芳纶纤维
芳纶复合材料

芳纶复合材料芳纶复合材料是一种具有优异性能的高分子复合材料,由芳纶纤维与树脂基体复合而成。
芳纶纤维是一种高强度、高模量、耐高温、耐化学腐蚀的合成纤维,广泛应用于航空航天、军工、汽车、船舶等领域。
芳纶复合材料以其优异的性能在各个领域得到了广泛的应用,成为了现代工程材料中的重要一员。
首先,芳纶复合材料具有优异的机械性能。
芳纶纤维本身就具有很高的强度和模量,而且在高温下仍能保持较好的性能,因此芳纶复合材料在强度、刚度和耐热性方面都表现出色。
在航空航天领域,芳纶复合材料可以用于制造飞机的结构件、发动机零部件等,能够大幅减轻飞机自重,提高飞机的载荷能力和燃油效率。
在汽车领域,芳纶复合材料可以用于制造车身结构件,提高汽车的安全性和燃油经济性。
在船舶领域,芳纶复合材料可以用于制造船体结构件,提高船舶的耐久性和航行性能。
其次,芳纶复合材料具有优异的耐腐蚀性能。
芳纶纤维具有很好的耐化学腐蚀性能,能够抵抗酸、碱、有机溶剂等腐蚀介质的侵蚀,因此芳纶复合材料在化工、海洋等领域得到了广泛的应用。
在化工领域,芳纶复合材料可以用于制造储罐、管道、泵等设备,能够保障设备长期稳定运行。
在海洋领域,芳纶复合材料可以用于制造海水处理设备、海洋平台等,能够抵抗海水的腐蚀,保障设备的使用寿命。
最后,芳纶复合材料具有优异的耐高温性能。
芳纶纤维具有很高的熔点和热变形温度,能够在高温下保持较好的性能,因此芳纶复合材料在高温领域得到了广泛的应用。
在航空航天领域,芳纶复合材料可以用于制造航天器的热屏蔽材料、发动机的隔热材料等,能够保护航天器和发动机在高温环境下的安全运行。
在电力领域,芳纶复合材料可以用于制造电力设备的绝缘材料、高温电缆等,能够保障电力设备的安全运行。
综上所述,芳纶复合材料以其优异的性能在各个领域得到了广泛的应用,对于提高产品的性能、降低产品的自重、延长产品的使用寿命都发挥着重要作用。
随着科技的不断发展,相信芳纶复合材料在未来会有更广阔的应用前景。
芳纶纤维介绍

芳纶芳纶(芳族聚酰胺纤维)可能是最知名的特种纤维,由尼龙而来,且与尼龙极其类似。
芳纶中含5%直接与两个芳香环相连的酰胺键。
著名的品牌,包括杜邦的Nomex和Kevl~,以及日本帝人公司与Kevl~非常相似的Twaron纤维。
Kevl~的强度和模量比传统的高强尼龙纤维,分别高2倍和9倍。
Kevlar能够应用于如下领域:防弹材料、复合材料支撑物,振动延续阻滞物、轮胎增强材料,高应力作业下的机械橡胶布、高强低延伸的绳索。
Nomex与Kevlar在化学组成上不同,它用异酞酰胺取代对酞酰胺,从而获得有优异耐热性的纤维,在高温条件下有优异的性能。
随着芳纶在安全和强力市场领域应用的深入,市场应用将会缓慢增加,但其量不会显著扩大,问题在于产量/价格/利润之间的相互关系。
从Spandex大量上市导致价格下降的经验来看,如果纤维价格下跌20%-50%,纤维的产量将会急剧增加芳纶纤维全称为"聚对苯二甲酰对苯二胺",英文为Aramid fiber,是一种新型高科技合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的1/5左右,在560度的温度下,不分解,不融化。
它具有良好的绝缘性和抗老化性能,具有很长的生命周期。
芳纶的发现,被认为是材料界一个非常重要的历史进程。
芳纶的发明:20世纪60年代由美国杜邦(DuPont)公司成功地开发并率先产业化;芳纶的发展:在30多年的时间里,芳纶纤维走过了由军用战略物资向民用物资过渡的历程,价格也降低了将近一半。
现在国外芳纶无论是研发水平还是规模化生产都日趋成熟。
在芳纶纤维生产领域,对位芳酰胺纤维发展最快,产能主要集中在日本和美国、欧洲。
