新人教版九年级数学下册《二十六章 反比例函数 测试》课件_12
合集下载
2024九年级数学下册第26章用反比例函数比例系数k的几何意义解与面积相关的应用课件新版新人教版

【解】∵直线 AB 交 y 轴于点 C,∴点 C(0,2), ∴S 四边形 COMN=S△OMN+S△OCN=32+12×2×t. ∵S 四边形 COMN>3,∴32+12×2×t>3,∴t>32.
【点方法】 当反比例函数图象中的几何图形的面积无法直接
求出时,可将其转化为与比例系数k相关的矩形或直 角三角形的面积,通过面积的和或差进行计算.
在 Rt△ ACE 中,CE= AC2-AE2=3, ∴OE=8,∴A(8,4),∴k=4×8=32, ∴反比例函数的解析式为 y=3x2. 将 A 和 C 的坐标代入一次函数解析式中, 得85aa++bb==40,,解得ab= =-43,230. ∴一次函数的解析式为 y=43x-230.
(2)请直接写出不等式 ax+b>kx的解集. 【解】不等式 ax+b>kx的解集为 x>8 或-3<x<0.
(2)若y轴上有一点C(0,n),△ABC的面积为4,求点C的 坐标. 【解】解方程组yy==2x2,x,得xy11==21,,xy22==--21., ∴点 B 的坐标为(-1,-2).
如图,过点 A,B 分别作 y 轴
的垂线,垂足分别为 E,F,
∵A(1,2),B(-1,-2),C(0,n), ∴AE=BF=1,OC=|n|. ∵S△ ABC=S△ AOC+S△ BOC=4, ∴12OC·AE+12OC·BF=4, 即|n|×1+|n|×1=8,∴|n|=4,∴n=±4, ∴点 C 的坐标为(0,4)或(0,-4).
【点方法】 一次函数与反比例函数常常放在一起考查,所以
要牢牢掌握它们各自的性质与图象特征,综合考虑, 解题时要关注两种函数图象的交点.
5 [2023·乐山]如图,一次函数 ym,4),与 x 轴交于点 B,与 y 轴交于点 C(0,3).
第26章 反比例函数章末核心要点分类整合 人教版数学九年级下册复习课件(55张PPT)

第二十六章 反比例函数
章末核心要点分类整合
1. 双曲线y=kx中k的几何意义:设P是双曲线y=kx上任意一 点,过P向x轴、y轴作垂线,垂足分别为H,G,连接
PO(O为坐标原点),则S△POH=S△POG=|2k|,S矩形PHOG=|k|. 2. 用待定系数法求反比例函数解析式的步骤:一设、二代、
ax+b与反比例函数y=axb(a, b为常数且均不等于0)在同 一坐标系内的图象可能是 图26-1 中的( )
解题秘方:对a,b的取值分四种情况讨论,结合函数图象 进行判断. 解:分四种情况: (1)当a>0,b>0时, 一次函数y=ax+b的图象经过第一、
二、三象限,此时反比例函数y=
ab x
频率f /MHz 10
15
50
波长λ/m
30
20
6
(1)求波长λ关于频率f的函数解析式; 解:设波长λ关于频率f的函数解析式为λ=kf (k≠0). 把(10,30)代入上式,得1k0=30,解得k=300. ∴λ=30f 0.
(2)当f=75 MHz时,求此电磁波的波长λ .
解:当f=75 MHz时,λ=37050=4(m). ∴ 当f=75 MHz时,此电磁波的波长λ为4 m .
解:∵
k=5>0,∴反比例函数y=
5 x
的图象分别位于第一、
三象限,在每个象限内,y随x的增大而减小.
又∵ A(x1,-1),B(x2,1),C(x3,5)都在反比例函数y=5x 的图象上,
∴ A(x1,-1)在第三象限,B(x2,1),C(x3,5)在第一象限, 且x3<x2. ∴ x1<0,x2>x3>0. ∴ x1<x3<x2.
∵ A(-2 ,3),B(3,-2)在一次函数y=ax+b的图象上, ∴ቊ-3a2+a+b=b=-32,,解得ቊab==-1. 1, ∴一次函数的解析式为y=-x+1.
