结合自己的教学实践谈一谈小学数学中的数形结合思想

合集下载

数形结合思想在小学数学教学中的实践运用

数形结合思想在小学数学教学中的实践运用

数形结合思想在小学数学教学中的实践运用
数形结合思想是指将数学概念与几何图形结合起来进行教学,以帮助学生更好地理解
和掌握数学知识。

在小学数学教学中,数形结合思想的实践运用能够激发学生的学习兴趣,提高他们的数学思维能力和解决问题的能力,下面是它在小学数学教学中的具体实践运
用。

在数学概念的教学中,运用数形结合思想使抽象的概念具体化。

在教学面积的概念时,可以引入几何图形,例如正方形、长方形等,让学生通过观察这些图形的形状和边长,进
而理解面积的含义,并通过测量边长的方式计算出面积。

“数形结合”的教学方法可以有
效地帮助学生建立对概念的直观认识。

在问题解决过程中,数形结合思想能够帮助学生产生解决问题的启示。

在解决找数字
规律问题时,可以设计一些与几何图形相关的题目,让学生通过观察图形的变化规律来找
到数字的规律。

通过这种思维方式,学生能够培养出较好的观察和推理能力。

数形结合思想可以帮助学生更好地理解和运用数学公式。

在教学计算周长和计算面积
的公式时,可以通过构建几何图形的方式帮助学生理解公式的意义,并通过实际操作计算
出对应的结果。

这种实践操作的过程不仅能够提高学生的计算能力,还能够增强他们对公
式运用的理解。

数形结合思想还可以在培养学生数学创造力方面起到积极的作用。

通过引入几何图形,可以启发学生进行创造性思维,给定一个几何图形,要求用一定的正方形拼出该图形,这
样的活动可以培养学生的几何思维和创造力,同时提高他们的问题解决能力。

浅谈“数形结合”在小学低段数学教学中的应用

浅谈“数形结合”在小学低段数学教学中的应用

浅谈“数形结合”在小学低段数学教学中的应用1. 引言1.1 什么是数形结合数形结合是一种教学方法,旨在通过将数学知识与几何形状结合起来,帮助学生更深入地理解数学概念。

在这种方法中,数学的抽象概念得到了具体形象的表现,使学生能够通过观察和实践来感知和理解数学知识。

数形结合的核心理念是将抽象的数字与具体的形状相结合,通过形象化的表现帮助学生建立数学概念的直观感受。

通过数形结合的教学方法,学生可以在实际操作中感受到数学的乐趣和实用性,从而激发学习兴趣。

数形结合也能够帮助学生建立起数学思维的框架,促进他们的思维发展。

通过将数学与形状相结合,学生可以更好地理解数学概念,提高解决问题的能力,并培养创新思维。

数形结合是一种有效的教学方法,能够帮助学生更深入地理解数学知识,激发学习兴趣,促进数学思维发展。

在小学低段数学教学中,数形结合具有重要的意义和价值,应该得到更广泛的应用和推广。

1.2 数形结合在小学低段数学教学中的意义数形结合在小学低段数学教学中的意义是非常重要的。

数形结合是一种教学方法,通过结合数学和几何的知识,帮助学生更好地理解数学概念,解决数学问题,进行数学实践活动,启发思维发展,激发学习兴趣。

数形结合可以帮助学生更直观地理解抽象的数学概念。

通过将数学问题与几何图形结合起来,可以让学生通过观察图形来理解数学概念,从而更深入地掌握知识。

数形结合可以帮助学生更好地解析数学题目。

通过将数学问题用几何图形表示出来,可以帮助学生更清晰地理解问题,从而更容易找到解题的方法和策略。

数形结合还可以通过数学实践活动、启发思维发展和激发学习兴趣等方面,促进学生在数学学习中的发展。

通过实际操作和观察,学生可以更深入地理解数学知识;通过启发思维发展,学生可以培养逻辑思维能力和创新能力;通过激发学习兴趣,可以让学生更积极地参与学习,提高学习效果。