如美国杜邦的Kevlar纤维,荷兰阿克苏诺贝尔(Akzo Nobel)公司(已与帝人合并)的Twaron 纤维,日本帝人公司的Technora纤维及俄罗斯的Terlon纤维等。
芳纶纤维复合材料

芳纶纤维复合材料
芳纶纤维复合材料是一种具有优异性能的高级复合材料,它由芳纶纤维和树脂
基体组成,具有高强度、高模量、耐高温、耐腐蚀等特点,被广泛应用于航空航天、汽车、船舶、体育器材、建筑等领域。
芳纶纤维复合材料的出现,为各行业的发展带来了新的机遇和挑战。
首先,芳纶纤维复合材料具有极高的强度和模量,是一种理想的结构材料。
芳
纶纤维本身就具有很高的拉伸强度和模量,再加上树脂基体的增强作用,使得复合材料的强度和刚度大大提高。
因此,在航空航天领域,芳纶纤维复合材料被广泛用于制造飞机机身、发动机零部件、卫星结构件等,极大地提高了航空器的性能和安全性。
其次,芳纶纤维复合材料具有优异的耐高温性能。
芳纶纤维在高温下仍能保持
较高的强度和模量,而且不会软化或熔化,因此在高温环境下仍能保持良好的性能。
这使得芳纶纤维复合材料在航空、航天、汽车等领域得到了广泛的应用,例如用于制造发动机零部件、制动系统、燃气轮机叶片等。
此外,芳纶纤维复合材料还具有良好的耐腐蚀性能。
芳纶纤维本身具有很强的
化学稳定性,不易受到酸碱、溶剂等腐蚀介质的侵蚀,而且树脂基体的隔离作用能有效保护纤维材料,使其在恶劣环境下仍能保持良好的性能。
因此,在海洋工程、化工设备、石油钻采等领域,芳纶纤维复合材料也得到了广泛的应用。
总的来说,芳纶纤维复合材料具有优异的性能,被广泛应用于各个领域,为各
行业的发展带来了新的机遇和挑战。
随着科技的不断进步,相信芳纶纤维复合材料会在更多领域展现出其巨大的潜力,为人类社会的发展做出更大的贡献。
芳纶纤维的种类

芳纶纤维的种类
芳纶纤维是一种高性能合成纤维,具有优异的力学性能、耐热性、耐
化学性、耐磨性和阻燃性等特点,被广泛应用于航空航天、军事、汽车、建筑、电子、体育用品等领域。
根据不同的生产工艺和用途,芳
纶纤维可以分为以下几种类型:
1. 聚对苯二甲酰胺纤维(简称Kevlar)
Kevlar是一种由杜邦公司开发的聚对苯二甲酰胺纤维,具有极高的强度、模量和韧性,比钢铁还要轻,是目前世界上最强的合成纤维之一。
Kevlar广泛应用于防弹衣、防刺衣、安全带、轮胎、船舶、航空航天
等领域。
2. 聚苯硫醚纤维(简称PPS)
PPS是一种由日本东丽公司开发的聚苯硫醚纤维,具有优异的耐热性、耐化学性和耐磨性,可在高温、高压、强酸、强碱等恶劣环境下长期
使用。
PPS广泛应用于汽车、电子、电力、化工等领域。
3. 聚苯醚酮纤维(简称PEEK)
PEEK是一种由美国维斯塔公司开发的聚苯醚酮纤维,具有极高的强度、模量和耐热性,可在高温、高压、强酸、强碱等恶劣环境下长期使用。
PEEK广泛应用于航空航天、医疗、电子、汽车等领域。
4. 聚苯乙烯纤维(简称PSF)
PSF是一种由中国生产的聚苯乙烯纤维,具有良好的耐热性、耐磨性
和阻燃性,可用于制作防火服、防火窗帘、防火毯等防火材料。
5. 聚苯醚纤维(简称PES)
PES是一种由德国拜尔公司开发的聚苯醚纤维,具有良好的强度、模
量和耐热性,可用于制作高温过滤材料、电缆绝缘材料、汽车零部件等。
总之,芳纶纤维具有广泛的应用前景和市场潜力,随着科技的不断进
步和工艺的不断改进,相信芳纶纤维的性能和品质将会不断提高,为
人类的生产和生活带来更多的便利和安全。
芳纶纤维表面改性研究

芳纶纤维表面改性研究芳纶纤维是一种高性能合成纤维,具有优异的热稳定性、阻燃性、力学性能和耐化学性能。
然而,芳纶纤维的表面性质对其应用性能起着重要作用。