章末核心要点分类整合
1. 双曲线y=kx中k的几何意义:设P是双曲线y=kx上任意一 点,过P向x轴、y轴作垂线,垂足分别为H,G,连接
PO(O为坐标原点),则S△POH=S△POG=|2k|,S矩形PHOG=|k|. 2. 用待定系数法求反比例函数解析式的步骤:一设、二代、
ax+b与反比例函数y=axb(a, b为常数且均不等于0)在同 一坐标系内的图象可能是 图26-1 中的( )
解题秘方:对a,b的取值分四种情况讨论,结合函数图象 进行判断. 解:分四种情况: (1)当a>0,b>0时, 一次函数y=ax+b的图象经过第一、
二、三象限,此时反比例函数y=
ab x
频率f /MHz 10
15
50
波长λ/m
30
20
6
(1)求波长λ关于频率f的函数解析式; 解:设波长λ关于频率f的函数解析式为λ=kf (k≠0). 把(10,30)代入上式,得1k0=30,解得k=300. ∴λ=30f 0.
(2)当f=75 MHz时,求此电磁波的波长λ .
解:当f=75 MHz时,λ=37050=4(m). ∴ 当f=75 MHz时,此电磁波的波长λ为4 m .
解:∵
k=5>0,∴反比例函数y=
5 x
的图象分别位于第一、
三象限,在每个象限内,y随x的增大而减小.
又∵ A(x1,-1),B(x2,1),C(x3,5)都在反比例函数y=5x 的图象上,
∴ A(x1,-1)在第三象限,B(x2,1),C(x3,5)在第一象限, 且x3<x2. ∴ x1<0,x2>x3>0. ∴ x1<x3<x2.
∵ A(-2 ,3),B(3,-2)在一次函数y=ax+b的图象上, ∴ቊ-3a2+a+b=b=-32,,解得ቊab==-1. 1, ∴一次函数的解析式为y=-x+1.
人教版九年级数学下册第26章反比例函数PPT

知识点 1 反比例函数的定义
知1-导
问题
下列问题中,变量间具有函数关系吗?如果有,它 们的解析式有什么共同特点? (1)京沪线铁路全程为1 463 km,某次列车的平均速度
v(单位: km/h)随此次列车的全程运行时间t (单位:h) 的变化而变化;
知1-导
(2) 某住宅小区要种植一块面积为1 000 m2的矩形草坪, 草坪的长y (单位:m)随宽x (单位:m)的变化而变化;
(4)还原:写出反比例函数的解析式.
知2-讲
2.由于反比例函数的解析式中只有一个待定系数k, 因此求反比例函数的解析式只需一组对应值或一 个条件即可.
知2-讲
例2 已知y是x的反比例函数,并且当x=2时,y=6.
(1)写出y关于x的函数解析式;
(2)当x=4时,求y的值.
分析:因为y是x的反比例函数,所以设 y k .
5
①y=2x-1;②y=- ;③y=x2+8x-2;
3
1x
a
④y= x2 ; ⑤y= 2x ; ⑥y= x .
导引:根据反比例函数的定义进行判断,看它是否满足反比例函数的三种
表现形式.①y=2x-1是一次函数;②y=- 5 是反比例函数;③y
3
x
=反=比xa2+例,8函x当-数a2≠关是0系时二;是次⑤反函y比数=例;2函1④x数y是=,反没x比2有例,此函y条与数件x,2成则可反不以比一写例定成,是y但反=y比与12x例x;不函⑥是y
(k≠0)的图象上,则k的值是( D )
A.10 B.5 C.-5 D.-10
3 若y与x-2成反比例,且当x=-1时,y=3,则y
与x之间的关系是( D )
A.正比例函数
人教版九年级数学下册 《反比例函数》反比例函数PPT教学课件

第十二页,共二十六页。
下列关系中是反比例函数的是( ) B
第十三页,共二十六页。
已知 y 是 x 的反比函数,并且当x=2时,y=6. (1)写出 y 关于 x 的函数解析式;
(2)当 x=4 时,求 y 的值.
