比例
面积与边长的比值不确定,所以面积与边长不成正比例
判断下面各题中的两种量是否成正比例。
(1) 神州6号在轨道上飞行的速度是一定的, 飞行的路程与飞行的时间。
路程 时间=速度 (一定)
(2)长方形的长是一定的,它的宽与面积。
面积 宽 =长 (一定)
(3)被减数一定,减数与差。
减数+差 =被减数(一定)
(4)一天中的同一时间,物体实际高度与影子 长度。
时间一定,路程和速度。 速度一定,路程和时间。 总价一定,数量和单价。 小方的身高和他的年龄。
长方形的宽一定,长和面积。
相关文档
最新文档