2. 正文2.1 数形结合在数学概念教学中的应用数形结合在数学概念教学中的应用是十分重要的。

数形结合思想在小学数学教学中的体现

数形结合思想在小学数学教学中的体现

数形结合思想在小学数学教学中的体现
数形结合思想是指在数学教学中,通过将数学和几何图形相结合的方式,帮助学生更好地理解和掌握数学知识。

这种教学理念已经被广泛应用于小学数学教学中,使得数学教学更加生动有趣,有助于激发学生学习数学的兴趣和潜力。

在小学数学教学中,数形结合思想体现在各个方面,包括教学内容的设计、教学方法的选择以及学生学习兴趣的引导等方面。

在教学内容的设计方面,数形结合思想要求教师将数学知识与几何图形相结合,通过具体的图形或实物来呈现抽象的数学概念,使得数学知识更具体、更直观。

在教学一年级的加法和减法时,可以通过用小球模拟加法和减法的过程,让学生通过实际操作和观察理解数学运算的规律。

在教学二年级的面积和周长时,可以通过使用面积模型和纸制积木等教具,让学生通过拼凑图形和测量周长来感受面积和周长的概念。

这样的教学设计不仅有助于学生理解抽象的数学知识,还能激发他们的学习兴趣,提高他们的学习积极性。

在学生学习兴趣的引导方面,数形结合思想要求教师通过创设情境、提出问题,让学生通过探究和解决问题的方式来学习数学知识,引导学生自主学习和发现数学的美丽和趣味。

在教学有关图形的性质和关系时,可以设计一些有趣的问题,让学生通过分析问题、找出规律来探究图形的性质和关系,从而更深入地理解和掌握相关知识。

在教学有关比例和百分数的概念时,可以设计一些生活中的实际问题,让学生通过解决问题来学习比例和百分数的相关知识,使得学生能够将数学知识与实际生活相结合,理解数学的实际应用和意义。

这样的学习方式有助于激发学生学习数学的兴趣,培养他们的创造性思维和解决问题的能力。

浅谈数形结合思想在小学数学教学中的应用

浅谈数形结合思想在小学数学教学中的应用

浅谈数形结合思想在小学数学教学中的应用数形结合思想是指运用几何形状来帮助理解和解决数学问题的方法。

在小学数学教学中,数形结合思想具有重要的应用意义,可以帮助学生更好地理解数学概念,提高解题能力。

数形结合思想可以帮助学生理解抽象的数学概念。

数学中存在许多抽象的概念,如平方数、立方数等,对于学生来说往往难以理解和记忆。

但是通过数形结合思想,可以将抽象的数学概念与具体的几何形状相结合,通过形象化的表达方式,使学生更容易理解和记忆。

可以通过正方形的面积来理解平方数的概念,通过立方体的体积来理解立方数的概念,让学生通过观察几何形状的特点,能够形象地理解抽象的数学概念。

数形结合思想可以帮助学生发现数学规律和解题方法。

在解决数学问题的过程中,往往需要找到问题中隐藏的规律,然后根据规律选择恰当的解题方法。

而通过数形结合思想,可以引导学生通过观察几何形状的特点,发现数学问题中的规律,进而找到解题的方法。

在求解一个数列问题时,可以通过绘制数列的图形表示,观察图形的规律,然后根据规律选择相应的数学方法进行求解。

这样不仅可以培养学生的观察力和发现力,还可以提高解题的效率和准确度。

数形结合思想可以帮助学生实践数学知识和技能。

在小学数学教学中,有许多内容需要通过实践来巩固和应用。

而数形结合思想可以将抽象的数学知识与具体的几何形状相结合,使学生能够通过实际操作来运用所学的数学知识和技能。

在教授分数的加减运算时,可以通过将分数表示成矩形的面积,然后将矩形进行划分、合并等操作,让学生通过实际操作来理解和运用分数的加减规则。

通过这样的实践,不仅可以加深学生对数学知识的理解,还可以培养学生的动手能力和解决实际问题的能力。

数形结合思想可以提高学生的创造力和思维能力。

在数学教学中,培养学生的创造能力和思维能力是非常重要的。

而通过数形结合思想,可以激发学生的学习兴趣,培养他们的观察、分析和推理能力。

在教授面积和周长的概念时,可以通过多种形状的比较和计算,引导学生自主思考并发现相应的规律。

数形结合思想在小学数学教学中的实践应用

数形结合思想在小学数学教学中的实践应用

数形结合思想在小学数学教学中的实践应用一、数形结合思想的基本概念数形结合思想是指通过数学的抽象思维和几何的形象思维相互贯通、相互补充、相互渗透,以求达到更好的教学效果。