【解析】
第十四页,共二十六页。
归纳
求反比例函数解析式的步骤: ①设:设反比例函数的解析式为
人教版九年级数学下册 《反比例函数》反比例函数PPT教学课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
反比例函数
第一页,共二十六页。
知识回顾
1.什么是函数?
在某变化过程中有两个变量 x,y,按照某个对应法则,对于给 定的 x,有唯一确定的 y 与之对应,那么 y 就叫做 x 的函 数.其中 x 叫自变量,y 叫因变量. 2.正比例函数的一般形式是____y__=_k__x_(__k_≠__0_)____. 它的图象是一条过____原__点___的_____直__线__. 3.一次函数的一般形式是____y_=__k__x_+__b_(___k_≠__0_). 它的图象是一条____直___线__.
第二页,共二十六页。
思考 下列问题中,变量间的对应关系可以用怎样的函数关系表示?
1.京沪铁路全程为1 463km,某次列车的平均速度 v(km/h)随此 次列车的全程运行时间t(h)的变化而变化.
第三页,共二十六页。
思考
下列问题中,变量间的对应关系可以用怎样的函数关系表示?
第四页,共二十六页。
思考
②代:把满足条件的x,y代入 ③求:求出k的值 ④写:写出反比例函数解析式
口诀:一设二代,三求四写.
第十五页,共二十六页。
反比例函数的解析式 怎么求反比例函数的解析式?
下列关系中是反比例函数的是( ) B
第十三页,共二十六页。
已知 y 是 x 的反比函数,并且当x=2时,y=6. (1)写出 y 关于 x 的函数解析式;
(2)当 x=4 时,求 y 的值.
【解析】
第十四页,共二十六页。
归纳
求反比例函数解析式的步骤: ①设:设反比例函数的解析式为
人教版九年级数学下册 《反比例函数》反比例函数PPT教学课件
科 目:数学 适用版本:人教版 适用范围:【教师教学】
反比例函数
第一页,共二十六页。
知识回顾
1.什么是函数?
在某变化过程中有两个变量 x,y,按照某个对应法则,对于给 定的 x,有唯一确定的 y 与之对应,那么 y 就叫做 x 的函 数.其中 x 叫自变量,y 叫因变量. 2.正比例函数的一般形式是____y__=_k__x_(__k_≠__0_)____. 它的图象是一条过____原__点___的_____直__线__. 3.一次函数的一般形式是____y_=__k__x_+__b_(___k_≠__0_). 它的图象是一条____直___线__.
第二页,共二十六页。
思考 下列问题中,变量间的对应关系可以用怎样的函数关系表示?
1.京沪铁路全程为1 463km,某次列车的平均速度 v(km/h)随此 次列车的全程运行时间t(h)的变化而变化.
第三页,共二十六页。
思考
下列问题中,变量间的对应关系可以用怎样的函数关系表示?
第四页,共二十六页。
思考
②代:把满足条件的x,y代入 ③求:求出k的值 ④写:写出反比例函数解析式
口诀:一设二代,三求四写.
第十五页,共二十六页。
反比例函数的解析式 怎么求反比例函数的解析式?
人教版九年级数学下册26.1.1 反比例函数-课件PPT

坪,草坪的长y(单位:m) 随宽x(单位:m)的变化
而变化;
y 1000 . x
(3) 已知北京市的总面积为1.68×104km2,人均占
有面积S(km2/人) 随全市总人口n(单位:人)的变化
而变化.
1.68 104
S
.
n
问题:观察以上三个解析式,你觉得它们有什么共同 特点?
v 1463, y 1000, S 1.68104 .
B. 2个 C. 3个 D. 4个
3. 填空
要满足m-1≠0
(1)若y m 1是反比例函数,则m的取值范围
x
是 m≠1
. 系数不为0
(2)若 y m m 2是反比例函数,则m的取值范
x
围是 m≠0且m≠-2 .
(3)若 y
m2 xm2 m1
是反比例函数,则m的值是
m=-1
.
要满足同时满足系数不为0,和x的次数为-1,此
2
x 1 2
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
反比例函数:定义/三种表达方式
反
比
例 函
用待定系数法求反比例函数解析式
数
根据实际问题建立反比例函数模型
THANKS!