因此,进行芳纶纤维表面改性研究,对其进一步提高应用性能具有重要意义。
芳纶纤维的表面改性研究可以从两个角度进行:一是通过表面涂覆或改性剂处理,二是通过化学修饰或活化处理。
首先,表面涂覆或改性剂处理是一种常见的芳纶纤维表面改性方法。
例如,可以利用溶胶-凝胶技术,在芳纶纤维表面形成薄膜。
这种方法可以改善芳纶纤维的亲水性,提高其与其他材料的界面粘结强度,并增强纤维的摩擦性能。
此外,还可以使用改性剂进行表面处理,如硅烷偶联剂和阻燃剂。
这些改性剂可以在芳纶纤维表面形成一层保护膜,提高纤维的耐热性和阻燃性能。
其次,化学修饰或活化处理也是芳纶纤维表面改性的重要方法之一、例如,利用等离子体处理可以在芳纶纤维表面引入官能团,改善其与其他材料的黏附性能。
此外,可以使用化学活化剂,如亚硝酸钠和活性氧气体,对芳纶纤维表面进行活化处理,增强其表面活性,提高纤维的亲水性和粘附性。
需要注意的是,芳纶纤维表面改性研究还需要考虑改性后的纤维性能稳定性和使用寿命。
改性剂和表面处理措施可能会影响芳纶纤维的力学性能、热稳定性和耐化学性能。
因此,在进行表面改性研究时,需要综合考虑改性效果和纤维性能的平衡。
总结起来,芳纶纤维表面改性研究可以通过表面涂覆或改性剂处理,以及化学修饰或活化处理两种方法来实现。
这些方法可以改善芳纶纤维的表面性质,提高其应用性能。
但需注意改性后的纤维性能稳定性和使用寿命。
深入研究芳纶纤维表面改性机理,对于进一步提高芳纶纤维的应用性能具有重要意义。
芳纶纤维的分子式

芳纶纤维的分子式一、芳纶纤维简介芳纶纤维是一种聚合物纤维,它具有极高的强度、耐热性和耐化学腐蚀性。
它是由芳香环和酰亚胺基团组成的。
芳纶纤维的分子式是(C14H10N2O2)n,其中n代表重复单元的数量。
二、芳纶纤维的分子式解析分子式 (C14H10N2O2)n 可以分解为四个组成部分,分别是C14H10、N2、O2和n。
下面将对这四个部分进行解析。
1. C14H10C14H10代表芳纶纤维分子中含有14个碳原子和10个氢原子。
C14H10是一个芳香环,由苯环和取代基组成。
苯环是由6个碳原子和 6 个氢原子构成的环状结构。
芳纶纤维中的苯环通过共价键连接在一起,形成一个长链。
2. N2N2代表芳纶纤维分子中含有2个氮原子。
氮原子是芳纶纤维中的酰亚胺基团的组成部分。
酰亚胺基团是由一个碳原子、两个氮原子和一个氧原子构成的。
3. O2O2代表芳纶纤维分子中含有2个氧原子。
氧原子与碳原子和氮原子形成键连接,稳定纤维结构。
4. nn代表芳纶纤维分子中重复单元的数量。
芳纶纤维通过聚合反应形成高分子链,重复单元不断重复连接形成长链结构。
重复单元的数量n决定了芳纶纤维的长度。
三、芳纶纤维的结构与性质芳纶纤维的分子式确定了其特殊的结构和优秀的性质。
芳纶纤维中的芳香环使其具有较高的强度和刚性,适用于许多高强度应用。
酰亚胺基团的存在使芳纶纤维具有良好的耐热性和耐化学腐蚀性。
芳纶纤维的结构和性质主要有以下几个方面:1. 高强度和刚性芳纶纤维由于芳香环的存在,具有较高的强度和刚性。
其强度比钢高5倍,模量比钢高2倍,是一种理想的高强度纤维材料。
芳纶纤维在应用中被广泛用于制造高强度的复合材料,如航空航天领域的复合材料结构件。
2. 耐热性芳纶纤维在高温下仍能保持良好的性能。
其可以在500℃的温度下长时间使用而不熔化,不发生脆性断裂。
这使得芳纶纤维广泛应用于高温环境中,如航空发动机部件、阻燃服装等领域。
3. 耐化学腐蚀性芳纶纤维对酸、碱和有机溶剂等化学物质具有良好的耐腐蚀性。
芳纶纤维测试标准
芳纶纤维测试标准芳纶纤维是一种高性能化学纤维,具有耐高温、耐腐蚀、耐热辐射等优异的物理特性,广泛应用于电子、航空航天、压力容器与机械设备等领域。
