三角函数图像习题大全

合集下载

三角函数的图象和性质练习题及答案

三角函数的图象和性质练习题及答案

1y三角函数图像与性质练习题(一)一.选择题 〔每题5分,共100分〕1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是( ) A.sin()6y x π=+B.sin()6y x π=-C.sin(2)3y x π=+D.sin(2)3y x π=- 2. 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕3. 函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值等于( )A.23B.32C.2D.3 4.函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( ) A.向左平移6πB.向右平移6πC.向左平移12π D.向右平移12π 5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 6. 为了得到函数y =sin (2x-4π)+1的图象,只需将函数y =sin 2x 的图象〔〕平移得到A.按向量a=(-8π,1)B. 按向量a=(8π,1)C.按向量a=(-4π,1)D. 按向量a=(4π,1) 7.假设函数()sin ()f x x ωϕ=+的图象如图,那么ωϕ和的取值是( )A.1ω=,3πϕ= B.1ω=,3πϕ=-C.12ω=,6πϕ= D.12ω=,6πϕ=- 8. 函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )9. 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为( ) A.,1π B.,2π C.2,1π D. 2,2π 10. 函数()sin()(0)3f x x πϖϖ=+>的最小正周期为π,那么该函数的图象( )A.关于点(,0)3π对称 B.关于直线4x π=对称 C.关于点(,0)4π对称 D.关于直线3x π=对称11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的局部图象如图,那么( ) A.4,2πϕπω==B.6,3πϕπω==C.4,4πϕπω== D.45,4πϕπω==12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) yx11-2π- 3π- O6ππyx11- 2π- 3π- O 6ππ yx1 1-2π-3πO 6π-πy xπ2π- 6π-1O 1-3π A.B. C. D.A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位 13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.假设将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;假设将()x f 的图象上所有的点的横坐标缩短到原来的21倍〔纵坐标不变〕, 得到的图象经过点⎪⎭⎫⎝⎛1,61. 那么( ) A.6,πφπω== B.3,2πφπω== C.8,43πφπω== D. 适合条件的φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,那么f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x三角函数图像与性质练习题答案三角函数的图象和性质练习题(二)一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,那么ϕ的值是〔 〕A.0B.4πC.2πD.π2. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,那么ϕ等于A .12π-B .3π-C .3πD .12π 3.假设,24παπ<<那么〔 〕 (45<a<90)A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>1 2 3 4 5 6 7 8 9 10 C C B A B B C A A A 11 12 13 14 CAAA4.函数23cos()56y x π=-的最小正周期是〔 〕A .52πB .25π C .π2 D .π5 5.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中, 最小正周期为π的函数的个数为〔〕. A .1个B .2个 C .3个 D .4个6.x x x f 32cos 32sin)(+=的图象中相邻的两条对称轴间距离为 〔 〕 A .3π B .π34 C .π23 D .π677. 函数)252sin(π+=x y 的一条对称轴方程〔 〕A .2π-=xB .4π-=xC .8π=xD .=x π458. 使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值,那么ω的最小值为〔 〕 A .π25B .π45C .πD .π23二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是,因为当α=时,该命题的结论不成立.2.函数xxy cos 2cos 2-+=的最大值为________.3.假设函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,那么自然数k 的值为______. 4.满足23sin =x 的x 的集合为_________________________________. 5.假设)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,那么ϖ=________.三、解答题1.比拟大小〔1〕00150sin ,110sin ;〔2〕00200tan ,220tan 2. (1) 求函数1sin 1log 2-=xy 的定义域. 