九年级 数学
课件全新制作
第二十六章 反比例函数
26.1 反比例函数 26.1.1 反比例函数
目录页
新课导入
讲授新课
当堂练习
课堂小结
新课导入
✓ 教学目标 ✓ 教学重点
学习目标
1.理解并掌握反比例函数的概念.(重点) 2.从实际问题中抽象出反比例函数的概念,能根据 已知条件确定反比例函数的解析式.(重点、难点)
x y 12 3.
而变化;
y 1000 . x
(3) 已知北京市的总面积为1.68×104km2,人均占
有面积S(km2/人) 随全市总人口n(单位:人)的变化
而变化.
1.68 104
S
.
n
问题:观察以上三个解析式,你觉得它们有什么共同 特点?
v 1463, y 1000, S 1.68104 .
B. 2个 C. 3个 D. 4个
3. 填空
要满足m-1≠0
(1)若y m 1是反比例函数,则m的取值范围
x
是 m≠1
. 系数不为0
(2)若 y m m 2是反比例函数,则m的取值范
x
围是 m≠0且m≠-2 .
(3)若 y
m2 xm2 m1
是反比例函数,则m的值是
m=-1
.
要满足同时满足系数不为0,和x的次数为-1,此
2
x 1 2
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
反比例函数:定义/三种表达方式
反
比
例 函
用待定系数法求反比例函数解析式
数
根据实际问题建立反比例函数模型
THANKS!
九年级 数学
课件全新制作
第二十六章 反比例函数
26.1 反比例函数 26.1.1 反比例函数
目录页
新课导入
讲授新课
当堂练习
课堂小结
新课导入
✓ 教学目标 ✓ 教学重点
学习目标
1.理解并掌握反比例函数的概念.(重点) 2.从实际问题中抽象出反比例函数的概念,能根据 已知条件确定反比例函数的解析式.(重点、难点)
x y 12 3.
26.1.2 反比例函数的图象和性质 课件 2024-2025学年人教版(2012)九年级下册数学

综合应用创新
解题秘方:紧扣反比例函数的系数k的几何意义,利用轴 对称、勾股定理、正方形的性质解决最小值问题,正确构 造“两点一线”型最小值的基本图形是解题的关键. 解:由题知k>0,∵正方形OABC的边长是6, ∴点M的横坐标和点N的纵坐标都为6,∠B=90°. ∴ M(6,6k),N(6k,6). ∴ BN=6-6k,BM=6-6k.
感悟新知
反比例函数 k的符号
k>0
y=kx(k ≠ 0)
k<0
知2-讲
图象
图象位置 增减性
第一、第三象限
在每一个象限内,y 随x的增大而减小
第二、第四象限
在每一个象限内,y 随x的增大而增大
感悟新知
知2-练
例2
已知反比例函数y=
m2 x
(m
≠
0)的图象过点(-3,-12),
且反比例函数y=mx 的图象位于第二、第四象限.
知1-练
1-1. (1)在同一平面直角坐标系中画出反比例函数y=6x与y= -6x的图象.
感悟新知
解:①列表:
知1-练
x … -6 -5 -4 -3 -2 -1 …
y=6x … -1 -1.2 -1.5 -2 -3 -6 … y=-6x … 1 1.2 1.5 2 3 6 …
感悟新知
知1-练
x …1 2 3 4
感悟新知
知2-练
2-2.
在反比例函数y=
4-k x
的图象上有两点A(x1,y1),B(x2,
y2),当x1<0<x2时,有y1<y2,则k的取值范围是( C )
A. k<0
B. k>0
C. k<4
D. k>4
感悟新知
知3-讲
26.1.1 反比例函数 课件-人教版数学九年级下册
感悟新知
知1-练
1-1.[月考·成都锦江区]下列函数中,y是x的反比例函数的 是( B )
A. y=x-4 1 C. y=32x
B. y=25x D. y=x12
感悟新知
知2-讲
知识点 2 反比例关系与反比例函数的区别与联系
1. 如果xy=k(k为常数,k ≠ 0),那么x与y这两个量成反比例 关系,这里的x和y既可以是单项式,也可以是多项式.