然而,对于芳纶纤维的测试标准,却非常重要,因为它涉及到产品的安全性、质量标准与产品均衡竞争力。
本文将从芳纶纤维测试标准的制定背景、标准的分类以及标准的意义等方面来解析此问题。
一、制定背景在化纤行业展开一段时间的经验可以得知,全球范围内的芳纶纤维生产和供应商的增长趋势快速提升。
芳纶纤维的应用面也日趋广泛,支撑的领域同样在不断扩大。
如此庞大和复杂的行业,一个权威、规范的测试标准便显得尤为重要。
二、标准分类对于芳纶纤维测试标准,基本可以分为以下几类:1.工艺测试标准:芳纶纤维的工艺测试标准是指,测试过程中的成本、故障率、材料效率以及谈判协议等方面的测试标准。
2.产品性能测试标准:芳纶纤维的产品性能测试标准是指,化学键、被氧化和受热的暴露等条件下纤维所表现出的物理性能参数。
3.环境测试标准:芳纶纤维的环境测试标准是指,被全球范围内相同环境下温度和湿度处理的纤维是否会产生品质问题。
4.爆炸测试标准:芳纶纤维的爆炸测试标准是指,从纤维中的制造工作或是最终的应用领域中,与强度、稳定性、抗裂纹扩展性等相关的标准指标。
三、标准的意义运用芳纶纤维测试标准,将会带来以下几个方面的意义:1.确保产品质量:芳纶纤维测试标准设置了一套规范的测试程序,可以保证芳纶纤维产品的质量具备可靠性和稳定性。
2.提高行业标准:制定芳纶纤维测试标准将帮助化纤行业得到一致性、可比性的发展,有助于各生产商在产品质量、相关业务应用方面达到良好的基础水平,并进一步提高行业标准。
3.提供参考依据:芳纶纤维测试标准为用户提供了一系列的测试方法与技术细节信息,为大家提供参考依据,确保生产能够顺利开展。
四、总结芳纶纤维测试标准的重要性不言而喻,它是芳纶纤维在应用领域中的质量保证,也是数字化纤维工业智能化的开端,同时也助力产业领域高质量经济发展。
芳纶纤维的研究现状及其发展
芳纶纤维的研究现状及其发展芳纶纤维,又称为芳纶聚酰胺纤维。
它是一种由聚芳酰胺(aramid)所制成的纤维,具有高强度、高模量、优异的耐热性、抗腐蚀性和耐磨损性等特点。
芳纶纤维广泛应用于防弹材料、防护服装、绝缘材料、航空航天、车辆制造、电子产品和船舶等领域。
现将芳纶纤维的研究现状及发展进行概述。
1.纤维性能的研究:芳纶纤维的研究主要集中在纤维的性能改进和新型纤维的开发上。
近年来,研究人员通过改变芳纶纤维的纺丝工艺和化学结构,提高了其耐热性、力学性能和抗水解性。
同时,研究人员也致力于探索新型芳纶纤维,如改性芳纶纤维、混合纤维和纳米芳纶纤维,以满足不同领域的需求。
2.工艺技术的研究:芳纶纤维的制备过程中,纺丝、拉伸和后处理工艺对纤维性能具有重要影响。
目前,纺丝工艺主要有湿法纺丝法和干法纺丝法。
研究人员通过改变纺丝参数、纺丝溶液组成和纺丝设备,提高了纤维的拉伸性能和热稳定性。
同时,后处理技术也得到了广泛研究,如热固定、改性膜法和表面功能化等,以进一步提高芳纶纤维的性能。
3.应用研究的进展:芳纶纤维在防护领域的应用得到了广泛关注。
特别是在防弹材料和防护服装领域,芳纶纤维展现出了出色的性能。
研究人员对纤维的防弹性能进行了深入研究,并开发了具有更高防护能力的芳纶纤维复合材料。
此外,芳纶纤维在航空航天、车辆制造和电子产品等领域也有广泛应用的前景。
4.环境友好型纤维的研究:在当前环保意识不断增强的背景下,研究人员开始关注环境友好型芳纶纤维的研究。
他们利用可再生资源和新型合成方法,开发出低能耗、低排放的纤维制备技术,减少对环境的影响。
此外,研究人员还致力于研发可生物降解的芳纶纤维,以解决纤维废弃物对环境造成的问题。
总的来说,芳纶纤维的研究现状和发展趋势呈现出多样性,包括纤维性能的改进,工艺技术的研究,应用研究的进展和环境友好型纤维的研发。