〔2〕设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值. 3.)33sin(32)(πω+=x x f 〔ω>0〕〔1〕假设f (x +θ)是周期为2π的偶函数,求ω及θ值; ω= 1/3 ,θ= . 〔2〕f (x )在〔0,3π〕上是增函数,求ω最大值 "三角函数的图象和性质练习题二"参考答案一、选择题 1.C [解析]:当2πϕ=时,sin(2)cos 22y x x π=+=,而cos 2y x =是偶函数2.C [解析]:函数x y 4sin =的图象向左平移12π个单位,得到)12(4sin π+=x y 的图象,故3πϕ=3.D [解析]:tan 1,cos sin 1,ααα><<αααcos sin tan >>4.D [解析]:2525T ππ== 5.C [解析]:由x y sin =的图象知,它是非周期函数6.C [解析]: ∵x x x f 32cos 32sin)(+==)432sin(2π+x∴图象的对称轴为πππk x +=+2432,即)(2383Z k k x ∈+=ππ故相邻的两条对称轴间距离为π237.A [解析]:当2π-=x 时 )252sin(π+=x y 取得最小值-1,应选A8.A [解析]:要使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值 只需要最小正周期⋅45ωπ2≤1,故πω25≥ 二、填空题1、①0[解析]:此时()cos f x x =为偶函数2、3[解析]:2cos 4cos 2412cos 2cos 2cos x x y x x x++-===----3、2,3或[解析]:,12,,2,32T k k N k kkππππ=<<<<∈⇒=而或4、|2,2,33x x k k k Z ππππ⎧⎫=++∈⎨⎬⎩⎭或 5、34[解析]:[0,],0,0,3333x x x ππωππω∈≤≤≤≤< 三、解答题1.解:〔1〕0sin110sin 70,sin150sin 30,sin 70sin 30,sin110sin150==>∴>而 〔2〕0tan 220tan 40,tan 200tan 20,tan 40tan 20,tan 220tan 200==>∴>而 2.解:〔1〕221111log 10,log 1,2,0sin sin sin sin 2x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6k x k k Z ππππ+≤<+∈5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求.〔2〕0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =. 4.解:(1) 因为f (x +θ)=)333sin(32πθω++x又f (x +θ)是周期为2π的偶函数, 故∈+==k k 6,31ππθω Z(2) 因为f (x )在〔0,3π〕上是增函数,故ω最大值为61三角函数的图象专项练习一.选择题1.为了得到函数)62sin(π-=x y 的图象,可以将函数y=cos2x 的图象 ( )A .向右平移6π个单位长度B. 向右平移3π个单位长度 C. 向左平移6π个单位长度 D. 向左平移3π个单位长度2.以下函数中振幅为2,周期为π,初相为6π的函数为 ()A .y=2sin(2x+3π) B. y=2sin(2x+6π) C .y=2sin(21x+3π) D. y=2sin(21x+6π) 3.三角方程2sin(2π-x)=1的解集为 ( ) A .{x│x=2kπ+3π,k∈Z}B .{x│x=2kπ+35π,k∈Z}.C .{x│x=2kπ±3π,k∈Z}D .{x│x=kπ+(-1)K ,k∈Z}.4.假设函数f(x)=sin(ωx+ϕ)的图象〔局部〕如下图,那么ω,ϕ的取值是 ( )A .3,1πϕω==B.3,1πϕω-==C .6,21πϕω==D.6,21πϕω-==5.函数y=tan(2x+φ)的图象过点(0,12π),那么φ的值可以是 ( ) A. -6π B. 6π C.12π- D.12π6.设函数y=2sin(2x+Φ)的图象为C ,那么以下判断不正确的选项是〔 〕A .过点(,2)3π的C 唯一 B.过点(,0)6π-的C 不唯一C .C 在长度为2π的闭区间上至多有2个最高点D .C 在长度为π的闭区间上一定有一个最高点,一个最低点 7.方程)4cos(lg π-=x x 的解的个数为〔 〕A .0B .无数个C .不超过3D .大于38.假设函数y=f(x)的图像上每点的纵坐标保持不变,横坐标伸长到原2倍,然后再将整个图像沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图像,那么y=f(x)是 ( )A .1sin(2)122y x π=++B.1sin(2)122y x π=-+ C .1sin(2)124y x π=-+ D.11sin()1224y x π=++9.()sin()2f x x π=+,()cos()2g x x π=-,那么f(x)的图像 ( )A .与g(x)的图像一样 B.与g(x)的图像关于y 轴对称C .向左平移2π个单位,得g(x)的图像 D.向右平移2π个单位,得g(x)的图像 10.函数f(x)=sin(2x+2π)图像中一条对称轴方程不可能为( )A.x=4πB. x=2πC. x=πD. x=23π11.函数y=2与y=2sinx ,x ∈3[,]22ππ-所围成的图形的面积为 ( ) A .πB.2πC.3πD.4π12.设y=f(t)是某港口水的深度y 〔米〕关于时间t 〔时〕的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asina(ωt+ϕ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.]24,0[,6sin312∈+=t t y πB.]24,0[),6sin(312∈++=t t y ππC.]24,0[,12sin 312∈+=t t y πD.]24,0[),212sin(312t t y ππ++=二.填空题 13.函数y=5sin(3x −2π)的频率是______________。