这种教学思想不仅能够增加数学的趣味性和实用性,同时也有助于培养学生的综合思维能力和创造力。

数形结合思想在小学数学教学中的应用主要体现在以下几个方面:1. 利用图形帮助理解数学概念。

通过绘制图形可以帮助学生更好地理解几何图形的性质和关系,有利于强化学生对几何概念的理解和记忆。

2. 利用数学知识解释图形现象。

通过数学知识可以对图形的属性进行量化分析,从而更深入地理解图形的性质和规律。

3. 通过数学模型对实际问题进行分析和求解。

通过建立数学模型对实际问题进行抽象和计算,从而更好地理解和解决实际问题。

1. 利用几何图形教学数学概念在小学数学的教学中,教师可以通过绘制几何图形的方式,来帮助学生更好地理解和掌握数学概念。

在教学加减法时,可以通过绘制几何图形,让学生直观地理解加减法的意义和运算规律。

在教学分数时,可以通过绘制图形让学生形象化地理解分数的大小和大小比较。

也可以通过观察图形的对称性来帮助学生理解和掌握对称性的概念。

2. 利用数学知识解释图形现象在小学数学教学中,教师可以通过数学知识来解释一些图形现象,从而帮助学生更深入地理解图形的性质和规律。

在教学三角形的面积时,可以通过数学知识来解释三角形面积与底和高的关系,从而让学生更好地理解三角形的面积计算方法。

3. 通过数学模型对实际问题进行分析和求解在小学数学的教学中,教师可以引导学生通过建立数学模型对实际问题进行分析和求解。

在教学解决实际问题时,可以通过建立代数方程或几何图形来对实际问题进行抽象和计算,从而更好地理解和解决实际问题。

也可以通过绘制图形来帮助学生形象化地理解和解决实际问题。

三、数形结合思想在小学数学教学中的效果评价数形结合思想在小学数学教学中的实践应用,可以有效地提高小学生的数学学习兴趣,激发他们的学习动力,增强他们的数学综合素养。