随着科学技术的不断进步和需求的不断增长,芳纶纤维有望在更多领域得到广泛应用。
芳纶纤维表面处理简介
虽然芳纶纤维具有很多优异的性能,但是它的表面活性基团少,活性低,使得芳纶纤维和基体材料结合的不好,限制了它的应用,因此,对芳纶进行预处理,显得尤为重要,芳纶纤维改性后,表面大分子链排列规则性变差并且在表面生成一些活性官能团,例如C=O、-OH、-COOH和NH2等。
这些官能团可以与基体材料发生化学反应或生成氢键,从而达到改善复合材料界面性能的目的。
一、芳纶纤维的表面处理方法及效果1.1 物理法物理法包括:表面涂层、高能射线辐照、等离子改性、超声浸渍等。
表面涂层是指在纤维表面涂覆一层有机物,该有机物涂层与纤维和基体均有较好的相容性,作为纽带增加芳纶纤维与基体的结合力。
高能射线辐照改性是指通过高能射线的辐照,使芳纶表面化学官能团增加或接枝上其他化学物质。
高能射线辐照包括:γ射线辐照、X射线辐照等。
分别在氮气和空气的氛围中,用γ射线辐照Armos纤维,在600KGY的辐照强度下得到了最佳的辐照效果。
通过X射线光电子能谱、XRD、扫描电镜、原子力显微镜对改性前后Armos纤维的表面元素、晶型、表面形貌进行了表征,并测试了辐照前后Armos纤维/环氧树脂的界面剪切强度和单丝拉伸强度。
发现,辐照后,Armos 纤维表面的氧元素含量增加,在空气氛围中,O/C比由0.206增加到了0.258,在氮气氛围中,增加到了0.254;辐照前后,Armos纤维晶型未发生明显变化;改性后,Armos纤维表面生成很多沟槽,粗糙度明显增加;改性后,Armos 纤维/环氧树脂的界面剪切强度由60.59MPa分别增加到了70.1MPa(空气氛围中)和71.3MPa(氮气氛围中),分别提高了15.8%和17.7%;但是,Armos纤维的单丝拉伸强度有所降低。
等离子体改性分为冷等离子表面改性和等离子体表面接枝,冷等离子表面改性是在电场的作用下使电场中的稀薄气体加速运动发生碰撞而形成离子、电子、激发态或亚稳态,这些高能粒子轰击材料表面,引起材料表面的化学键打开,生成自由基,这些自由基相互作用进而在材料表面生成各种极性基团,可与复合材料基体发生化学反应或形成氢键,从而改善纤维与基体的界面性能。
芳纶纤维的密度
芳纶纤维的密度芳纶纤维是一种合成纤维,具有优异的性能和广泛的应用领域。
密度是物质单位体积的质量,对于芳纶纤维来说,其密度是一个重要的物理属性。
本文将详细介绍芳纶纤维的密度以及与其相关的知识。
一、芳纶纤维的基本概念和性质芳纶纤维是以芳香族聚酰胺为基本单位的合成纤维,具有许多优良特性。
它具有高强度、高模量、高玻璃转化温度(Tg)等特点,而密度也是其重要的性能指标之一。
据统计,芳纶纤维的密度约为1.38-1.45克/立方厘米,根据不同的牌号和品牌等因素,可能会有所差异。
二、芳纶纤维密度的影响因素1. 分子结构:芳纶纤维的分子结构对其密度有直接影响。
通常来说,芳纶纤维中聚酰胺的链段数以及分子量越大,其密度越高。
2. 纺丝工艺:芳纶纤维的纺丝工艺也会对密度产生影响。
在纺丝过程中,温度、拉伸倍数等参数的调控均可能引起纤维内部的结构变化,从而影响密度。
3. 拉伸处理:芳纶纤维在拉伸处理过程中,分子链会发生定向排列,从而导致纤维的密度发生变化。
一般来说,拉伸处理会使芳纶纤维的密度增加。
三、芳纶纤维密度与其他性能指标的关系1. 强度和密度:芳纶纤维的密度较大,而其强度非常高,这使其成为一种理想的高性能纤维材料。
芳纶纤维的高强度-密度比使其在航空航天、防弹材料等领域有着广泛的应用。
2. 保温性能和密度:芳纶纤维的高密度也使其具有较好的保温性能。