学习目标
第二十六章 反比例函数
26.1 反比例函数
26.1.1 反比例函数
学习目标
1 课时讲解 反比例函数的定义
反比例关系与反比例函数的区别与联系 求反比例函数的解析式 在实际问题中建立反比例函数模型
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 反比例函数的定义
知1-讲
0),整理,得y=x-k 5-2,显然,y不是x的反比例函数.
感悟新知
知2-练
例 2 已知y=y1+y2,y1与x成正比例,y2与x成反比例,并 且当x=2时,y=-4;当x=-1 时,y=5,求y关于x 的函数解析式.
思路引导:
感悟新知
解:∵ y1与x成正比例,∴设y1=k1x(k1≠0).
知2-练
感悟新知
(2)求当x=8时的函数值y. 【解】当 x=8 时,y=2×(8-1)+68=1434.
知2-练
感悟新知
知识点 3 求反比例函数的解析式
知3-讲
1. 确定反比例函数解析式的方法是待定系数法,由于在反
比例函数y=,即可求出k的值,从而确 定其解析式.
综合应用创新
把x=3代入y=-2x,得y=-2x. 所以y是x的反比例函数,函数解析式为y=-2x. 补全表格如下:
人教版九年级数学下册第二十六章:26.1.2 反比例函数的图像和性质 优秀课件
-4
-6
-8
当k>0时,两支双曲线分 位于第一,三象限内; 当k<0时,两支双曲线分别 位于第二,四象限内;
反比例函数的图象和性质: 1.反比例函数的图象是双曲线; 2.图象性质见下表: k y= K>0 K<0
x
图 象
当k>0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小. 当k<0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
一、复习引入
反比例函数的定义:
一般地,形如 (k是常数,k≠0)的函数, 叫做反比例函数。其中, x是自变量,y是函 数.自变量x的取值范围是不等于0的一切实 数.
反比例函数的三种表达式:
① ② ③
1、过点(2,5)的反比例函数的解析 10 式是: y x . 2、一次函数y=2x-1的图象 是 一条直线 ,y随x的增大而 增大. 3、用描点法作函数图象的步骤:
y
4 C(-3,y3)是 y B(5,y2)是反比例函数 x
数形结合
图
⑴代入求值
y1 y2 y3
A
2
⑵利用增减性
B
5
-3
⑶根据图象判断
x
O
C
7、若点(-2,y1)、(-1,y2)、(2,y3)在
100 反比例函数 y = 的图象上,则( x
B
)
A、y1>y2>y3
C、y3>y1>y2
B、y2>y1>y3
x
标系中的 图象可能是 D
y o x y o x
:
y o x y o x
(A)
(B)
人教版九年级数学下册第二十六章《反比例函数的图象和性质(第1课时)》课件 (2)
(1)求 m,n 的值; (2)求直线 AC 的解析式.
解:(1)∵直线 y=mx 与双曲线 y=nx相交于 A(-1,a),B 两点,∴B 点横坐 标为 1,即 C(1,0),∵△AOC 的面积为 1,∴A(-1,2),将 A(-1,2)代入 y =mx,y=nx可得 m=-2,n=-2;
(2)设直线 AC 的解析式为 y=kx+b,∵y=kx+b 经过点 A(-1,2),C(1,0),
A.两个分支分布在第二、四象限 B.两个分支关于 x 轴成轴对称
C.图象经过点(1,1)
D.当 x<0 时,y 随 x 的增大而减小
4.(4 分)(2014·兰州)若反比例函数 y=k-x 1的图象位于第二、四象限,则 k 的取值可以
是( A ) A.0
B.1
C.2 D.以上都不是
5.(4 分)(2014·海南)已知 k1>0>k2,则函数 y=k1x 和 y=kx2的图象在同一平面直角坐标
解:(1)k=3 (2)k>1
(3)∵k=13,∴反比例函数解析式为 y=1x2,当 x=3 时,y=132=4,∴点 B 在函数 y=
1x2的图象上;当 x=2 时,y=6≠5,∴点 C 不在函数 y=1x2的图象上.