数形结合思想在小学数学教学中的运用

数形结合思想在小学数学教学中的运用

数形结合思想在小学数学教学中的运用
数形结合思想指的是将数学概念与几何形状相结合,通过观察图形和形状的变化来理
解数学概念的思维方式。

在小学数学教学中,数形结合思想的运用可以帮助学生更好地理
解和掌握数学知识,提高他们的逻辑思维和解决问题的能力。

在小学数学教学中,有些数学概念对学生来说比较抽象,例如分数、小数等。

通过数
形结合思想,可以让学生用图形和形状来直观地理解这些数学概念。

在教学分数的时候,
可以通过图形分割展示分子分母的关系,让学生看到分子和分母的意义,从而形成对分数
的直观理解。

二、数形结合思想在培养学生逻辑思维的运用
数形结合思想在小学数学教学中还可以帮助学生培养逻辑思维能力。

通过观察和分析
形状的特征,学生可以发现数学规律和关系,从而培养他们的逻辑思维能力。

在教学几何
图形的属性时,可以通过观察图形的边数、角数等特征,让学生发现和总结规律,从而培
养他们的逻辑思维能力。

数形结合思想在解决实际问题中也起到了重要的作用。

通过将实际问题转化为图形来
理解和解决,可以帮助学生更好地应用所学的数学知识解决问题。

在教学面积的计算时,
可以通过将物体划分成不同的几何形状来计算面积,让学生将实际问题转化为图形问题,
从而更好地理解和解决问题。

数形结合思想还可以帮助学生培养空间想象力。

通过观察和分析不同形状的变化关系,学生可以培养对形状和空间的想象力。

在教学立体图形时,可以通过分解和组合不同的几
何形状来构建立体图形,让学生通过观察形状的变化来培养和发展空间想象力。

数形结合思想在小学数学教学中的体现

数形结合思想在小学数学教学中的体现在小学数学教学中,数形结合思想是一种重要的教学理念。

通过将数学问题与图形结合,让学生在观察、思考和实践中建立起对数学知识的理解和运用能力。

这种教学理念有助于激发学生对数学的兴趣,提高他们的数学素养和解决问题的能力。

接下来,我们将从数形结合的教学方法、教学内容和教学效果等方面探讨其在小学数学教学中的体现。

一、数形结合的教学方法数形结合的教学方法主要是通过具体的图形和实际的数学问题,引导学生去探索其中的规律,建立数学模型,培养他们的数学思维和解决问题的能力。

具体包括以下几种方法:1. 图形引入数字:在教学中引入各种图形和实物,让学生通过观察、感知,理解数学问题的实际意义。

通过观察图形的属性,学生可以理解数学概念,比如正方形、长方形、圆等,从而建立起对这些概念的认识和记忆。

2. 数字分析图形:让学生通过数学运算来分析和描述图形,比如计算图形的面积、周长、直角边等属性,从而深入理解其中的数学关系和规律。

3. 图形解决问题:通过给定图形的情境问题,引导学生去分析和解决问题,培养他们的数学推理和应用能力。

通过给定一个图形,让学生计算其面积、寻找相似的图形等,从而在实际问题中运用数学知识。

以上方法能够帮助学生在观察、思考和实践中建立对数学知识的认识和理解,培养他们的数学思维和解决问题的能力。

数形结合思想在小学数学教学中体现在多个方面的内容中,下面我们来简要介绍其中的几个方面。

3. 形状变换与数学运算:形状变换是小学数学中的一个重要内容,通过数形结合的教学方法,可以让学生深入理解平移、旋转、对称等形状变换的概念,并通过数学运算去描述和分析这些变换,从而提高他们的数学推理能力。

以上内容说明了数形结合思想在小学数学教学中的体现,通过图形和数学问题的结合,能够帮助学生更深入地理解和掌握数学知识,提高他们的数学素养和解决问题的能力。

数形结合的教学方法在小学数学教学中能够产生良好的教学效果,主要体现在以下几个方面:1. 提高学生的学习兴趣:通过具体的图形和情境问题,能够吸引学生的兴趣,激发他们对数学的学习热情,从而提高学习效果。

数形结合思想在小学数学教学中的体现

数形结合思想在小学数学教学中的体现数形结合思想是指数学教学中不仅注重培养学生的数学运算能力,更要注重培养学生的空间想象能力和几何图形的直观认识能力,使学生从多个角度去理解和掌握数学知识。

数形结合思想在小学数学教学中的体现是非常重要的,它能够帮助学生更好地理解数学知识,提高数学学习的效果。

下面我们就具体分析一下数形结合思想在小学数学教学中的体现。

1. 培养学生的几何直观能力数形结合思想要求教师在教学中将数学知识与几何图形相结合,通过图形直观地呈现数学概念,让学生更加生动形象地理解和认识数学知识。

在小学数学教学中,老师可以通过让学生观察各种图形,比如直线、圆、三角形等,让学生观察图形的特点和性质,从而培养学生的几何直观能力。

通过此种方式,学生可以更加直观地感受到数学知识,提高他们的几何图形的直观认识能力。

2. 综合运用数学知识解决实际问题数形结合思想要求学生能够将所学的数学知识运用到实际生活中去解决问题。

在小学数学教学中,数形结合思想能够帮助学生更好地理解和掌握数学知识,让他们在实际生活中更加灵活地运用数学知识解决实际问题。

通过实际的例子来引导学生对数学知识进行运用,使学生在解决实际问题中更加深刻地理解数学知识。

3. 融入游戏和实践活动5. 引导学生形成数学思维1. 提高学生的学习兴趣数形结合思想能够在教学中通过丰富的教学内容和多样的教学形式,激发学生的学习兴趣。

在小学数学教学中,数形结合思想能够帮助学生更加生动地理解和感受数学知识,从而提高他们的学习兴趣,使学生更加积极地参与学习。

3. 培养学生的创造力和思维能力数形结合思想在小学数学教学中能够帮助学生培养创造力和思维能力。

通过丰富多彩的数学游戏和实践活动,学生可以在实际操作中体会数学知识,培养创造力和思维能力。

通过这种方式,学生可以更加灵活地运用数学知识解决实际问题。

4. 培养学生的数学素养5. 促进学生的全面发展1. 设计丰富多彩的教学内容2. 运用多样的教学方法4. 引导学生思考和解决问题在小学数学教学中,教师应该引导学生思考和解决问题,培养他们的数学思维和解决问题的能力。