它可以有效隔热,并广泛应用于保温材料、阻燃材料等领域。
3. 密度和耐化学性:芳纶纤维的高密度赋予其较强的耐化学性能,可以耐受许多常见的化学物质的侵蚀。
因此,芳纶纤维在化工、能源等领域有着广泛应用。
综上所述,芳纶纤维的密度大约在1.38-1.45克/立方厘米之间。
芳纶纤维的密度受到多个因素的影响,如分子结构、纺丝工艺和拉伸处理等。
芳纶纤维的高强度-密度比和其他优异性能使其在各个领域有广泛的应用前景。
我们相信,通过不断的研究与发展,芳纶纤维的性能和应用将得到更大的突破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、芳纶纤维简介 (1)二、芳纶纤维分类 (1)2.1 对位芳纶纤维 (2)2.2 对位芳纶纤维的合成方法 (3)2.3 间位芳纶纤维 (6)三、芳纶纤维的主要用途 (9)3.1 航空航天工业 (9)3.2 IT(信息技术)产业 (9)3.3 国防工业 (9)3.4 汽车工业 (9)3.5 耐热及防护服装 (9)3.6 耐热制品 (10)3.7 制作丝绳 (10)3.8 增强混凝土及复合材料 (10)3.9 高压气瓶 (10)3.10 代替石棉 (10)3.11 运动器材 (10)四、芳纶材料存在的问题 (10)五、改善芳纶纤维及其复合物材料性能的方法 (11)5.1 解决芳纶纤维增强复合材料难加工的问题 (11)5.2 改善芳纶纤维及其复合材料性能的方法 (11)六、芳纶材料在国内外的发展情况 (11)6.1推广应用不断加快 (11)6.2国外发展现状 (13)6.3中国发展现状 (14)6.4国内外生产产量 (15)6.4.1国外生产产量 (15)6.4.2国内生产产量 (16)6.5两大中间体迎来发展良机 (17)6.6市场及发展前景 (18)七、参考文献 (19)一、芳纶纤维简介芳纶是一种新型高科技合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的1/5左右,在560度的温度下,不分解,不融化。
它具有良好的绝缘性和抗老化性能,具有很长的生命周期。
它的全称是芳香族聚酰胺纤维。
1974年,美国贸易联合会(U.S,FederalTradeCommission,FTC)将它们命名为“aramidfibers”,我国称为芳纶。
其定义是:至少有85%的酰胺链(—CONH—)直接与两苯环相连接。
根据此定义,可把主要化学链和环链脂肪基的一般聚酰胺聚合物和其清楚的分开。
芳纶和聚酞胺纤维(如尼龙66纤维)相比,由于在大分子长链中以芳香基代替了脂肪基,链的柔性减小,刚性增大,反映在纤维性能方面则是耐热性能增强,初始模量显著增大。
芳纶的发现,被认为是材料界一个非常重要的历史进程。
20世纪60年代初,美国杜邦公司首先开发出具有优良热稳定性的间位芳给—HF—1,即Nomex纤维;1966年,公司又生产出了对位芳纶即Kevlar纤维;1972年日本帝人公司生产出对位芳纶Conex纤维;1986年荷兰Akzo公司生产出Twaron纤维;1987年日本帝人公司生产出Technora纤维。
而我国于1972年开始进行芳纶的研制工作,并于1981年通过芳纶14的鉴定,1985年又通过芳纶1414的鉴定,它们分别相当于美国杜邦公司的Kevlar29和Kevlar49。
二、芳纶纤维分类芳纶可分为邻位、间位及对位3种,而邻位无商业价值。
自20世纪60年代由美国杜邦(DuPont)公司成功地开发出芳纶纤维并率先产业化后,在30多年的时间里,芳纶纤维走过了由军用战略物资向民用物资过渡的历程,价格也降低了将近一半。
现在国外芳纶无论是研发水平还是规模化生产都日趋成熟。