一、选择题(每小题 5 分,共 15 分) 10.已知点(-1,y1),(2,y2),(3,y3)在反比例函数 y=-kx2-1的图象上,下列结论中 正确的是( B ) A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y3>y1
解:(1)在 Rt△BOA 和 Rt△ACD 中,AABO==DCAD,∴△AOB≌△DCA(HL)
(2)在 Rt△AOB 中,由勾股定理可得 OB= AB2-OA2= 5-4=1,∴OB=AC=1, ∴C(3,0),E(3,1),∴k=3×1=3
解:(1)∵直线 y=mx 与双曲线 y=nx相交于 A(-1,a),B 两点,∴B 点横坐 标为 1,即 C(1,0),∵△AOC 的面积为 1,∴A(-1,2),将 A(-1,2)代入 y =mx,y=nx可得 m=-2,n=-2;
(2)设直线 AC 的解析式为 y=kx+b,∵y=kx+b 经过点 A(-1,2),C(1,0),
A.两个分支分布在第二、四象限 B.两个分支关于 x 轴成轴对称
C.图象经过点(1,1)
D.当 x<0 时,y 随 x 的增大而减小
4.(4 分)(2014·兰州)若反比例函数 y=k-x 1的图象位于第二、四象限,则 k 的取值可以
是( A ) A.0
B.1
C.2 D.以上都不是
5.(4 分)(2014·海南)已知 k1>0>k2,则函数 y=k1x 和 y=kx2的图象在同一平面直角坐标
解:(1)k=3 (2)k>1
(3)∵k=13,∴反比例函数解析式为 y=1x2,当 x=3 时,y=132=4,∴点 B 在函数 y=
1x2的图象上;当 x=2 时,y=6≠5,∴点 C 不在函数 y=1x2的图象上.
一、选择题(每小题 5 分,共 15 分) 10.已知点(-1,y1),(2,y2),(3,y3)在反比例函数 y=-kx2-1的图象上,下列结论中 正确的是( B ) A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y3>y1
解:(1)在 Rt△BOA 和 Rt△ACD 中,AABO==DCAD,∴△AOB≌△DCA(HL)
(2)在 Rt△AOB 中,由勾股定理可得 OB= AB2-OA2= 5-4=1,∴OB=AC=1, ∴C(3,0),E(3,1),∴k=3×1=3
人教版九年级数学下册26.1.2第1课时反比例函数的图象和性质课件
y k(k>0)的图象上, x
若y1<y2,求a的取值范围.
解:由题意知,在图象的每一支上,y随x的增大而减小.
①当这两点在图象的同一支上时,
∵y1<y2,∴a-1>a+1, 无解; ②当这两点分别位于图象的两支上时,
∵y1<y2,∴必有y1<0<y2. ∴a-1<0,a+1>0, 解得:-1<a<1.
,4
4 5
),D(2,5)是否在这个函数的图象上?
解:设这个反比例函数的解析式为 y k ,因为点A(2,6)在其图象上,所
x
以有 6 k ,解得k=12.
2
所以反比例函数的解析式为 y 12 .
x
因为点B,C的坐标都满足该解析式,而点 D的坐标不满足,所以点B,C在
这个函数的图象上,点D不在这个函数的图象上.
结论吗?
一般地,当k>0时,对于反比例函数
y
k x
,由函数图象,并结合解析式,
我们可以发现:
(1)函数图象分别位于第一、第三象限; (2)在每一个象限内,y随x的增大而减小.
归纳: 反比例函数 y k (k>0) 的图象和性质:
x
●由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交;
例1 画出反比例函数y 6 与 y 12 的图象.
x
x
提示:画函数的图象步骤一般分为:列表 →描点→连线. 需要注意的是在反比例函 数中自变量 x 不能为 0.
解:列表如下:
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
y
6 x
… -1
-1.2
-1.5
-2
-3
-6
6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.S1<S2 D.S1和S2的大小关系不能确定.
y
o S1 A
S2
Bx
CD
2019中考预测练习
3.如图,已知反比例函数 y k 与一次函 数y=k2x+b的图象交于点A(1,8x),B(-4,m).
(1)求k1,k2,b的值;
(2)求△AOB的面积; (3)若M(x1,y1),N(x2,y2)是反比例函数
在第一象限内,求反比例函数的图
象上某一点P的坐标,使得S△POC=9.