三角函数图像与性质练习题及答案

三角函数图像与性质练习题及答案

三角函数图像与性质练习题及答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--三角函数的图像与性质练习题一 选择题1.把函数=sin y x 的图像上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图像向左平移4π个单位,这时对应于这个图像的解析式是( )A .cos 2y x =B .sin 2y x =-C .sin(2)4y x π=-D .sin(2)4y x π=+2.函数cos(4)3y x π=+图象的两条相邻对称轴间的距离为( )A .π8B .π4C .π2D .π3.函数21cos ()xf x -=( )A .在ππ(,)22-上递增B .在π(,0]2-上递增,在π(0,)2上递减C .在ππ(,)22-上递减D .在π(,0]2-上递减,在π(0,)2上递增4.下列四个函数中,最小正周期为π,且图象关于直线12x π=对称的是( )A .sin()23xy π=+B .sin()23x y π=- C .sin(2)3y x π=+D .sin(2)3y x π=-5.函数231sin 232y x x =+的最小正周期等于( )A .πB .2πC .4πD .4π6.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件xy O π2π 1-1 7.函数2sin()y x ωϕ=+在一个周期内的图象如图所示,则此函数的解析式可能是( )A .2sin(2)4y x π=-B .2sin(2)4y x π=+C .32sin()8y x π=+D .72sin()216x y π=+ 8.(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知函数sin()y A x ωϕ=+的图象如图所示,则该函数的解析式可能..是 ( ) 第6题图( )A .41sin(2)55y x =+B .31sin(2)25y x =+C .441sin()555y x =-D .441sin()555y x =+9.(2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )10.函数y =sin 2x +sin x -1的值域为 ( ) A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54]11.已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为( ) A .-1B .3C .-1或3D .-3二 填空题12.函数y =lg sin 2x +9-x 2的定义域为________________.13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.定义一种运算,令,且,则函数的最大值是______15.(北京北师特学校203届高三第二次月考理科数学)把函数x y 2sin =的图象沿 x 轴向左平移6π个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数)(x f y =图象,对于函数)(x f y =有以下四个判断: ①该函数的解析式为)6sin(2x 2y π+=; ②该函数图象关于点)0,3(π对称; ③该函数在]6,0[π上是增函数;④函数a x f y +=)(在]2,0[π上的最小值为3,则32=a .其中,正确判断的序号是________________________16.设函数f (x )=3sin(π2x +π4),若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________. 三 解答题17. 已知函数2()cos cos f x x x x a =++.(Ⅰ)求()f x 的最小正周期及单调递减区间;(Ⅱ)若()f x 在区间[,]63ππ-上的最大值与最小值的和为32,求a 的值.18. 已知函数()()0,,sin 2162cos 62cos 2>∈-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-=ωωπωπωR x x x x x f 的最小正周期为π. (I)求ω的值;(II)求函数()x f 在区间⎥⎦⎤⎢⎣⎡-3,4ππ上的最大值和最小值.19. 已知函数,2cos 26sin 6sin )(2x x x x f ωπωπω-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+= 其中 R x ∈,0>ω.(1)求函数)(x f 的值域;(2)若函数)(x f 的图象与直线1-=y 的两个相邻交点间的距离为2π,求函数)(x f 的单调增区间. 20. 已知函数()()21cos 22sin sin cos 3+-=x x x x x f .(I)求⎪⎭⎫⎝⎛3πf 的值; (II)求函数()x f 的最小正周期及单调递减区间. 21. 已知向量()()3cos ,0,0,sin a x b x ==,记函数()()23sin 2f x a b x =++.求:(I)函数()f x 的最小值及取得小值时x 的集合; (II)函数()f x 的单调递增区间.22. 函数()sin()(0,0,||)2f x A x A ωϕωϕπ=+>><部分图象如图所示.(Ⅰ)求函数()f x 的解析式,并写出其单调递增区间;(Ⅱ)设函数()()2cos 2g x f x x =+,求函数()g x 在区间[,]64ππ-上的最大值和最小值. 答案1. A 【解析】把函数=sin y x 的图像上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,得到=sin 2y x 的图象,再把图像向左平移4π个单位,得到=sin 2()sin(2)cos 242y x x x ππ+=+=,所以选A.4 C32π6πo2x2-y5. A【解析】11cos 2=sin 2222x y x +-1=sin 2cos 2sin(2)223x x x π+=+,所以函数的周期222T πππω===,选A. 6. A ϕπ=时,sin(2)sin 2y x x π=+=-,过原点,便是函数过原点的时候ϕ可以取其他值,故选A 答案.7. 【答案】B解:由图象可知52882T πππ=-=,所以函数的周期T π=,又2T ππω==,所以2ω=。