数形结合思想在小学数学教学中的体现

数形结合思想在小学数学教学中的体现数学是一门抽象和具体相结合的学科,数学教学不仅要求学生掌握抽象的数学概念和操作技能,还要求学生能够理解和应用这些概念和技能。

数形结合思想是指通过图形和几何形式来帮助学生理解和应用数学知识,在小学数学教学中,数形结合思想发挥着重要的作用。

本文将从加强思维训练、促进跨学科交叉、培养创造力和提高数学兴趣等方面,探讨数形结合思想在小学数学教学中的体现。

一、加强思维训练数学是一门逻辑性强的学科,数学教学的目的之一就是要培养学生的逻辑思维能力。

在小学数学教学中,通过数形结合思想可以帮助学生更直观、更具体地理解抽象的数学概念,从而加强学生的逻辑思维训练。

在教授几何图形面积时,可以通过绘制图形来帮助学生理解面积的概念,这样既能够引起学生的兴趣,又能够锻炼学生的逻辑推理能力。

在解决实际问题时,也可以通过绘制图形来帮助学生理清问题的逻辑关系,提高学生的问题解决能力。

二、促进跨学科交叉三、培养创造力数学是一门有创造性的学科,数学教学的目的之一就是要培养学生的创造力。

数形结合思想可以帮助学生从生活实际中发现数学,从而培养学生的创造力。

在教授平行线和垂直线的概念时,可以通过绘制路边的交通标志、建筑物等实际景物来引导学生发现平行线和垂直线的特征,从而培养学生对数学的创造性思维。

通过引导学生自主设计并绘制图形,也可以培养学生的创造力和想象力,激发学生对数学的兴趣和热爱。

四、提高数学兴趣数学是一门实用性强的学科,但是很多学生对数学缺乏兴趣。

数形结合思想可以帮助学生从视觉上感受到数学的美好,从而提高学生对数学的兴趣。

在教授图形的对称性时,可以通过绘制实际图形来引导学生发现图形的对称性质,从而激发学生对图形美感的兴趣。

在通过绘制图形求解实际问题时,也可以激发学生对数学的兴趣,提高学生对数学的热爱。

数形结合思想在小学数学教学中的体现主要体现在加强思维训练、促进跨学科交叉、培养创造力和提高数学兴趣等方面。

“数形结合”思想在小学数学教学中的应用

“数形结合”思想在小学数学教学中的应用【摘要】"数形结合"思想在小学数学教学中是应用广泛的教学理念。

本文从定义、重要性、具体应用、解决实际问题的作用以及教学实践的反馈等方面进行了探讨。

数形结合思想旨在通过将数学和几何形态相结合,提高学生的数学学习兴趣和理解能力。

在小学数学教学中,通过数形结合可以帮助学生更好地理解抽象的数学概念,提高学习效果。

数形结合思想也能帮助学生将所学知识应用到解决实际问题中,培养学生的实际应用能力。

在教学实践中,数形结合的方法不仅能够激发学生的学习兴趣,还能加深他们对数学知识的理解和记忆。

数形结合思想在小学数学教学中具有重要的作用,值得广泛推广和应用。

【关键词】数形结合、小学数学教学、思想、重要性、具体应用、实际问题、作用、实践、反馈、结论1. 引言1.1 引言数形结合思想指的是将数学的抽象概念与具体的图形结合起来,通过图形来帮助学生理解数学概念,从而提高他们的学习效果。

这种方法不仅可以让抽象的数学概念更形象化,也可以增加学生对数学的实际感知。

在小学数学教学中,数形结合思想扮演着至关重要的角色。

它可以帮助学生更好地理解抽象的数学概念,激发学生学习的兴趣,提高他们的学习效果。

数形结合还可以帮助学生将数学知识应用于解决实际问题,培养学生的逻辑思维能力和解决问题的能力。

在接下来的正文中,将会详细探讨数形结合思想在小学数学教学中的定义、重要性、具体应用以及在解决实际问题中的作用,希望读者通过本文的介绍能更加深入地了解数形结合思想在小学数学教学中的应用。