课堂小结:
本节课我们主要针对一次函数和反比例函数的知 识在中考中出现的一些考点进行了分析解答,通过这 节课的学习,相信同学们更加明确了这一专题知识的 考题方向,从而有针对性地去加强练习。
作业布置:(见后面的2019年预测练习)
2019中考预测练习
基础知识梳理一
1.什么是反比例函数?
一般地,形如
y=
k x
(k是常数,k≠0)的函数称为
反比例函数,其中x是自变量,y是函数.
反比例函数的两种变形式
y=kx-1
xy=k
基础知识梳理一
2.什么是一次函数?
一般地,形如 y=kx+b(k,b是常数,k≠0)的函数 称为一次函数。
特别地: 当b=0时,一次函数 y=kx (常数K≠ 0),也叫做正比例函数
y
k x
图象上的两点,且x1<x2,y1<y2,指出点M,N各
位于哪个象限,并简要说明理由.
Thank you!
例1.(2017•7•3广安)k<0时,一次函数y=kx-k的图象不经过(C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 例2.(2014•11•3广安)直线y=3x+2沿y轴向下平移5个单位,则平移后直线与 y轴的交点坐标为____(0_,_-3_)_。
y1 x
D
巩固训练一
(2012-10-3广安)时钟在正常运行时,时针和分针的夹角会随着时间的 变化而变化.设时针与分针的夹角为y(度),运行时间为t(分), 当时间从3:00开始到3:30止,下图中能大致表示与之对应的函数关系的 图象是( D )
考点二 待定系数法和三角形面积法应用
k
例4.(2014•广安)如图,反比例函数 y2 x(k为常数,且k≠0)经过点 A(1 ,3)
(1)求反比例函数的解析式;
(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.
考点三 待定系数法和函数值比较大小
例5.(2018 •广安)如图,一次函数y1=ax+b(a≠0)的图象与反比例函 数 垂足y为2 Ckx,连(k结为O常A.数已,知k≠OC0=)的2,图t象a交n∠于AAO、C=B两3点,,B过(m点,A-作2)A.C⊥x轴,
2
(1)求一次函数和反比例函数的解析式;
(2)结合图象直接写出:当y1>y2时,x的
取值范围
巩固训练二
(2017•广安)如图,一次函数y=kx+b的图象与反比例函数
y
k x
的图象
在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,
(1)求函数
yk x
和 y=kx+b的解析式.
(2)已知直线AB与x轴相交于点C,
基础知识梳理二
k的符号
k
k<0
图象
所在象限
第 一__、__三___象限
第 _二_、__四___象限
性质
在每一象限内,y随x的增大 在每一象限内,y随x的增大而
而_减__小__
_增__大__
基础知识梳理二 y=kx+b(k≠0)图象和性质
K>0
k<0
图象
性质 y随x的增大而 增大
反比例函数和一次函数 知识的综合应用
广安中考2011~2018
考情分析
2011 2012 2013 2014 2015 2016 2017 2018
选择题(分值)
6
33
3
填空题(分值) 3
3
3
33
综合题(分值) 6 6
6
6
6 6 66
第20题
说明:从上表可以看出,反比例函数和一次函数的知识点,在广安中 考中每年必考,分值基本有9分。其中解答题第20题为固定考点—— 反比例函数和一次函数的综合应用,但考题简单,属于基础型题。
1.若反比例函数 y k 的图像经过点(1,-3),则一次函数y=kx-k(k≠0) 的图像经过 象限。x 2垂.如线图,垂:A足、为C是B、函D数,记yRt△kx A的OB图的象面上积任为意S1,两Rt点△,O分CD的别面过积点为A、S2C,做则x(轴和y轴)的
A.S1>S2 C.S1 = S2
y随x的增大而 减小
基础知识梳理三 反比例函数/ k /的几何意义
已知:点P是双曲线
上任意一点,PA⊥x轴于A,
PB⊥y轴于B.
y
则:矩形OAPB的面积= |m|● |n|= |k| .
y
(m,n) P B
SOAP
1 2
OA
AP
1 2
|
m
|
•
|
n
|
1 2
|
k
|
x
AO
P(m,n)
oA
x
考点一 图象和性质