三角函数的图象与性质经典例题含答案

三角函数的图象与性质经典例题含答案
二.基本训练
1、(1)(2008浙江卷5)在同一平面直角坐标系中,函数 的图象和直线 的交点个数是(D)
(A)0(B)1(C)2(D)4
(2)、函数 单调增区间是(A)
A[2kπ- ,2kπ+ ](k∈Z)B.[2kπ+ ,2kπ+ ](k∈Z)
C.[2kπ-π,2kπ](k∈Z)D.[2kπ,2kπ+π](k∈Z)
2.(1)已知f(x)的定义域为[0,1],则f(cosx)的定义域是[2kπ- ,2kπ+ ]
(2)函数y=|sin(2x+ )|的最小正周期是
三.典例解析
例1、求函数)y= sin( - )的单调递增区间:
例2、(2008北京卷).已知函数 ( )的最小正周期为 .
(Ⅰ)求 的值;(Ⅱ)求函数 在区间 上的取值范围.
8、(2008湖南卷)函数 在区间 上的最大值是(C)
A.1B. C. D.1+
9、函数y= 的最大值是(B)
A. -1B. +1C.1- D.-1-
10、(2001上海春)关于x的函数f(x)=sin(x+ )有以下命题:
①对任意的 ,f(x)都是非奇非偶函数;
②不存在 ,使f(x)既是奇函数,又是偶函数;
①图象 关于直线 对称;②图象 关于点 对称;
③函数 在区间 内是增函数;
④由 的图角向右平移 个单位长度可以得到图象 .
6.函数 的图象向右平移 ( )个单位,得到的图象关于直线 对称,则 的最小值全国卷II)函数y=sin2xcos2x的最小正周期是(D)
(A)2π(B)4π(C)(D)
化简完是
三角函数的图象与性质
一.要点精讲
1.正弦函数、余弦函数、正切函数的图像

第37课 三角函数的图像(经典例题练习、附答案)