2. 正文2.1 数形结合思想的定义数形结合思想是指将数学中的抽象概念与几何图形相结合,通过图形的直观展示来帮助学生理解抽象概念,从而提高他们的数学学习效果。

这种思想强调数学与几何之间的密切联系,通过几何图形来解释数学问题,使抽象的数学概念更具体可视化,让学生更容易理解和掌握数学知识。

数形结合思想在小学数学教学中扮演着重要的角色,因为小学生对抽象概念的理解能力有限,通过将数学问题与几何图形相结合,可以帮助他们更直观地理解问题,提高解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结合自己的教学实践谈一谈小学数学中的数形结合思想
结合自己的教学实践谈一谈数形结合思想
在小学数学教学中的渗透与应用
日本数学史家米山国藏在他的著作《数学的精神、思想和方法》中说道:不管他们(指学生)从事什么业务工作,即使把所教给的知识(概念、定理、法则和公式等)全忘了,唯有铭刻在他们心中的数学精神、思想和方法都随时随地地发生作用,使他们受益终生。

随着社会的发展,要想实现“终身学习”和“人的可持续发展”,重要的是在教育中发展学生的能力,使之掌握获得知识和进一步学习的方法,逐渐掌握蕴涵在知识内的数学思想方法。

只有这样,才能使学生真正感受到数学的价值和力量。

小学是学生学习数学知识的启蒙时期,这一阶段注意给学生渗透基本的数学思想便显得尤为重要。

数形结合思想是一种重要的数学思想。

数形结合就是通过数(数量关系)与形(空间形式)的相互转化、互相利用来解决数学问题的一种思想方法。

它既是一个重要的数学思想,又是一种常用的数学方法。

数形结合,可将抽象的数学语言与直观的图形相结合,是抽象思维与形象思维结合。

著名数学家华罗庚说过“数缺形时少直观、形少数时难入微”。

有些数量关系,借助于图形的性质,可以使抽象的概念和关系直观化、形象化、简单化;而图形的一些性质,借助于数量的计量和分析,得以严谨化。

那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解
一、什么是数与形结合思想?
数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,这就是数与形结合思想。

数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休”。

美国数学家斯蒂恩也曾说过:“如果一个特定的问题可以转化为一个图形,那么,思想就整体地把握了问题,并且能创造性地思索问题的解法”
1、要看到图形,借助数看图形!
2、要看到数,借助图形看数!
3、把数学画出来!
4、把事物量出来!
由此可见,数与形结合思想在数学学习过程中的作用:
1、促进了学生形象思维和抽象思维的协调发展
2、沟通了数学知识之间的联系, 从复杂的数量关系中凸显最本质的特征
它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

二、小学数学教材中数与形结合思想体现在哪些方面?
(一)“分数乘分数”教学片段
课始创设情境:我们学校暑假期间粉刷了部分教室(出示粉刷墙壁的画面),提出问题:装修工人每小时粉刷这面墙的1/5,1/4小时可以这面墙的几分之几?
在引出算式1/5×1/4后,教师采用三步走的策略:第一,学生独立思考后用图来表示出1/5×1/4这个算式。

第二,小组同学相互交流,优生可以展示自己画的图形,交流自己的想法,引领后进生。

后进生受到启发后修改自己的图形,更好地理解1/5×1/4这个算式所表示的意义。

第三,全班点评,请一些画得好的同
学去展示、交流。

也请一些画得不对的同学谈谈自己的问题以及注意事项。

这样让学生亲身经历、体验
“数形结合”的过程,学生就会看到算式就联想到图形,看到图形能联想到算式,更加有效地理解分数乘分数的算理。

如果教师的教学流于形式,学生的脑中就不会真正地建立起“数和形”的联系。

(二)“有余数除法”教学片段
课始创设情境:9根小棒,能搭出几个正方形?要求学生用除法算式表示搭正方形的过程。

生:9÷4
师:结合图我们能说出这题除法算式的商吗?
生:2,可是两个搭完以后还有1根小棒多出来。

师反馈板书:9÷4=2……1,讲解算理。

师:看着这个算式,教师指一个数,你能否在小棒图中找到相对应的小棒?
通过搭建正方形,大家的脑像图就基本上形成了,这时教师作了引导,及时抽象出有余数的除法的横式、竖式,沟通了图、横式和竖式各部分之间的联系。