在芳纶纤维生产领域,对位芳酰胺纤维发展最快,产能主要集中在日本和美国、欧洲。
如美国杜邦的Kevlar纤维,荷兰阿克苏诺贝尔(AkzoNobel)公司(已与帝人合并)的Twaron纤维,日本帝人公司的Technora纤维及俄罗斯的Terlon纤维等。
间位芳酰胺纤维的品种有Nomex、Conex、Fenelon纤维等。
美国的杜邦是芳纶开发的先驱,他们无论在新产品的研发、生产规摸上,还是在市场占有率上都是世界一流水平,仅他们生产的Kevlar纤维,目前就有Kevlar一49、Kevlar-29等十多个牌号,每个牌号又有数十种规格的产品。
杜邦公司在去年宣布将扩大Kevlar纤维的生产能力,该扩建项目预计在今年年底完工。
帝人、赫斯特等芳纶生产的知名企业也不甘示弱,纷纷扩产或联合,并积极开拓市场,希望成为这个朝阳产业的生力军。
德国Acordis公司近期开发出高性能超细对位芳纶(Twaron)产品,它既不燃,也不会熔融,还有很高强度和极大杭切割能力,主要可用于生产涂层及非涂层织物、针织产品和针剌毡等既耐高温又抗切割的各种纺织服装装备。
Twaron超细长丝的细度仅为职业安全服常用对位芳纶的60%,用它织造手套·其抗切割能力提高l0%,用它生产梭织物和针织产品,其手感更柔和,使用更舒适。
Twaron 防切割手套主要用于汽车制造业、玻璃工业及金属零部件生产厂,还能为森林工业生产护腿用品,为公共运输行业提供防破坏装备等。
利用Twaron的阻燃耐热性,可为消防队提供防护套装和毡毯等装备,以及为铸造,炉窑、玻璃厂等高温作业部门提供耐热防火服,以及生产飞机座阻燃防火包覆材料。
用这一高性能纤维还能创造汽车轮胎、冷却软管、V型皮带等机件、光学纤维电缆和防弹背心等防护装备,还能代替石棉做摩擦材料和密封材料等。
据有关部门统计,芳纶纤维世界总需求量在2001年为36万吨/年,而在2005年将达到50万吨/年。
全球对芳纶的需求呈现不断增长的态势,芳纶作为一种新兴的高性能纤维进入了飞速发展的时期。
与海外芳纶纤维产业的红红火火相比,芳纶的国产化才刚刚起步。
由于芳纶纤维在我国的发展起步较晚,国外公司对核心技术的封锁垄断等原因,目前我国芳纶纤维的技术水平、产品档次及生产能力都与国外发达国家存在着一定的差距。
据悉,近几年,我国电子、建筑、轮胎工业迅速发展,使得我国芳纶用量迅猛增长。
造成我国芳纶国产化如此艰难的原因主要有两点:一是生产的技术瓶颈难以突破;二是大部分原料需要进口,特别是国产的溶剂不能过关。
但正是因为它在国内是新生事物,市场还远远没有饱和,才值得我们去关注、去开发。
目前我国芳纶生产的发展已提到了议事日程,芳纶被列入国家鼓励发展的高新技术产品目录之中,政府也将"芳纶纤维在工程轮胎、同步带中应用技术开发"列为我国"十五"橡胶工业重大研究和产业化课题。
特别是在间位生产线芳酰胺的开发和生产方面,我国取得了一定程度的进步。
自20世纪60年代后期以来,已经有多种芳纶问世,并工业化生产。
芳纶种类比较多,其划分的方法也有多种。
第一种命名方法根据结构划分,分为对位芳纶和间位芳纶、邻位芳纶。
对位芳纶的单体是对苯二甲酸和对苯二胺,单体的上的功能团为对位,聚合得到的链段比较规整,耐高温性能好,强度、高模量。
对位芳纶主要有以杜邦的Kevlar 系列产品为代表。
间位芳纶的单体是间苯二甲酸和间苯二胺,单体的上的功能团为间位,聚合得到的链段呈锯齿型,耐高温,但强度模量都略低。
间位芳纶主要有以杜邦的Nomex系列产品为代表。
邻位芳纶的单体是邻苯二甲酸和邻苯二胺,单体的上的功能团为邻位。
邻位芳纶主要有以杜邦的Korex系列产品为代表。