第37课  三角函数的图像(经典例题练习、附答案)

第37课 三角函数的图像◇考纲解读①会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义②了解参数 A.ω、φ对函数图像变化的影响 .◇知识梳理1.y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):①sin y x =图象在[0,2π]上的五个关键点坐标_______________________________; ②cos y x =图象在[0,2π]上的五个关键点坐标为______________________________; ③五点法作y =A sin (ωx +ϕ)的简图:五点取法是设X x ωϕ=+,由X 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图. 3.利用图象变换作三角函数图象三角函数的图象变换有振幅变换、周期变换和相位变换等. 函数y =Asin (ωx +φ)的物理意义:振幅_____,周期____T =,相位_____,初相_____.函数y =Asin (ωx +φ)(0,0)A ω>>可由sin y x =的图象作如下变换得到: ① 相位变换: sin y x =→sin(),y x ϕ=+将sin y x =图象上所有的点向____(0)ϕ>或向____(0)ϕ<平移____个单位。

②周期变换:sin()y x ϕ=+→sin(),y x ωϕ=+将sin()y x ϕ=+图象上所有的点横坐标__________(01)ω<<或_________(1)ω>到原来的_______倍(纵坐标保持不变),得到sin()y x ωϕ=+的图象.③振幅变换: sin()y x ωϕ=+→sin(),y A x ωϕ=+将sin()y x ωϕ=+的图象上所有的点的纵坐标)________(A >1)或________(0<A <1)的到原来的_____倍(横坐标保持不变),得到sin()y A x ωϕ=+的图象.4.由函数的图象求sin(),(0,0)y A x B A ωϕω=++>>的解析式的步骤:① 求A , max min2y y A -=② 求B , max min2y y B +=③ 求T . 从而可得2Tπω=.④求ϕ, 通常是利用图象得最高或最低点.如果利用平衡点求ϕ,则当平衡点图象上升时,令2,,x k k Z ωϕπ+=∈当平衡点图象下降时,令2,x k k Z ωϕππ+=+∈.◇基础训练1. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,则ϕ等于( ) A .12π-B .3π-C .3π D .12π 2. 用五点法作x y 2sin 2=的图象时,首先应描出的五点的横坐标可以是( ) A .ππππ2,23,,2,0 B .30,,,,424ππππ C .ππππ4,3,2,,0 D .32,2,3,6,0ππππ 3.若函数ϕωϕω和则如图部分的图象,)()sin()(+=x x f 的取值是( ) A .3,1πϕω-==B .3,1πϕω==C .6,21πϕω-==D .6,21πϕω==4. 函数)0,0)(sin(πϕϕω<<>+=A x A y 的图像的两个相邻零点为)0,6(π-和(,0)2π,且该函数的最大值为2,最小值为-2,则该函数的解析式为( )A .)423sin(2π+=x y B .)42sin(2π+=x y C .)623sin(2π+=x y D .)62sin(2π+=x y ◇典型例题例1.(2007·天津改编)(1)画出函数π24y x ⎛⎫=- ⎪⎝⎭在一个周期内的图像,(2) 试述如何由sin y x =的图象得到π24y x ⎛⎫=- ⎪⎝⎭的图象.变式:(2007·山东)要得到函数sin y x =的图像,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图像( ) A. 向右平移π6个单位B. 向右平移π3个单位 C. 向左平移π3个单位D. 向左平移π6个单位例2.(2008深圳)如下图,某地一天从6时到14时的温度变化曲线近似满足函数y =Asin (ωx +φ)+b(1)求这段时间的最大温差(2)写出这段曲线的函数解析式◇能力提升1.(2007·江苏南通)已知函数图像如右图所示,则它的解析式可以为( ) A.2sin()24y x π=-+ B.4sin()24y x π=-+C.2sin()24y x π=++ D.4sin()24y x π=++2.