这样,学生有了表象能力的支撑,有了真正地体验,直观、明了地理解了原本抽象的算理,初步建立了有余数除法的竖式计算模型。

学生学得很轻松,理解得也比较透彻。

二、在教学新知中渗透数形结合思想。

在教学新知时,不少教师都会发现很多学生对题意理解不透彻、不全面,尤其是到了高年级,随着各种已知条件越来越复杂,更是让部分学生“无从下手”。

基于此,把从直观图形支持下得到的模型应用到现实生活中,沟通图形、表格及具体数量之间的联系,强化对题意的理解。

(一)“植树问题”教学片段
模拟植树,得出线上植树的三种情况。

师:“___”代表一段路,用“ / ”代表一棵树,画“/
”就表示种了一棵树。

请在这段路上种上四棵树,想想、做做,你能有几种种法?
学生操作,独立完成后,在小组里交流说说你是怎么种的?
师反馈,实物投影学生摆的情况。

师根据学生的反馈相应地把三种情况都贴于黑板:
①\___\___\___\两端都种
②\___\___\___\___ 或___\___\___\___\ 一端栽种
③___\___\___\___\___两端都不种
师生共同小结得出:两端都种:棵数=段数+1;一端栽种:棵数=段数;两端都不种:棵数=段数—1。

以上片段教师利用线段图帮助学生学习。

让学生有可以凭借的工具,借助数形结合将文字信息与学习基础耦合,使得学习得以继续,
使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

(二)连除应用题教学片段
课一始,教师呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。

学生们经过思考交流,呈现了精彩的答案。

30÷2÷3,学生画了右图:先平均分成2份,再将获得一份平均分成3
份。

30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。

30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。

以上片段,教师要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。

因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。

通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。

三、在数学练习题中挖掘数形结合思想。

运用数形结合是帮助学生分析数量关系,正确解答应用题的有效途径。

它不仅有助于学生逻辑思维与形象思维协调发展,相互促进,提高学生的思维能力,而且有助于培养学生的创新思维和数学意识。

(一)三角形面积计算练习
民医院包扎用的三角巾是底和高各为9分米的等腰三角形。

现在有一块长72分米,宽18分米的白布,最多可以做这样的三角巾多少块?
有些学生列出了算式:72×18÷(9×9÷2),但有些学生根据题意画出了示意图, 列出72÷9×(18÷9)×2、72×18÷(9×9)×2和72÷9×2×(18÷9)等几种算式。

在上面这个片段中,数形结合很好地促进学生联系实际,灵活解决数学问题,而且还有效地防止了学生的生搬硬套,打开了学生的解题思路,由不会解答到用多种方法解答,学生变聪明了。

(二)百分数分数应用题练习
参加乒乓球兴趣小组的共有80人,其中男生占60%,后又有一批男生加入,这时男生占总人数的2/3。

问后来又加入男生多少人?
先把题中的数量关系译成图形,再从图形的观察分析可译成:若把原来的总人数80人看作5份,则男生占3份,女生占2份,因而推知现在的总人数为6份,加入的男生为6—5=1份,得加入的男生为80÷5=16(人)。

从这题不难看出:“数”、“形”互译的过程。

既是解题过程,又是学生的形象思维与抽象思维协同运用、互相促进、共同发展的过程。

由于抽象思维有形象思维作支持,从而使解法变得十分简明扼要而巧妙。

对于我们的课堂不是没有思想的火花,而是缺少错落有致的思想之花;对于我们的课堂不是没有思想的枝叶,而是缺少绚丽多枝的思想之树。

引领学生生发一种对数学思想的钟爱、对思维的渴望和对完善自我的追求,这才是我们追求思想引领课堂的价值所在。

让我们一起追寻数学思想引领下的数学课堂,追求一种数学教育理想至真、至善、至纯的数学新境界,让思想的灵魂永驻我们的课堂。

相关文档
最新文档