第二种命名方法也是根据结构划分,如对位就是苯环上的14位置,间位就是苯环上的13位置,如芳纶14的就是对氨基苯甲酸苯环上1、4位置的连接,芳纶1414就是前面所说的对位芳纶,芳纶1313就是前面所说的间位芳纶。
第三种命名方法就是根据聚合单体的种数,如前面所说的芳纶14又叫芳纶I 型,芳纶1414和芳纶1313又叫芳纶II型。
当在对苯二甲酸和对苯二胺、间苯二甲酸和间苯二胺等常见结构加入第三单元单体如4,4—二氨基二苯醚、5(6)—胺基—2—(4—胺基苯基)苯并咪唑等得到的芳纶可称为芳纶III型。
当第三单元单体为杂环结构时,人们还常称之为杂环芳纶2.1 对位芳纶纤维对位芳纶在我国又称为芳纶1414即聚对苯二甲酰对苯二胺(PPTA),用浓硫酸做溶剂,PPTA表现出溶致液晶性,是一种重要的主链型高分子液晶[1]。
历史上,高分子液晶的工业化就是以杜邦公司1972年投产的PPTA纤维(商品名Kevlar)系列为先导的。
该纤维具有高强度高模量,耐高温耐酸碱耐大多数有机溶剂腐蚀的特性,其比强度是钢丝的5~6倍,比模量是钢丝2倍,分解温度高达560℃,纤维不熔化和燃烧,低于—196℃也不发生明显的脆裂[2]。
同时Kevlar纤维的尺寸稳定性也非常好,热膨胀系数为—2×10—60C—1。
对位芳纶的上述优点使得它在航天工业、轮胎、帘子线、通信电缆及增强复合材料等方面得到了广泛的应用[3],特别是已大量用作纤维增强复合材料中的骨架部分。
Kevlar纤维及其改性纤维性能的比较见表1[4]。
芳纶纤维的另一个差别化的产品是浆粕纤维(PPTA2pulp)。
它具有长度短(小于等于4mm)毛羽丰富、长径比高、比表面积大(可达7~9m2·g-1)等优点,可以更好地分散于基体中制成性能优良的各向同性复合材料,加之良好的耐热性、耐腐蚀性和好的机械性能,在摩擦密封复合材料(代替石棉)中得到了极佳的应用。
某些国家浆粕的应用高达芳纶用量的96%[5~7]。
鉴于芳纶纤维在国计民生中的重要作用,我国也开展了相关的研究工作,清华大学,中国纺织大学,晨光化工研究院,上海合成纤维研究所及岳阳化工总厂等单位先后开展过对位芳纶的合成及纺纱研究工作[8]。
“七五”期间,国家在南通投资兴建了30t·a-1的PPTA合成中试装置,但由于存在一些技术上的问题,已于1991年停运。
目前广东新会已开始试产芳纶1414,设计能力为年产500t,仍采用国外相近的传统生产方法,但其产品的性能及价格明显不如美国杜邦的Kevlar纤维,目前仍处于中试阶段。
加快芳纶纤维的开发及其产业化步伐,已成为促进我国国防军工及相关产业快速发展的迫切需要[9]。
2.2 对位芳纶纤维的合成方法2.2.1 界面缩聚法界面缩聚法于1959年由美国杜邦公司发表[10],方法是将二羧酸酰氯溶解在与水不相混合的有机溶剂中,如苯、四氯化碳等,再将二元胺溶于水中(水中加少量NaCO3或NaOH,以吸收反应生成的盐酸),然后将上述2种溶液混合,再加入的瞬间,就在2种液体界面上发生缩聚反应,生成聚合体薄膜,由于反应在界面上进行,所以称为界面缩聚。
其反应式如下:Morgan在研究中指出[11],移去界面附近形成的高聚物薄膜,界面处继续不断产生新的薄膜。
为获得产量高、易于分离、水洗和干燥的粉状或颗粒状的聚合物,还是要搅拌。
通常将有机溶剂配制的酰氯液体加入搅拌的二胺水溶液中,反应在室温下开始,因反应放热,温度可升至50~60℃,生成的高聚物可经过分离而得。
在这种合成方法里,选择合适的有机溶剂、反应物的浓度比都是比较重要的因素。
2.2.2 直接低温法制备PPTA在三苯基膦-多卤代烷-吡啶存在下二元酸可直接与二元胺或醇在室温下缩聚成聚合物[12]。
反应机理[13]:副反应将破坏单体的功能基间的等当量配比,从而降低聚合物的分子量。