(2008珠海一模)已知函数)sin(2)(ϕω+=x x f (其中0>ω,2πϕ<)的最小正周期是π,且3)0(=f ,则( ) A .21=ω,6πϕ= B .21=ω,3πϕ=C .2=ω,6πϕ=D .2=ω,3πϕ=3.(2007·重庆)把函数sin(2)16y x π=+-的图像按向量(,1)6a π= 平移,再把所得图像上各点的横坐标缩短为原来的12,则所得图像的函数解析式是( )A .2sin(4)23y x π=+-B .sin(4)6y x π=-C .sin(2)6y x π=+D .2cos(4)3y x π=+4. 要得到函数x y cos 2=的图像,只需将函数)42sin(2π+=x y 的图像上所有的点的( )A .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度 B .横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度C .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度 D .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度5. 试述如何由y =31sin (2x +3π)的图象得到y =sin x 的图象.6.(2008佛山二模)函数()sin()(0,0,||)2f x A x B A πωϕωϕ=++>><的图像上一个最高点的坐标为(,3)12π,与之相邻的一个最低点的坐标为7(,1)12π-. (Ⅰ)求()f x 的表达式; (Ⅱ)求()f x 在6x π=处的切线方程.第37课 三角函数的图像◇知识梳理2.①(0,0) (2π,1) (π,0) (23π,-1) (2π,0) ② (0,1) (2π,0) (π,-1) (23π,0) (2π,1) 3. |A|,2πω, ;x ωϕ+ ϕ.①左 右 ϕ.②伸长 缩短1ω③伸长 缩短 A.◇基础训练1. C2. B 3. C 4. A◇典型例题例1.解:(1)列表描点、连线(2) sin y x =4πsin()4y x π−−−−−−−−→=-图象向右平移个单位纵坐标不变12πsin 4y x −−−−−−−−−→=-横坐标缩小为原来的倍纵坐标不变(2))4y x π−−−−−=-横坐标不变[规律总结]五点法作图的技巧:函数sin()(0,0)y A x j A ωω=+>>的图像在一个周期内的五点横向间距必相等,为4T ,于是五点横坐标依次为12132,,,44T Tx x x x x ϕω=-=+=+ ,这样,不仅可以快速求出五点坐标,也可在求得1x 的位置后,用圆规截取其他四点,从而准确作出图像. 变式:解:根据“左加右减”原则,备选答案D 中,函数图像向左平移π6个单位,其解析式变为cos[()]cos()sin 632y x x x πππ=--=-=,故选D .[误区警示]本题考生容易错选A ,原因在于可能有部分考生错把题目看错为要把函数sin y x =变成cos y x π⎛⎫=- ⎪3⎝⎭.例2.解: (1)由图示,这段时间的最大温差是30-10=20(℃);(2)图中从6时到14时的图像是函数y =Asin (ωx +φ)+b 的半个周期的图像∴ωπ221⋅=14-6,解得ω=8π, 由图示A =21(30-10)=10,b =21(30+10)=20,这时y =10sin (8πx +φ)+20,将x =6,y =10代入上式可取φ=43π 综上所求的解析式为y =10sin (8πx +43π)+20,x ∈[6,14]◇能力提升1.A. 2. D 3. B 4. C5. 解:y =31sin (2x +3π))(纵坐标不变倍横坐标扩大为原来的3πsin 312+=−−−−−−−−−→−x y x y sin 313π=−−−−−−−−→−纵坐标不变个单位图象向右平移x y sin 3=−−−−−−−−−→−横坐标不变倍纵坐标扩大到原来的6.解:(Ⅰ)依题意的2121272πππ=-=T ,所以π=T ,于是22==Tπω 由⎩⎨⎧-=+-=+13B A B A 解得⎩⎨⎧==12B A 把)3,12(π代入()2sin(2)1f x x ϕ=++,可得1)6sin(=+ϕπ,所以226ππϕπ+=+k ,所以32ππϕ+=k ,因为2||πϕ<,所以3πϕ=综上所述,1)32sin(2)(++=πx x f(Ⅱ)(Ⅱ)因为()4cos(2)3f x x π'=+所以2()4cos(2)4cos 26633k f ππππ'==⨯+==-而2()2sin(2)12sin116633f ππππ=⨯++=+=从而()f x 在6x π=处的切线方程为1)2()6y x π-=--即6330x y π+--=。

高一数学必修4三角函数图像及性质练习题

高一数学必修4三角函数图像及性质练习题

三角函数图1、函数 5 ysin2x 是() 2 A 、奇函数B 、偶函数C 、非奇非偶函数D 、以上都不对2、y =sin 2x 是()A.最小正2B 2π的奇函数C .最小正π的偶函数D .最小正π的奇函数 3、函数y =sin (x +)(x ∈[-,])是()222A.增函数B.减函数C.偶函数D.奇函数4、在下列各区间中,函数y=sin (x +)的单调递增区间是()4A.[,π]B.[0,]C.[-π,0]D.[,] 2442 5、在(0,2π)内,使s in x >co s x 成立的x 取)A.( ,)∪(π, 425 4 )B.(,π)C.( , 44 5 4 )D.( 4 ,π)∪(5 4, 3 2)6、下列函数中,周期是的偶函数是()2A.y =sin4xB.y =cos 22x -sin 22x -sin22xC.y =tan2xD.y =cos2x7、函数y =sin (-2x )+cos2x 的最小正周期是()3A.B.πC.2πD.4π28、若f (x)s inx是πA.sinxB.cosxC.sin2xD.cos2x 9、函数y =cos2x -3cosx +2的最小值为()A.2B.0C.-11 1 2 的xA.[0,]B.[,6656]C.[6 112、关于函数f (x )=4sin (2x +)(x ∈R ),有下列命题:3①f(x)最4②y=f(x)的表达式可y=4cos (2x-);6 ③y =f (x )的图象关于点(-,0)对称;④y =f (x )的图象线x=-对称.⑤由f66 (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍;其中正确的命题的序号是(注:把你 正确的命题的序号都填上). 13、函数y =s i n 2x +1的最小正. 14、y s i n (2x )的____________. 415、f (x )=|s i nx|的最小正_____________16、函数f (x )=3s i n x +cos__________2。

三角函数的图像习题

三角函数的图像习题

数学作业一、解答题1.已知函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭. (1)求函数()f x 的单调递减区间及其图象的对称中心;(2)已知函数()f x 的图象经过先平移后伸缩得到sin y x =的图象,试写出其变换过程. 2.已知函数()()()cos 20f x x ϕϕπ=+<<是奇函数.(1)求ϕ的值;(2)若将函数()f x 的图象向右平移6π个单位长度,再将所得图象上所有点的横坐标扩大到原来的4倍,得到函数()g x 的图象,求()g x .3.已知函数f (x )=sin 26x π+() (1)求f (x )的最小正周期;(2)求f (x )在区间[0,]2π上的最大值和最小值. 4.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域. 5.如图是函数()sin 0,0,2y A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图像,求A 、ω、ϕ的值,并确定其函数解析式.6.已知函数()2sin()3f x x π=-,(1)写出函数()f x 的周期;(2)将函数()f x 图像上所有的点向左平移3π个单位,得到函数()g x 的图像,写出函数()g x 的表达式,并判断函数()g x 的奇偶性.7.已知函数()()()()sin 0,0,0,2f x A x A ωϕωϕπ=+>>∈的部分图像如图所示,求函数()f x 的解析式.8.已知函数()222cos 2f x x x =++.(1)求()f x 的单调递减区间;(2)将()y f x =的图象上的各点纵坐标保持不变,横坐标伸长到原来的2倍,再向右平移π6个单位得到()y g x =的图象,当ππ,64x ⎡⎤∈-⎢⎥⎣⎦时,方程()g x m =有解,求实数m 的取值范围.9.已知函数21()cos cos 2f x x x x =-+,x ∈R . (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图象上所有点的纵坐标不变,横坐标伸长为原来的2倍,得到()y g x =的图象,求()g x 在区间π5π,36⎡⎤⎢⎥⎣⎦上的值域. 10.已知函数()πππcos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (1)求函数()f x 的最小正周期和图象的对称轴方程;(2)求函数()f x 在区间ππ,122⎡⎤-⎢⎥⎣⎦上的最值.11.函数22()cos sin cos f x x x x x =+-.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象先向左平移π6个单位长度,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象.当π0,4x ⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.12.已知函数2()2sin cos f x x x x =+(1)求函数()f x 的最小正周期和单调递减区间;(2)当π0,4x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域.13.已知函数()2πsin 22sin 16f x x x ⎛⎫=+++ ⎪⎝⎭. (1)求函数()f x 的对称中心和单调递减区间;(2)若将()f x 的图象向右平移π12个单位,得到函数()g x 的图象,求函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.14.已知函数()2sin cos f x x x x = (1)求函数()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最大值、最小值.48.已知函数()22cos cos sin .f x x x x x =+-(1)求π6f ⎛⎫ ⎪⎝⎭的值; (2)若π0,2x ⎡⎤∈⎢⎥⎣⎦,求()f x 的值域.15.已知函数22()cos sin cos =-+f x x x x x ,x ∈R .(1)求π()3f 的值; (2)求()f x 的最小正周期及其单调递增区间.16.已知函数()()sin f x x ωϕ=+(0ω>,2π03ϕ<<)的最小正周期为π. (1)求ω的值;(2)求当()f x 为偶函数时ϕ的值;(3)若()f x 的图象过点π6⎛ ⎝⎭,求()f x 的单调递增区间.17.已知函数π()2(0)4f x x ωω⎛⎫=-> ⎪⎝⎭的图象的对称中心到对称轴的最小距离为π4. (1)求函数()f x 的单调递增区间;(2)若关于x 的方程()0f x a -=在区间π3π,84⎡⎤⎢⎥⎣⎦上有两个不相等的实根,求实数a 的取值范围.18.已知函数()π12sin cos 62f x x x ⎛⎫=++ ⎪⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移π6个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,求()g x 在π0,2⎡⎤⎢⎥⎣⎦上的单调递增区间.19.已知函数()sin (0)f x x ωω=>在ππ,34⎡⎤-⎢⎥⎣⎦上单调递增. (1)求ω的取值范围:(2)当ω取最大值时,将()f x 的图象向左平移π9个单位,再将图象上所有点的横坐标变为原来的3倍,得到()g x 的图象,求()g x 在ππ,32⎡⎤-⎢⎥⎣⎦内的值域.20.已知函数π()sin(2)3f x x += (1)求π()3f 的值; (2)求()f x 在区间π[0,]2上的最大值.21.已知函数())πsin R 6f x x x x ⎛⎫=+∈ ⎪⎝⎭. (1)判断函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调性; (2)将函数()f x 的图象向右平移14个周期后得到函数()g x 的图象,求函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域. 22.已知函数()πsin (0,0)6f x A x A ωω⎛⎫=+>> ⎪⎝⎭的部分图象如图所示.(1)求函数的解析式;(2)求函数()f x 在区间ππ,46⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 23.已知函数()sin()0,0,,R 2f x A x A x πωϕωϕ⎛⎫=+>><∈ ⎪⎝⎭的图象的一部分如图所示:(1)求函数()f x 的解析式;(2)若函数()y f x =的图象与直线y m =没有公共点,求实数m 的取值范围答案第1页,共1页。

三角函数图像习题大全

三角函数图像习题大全

1. 三角函数图像习题大全2.求下列各函数的定义域:(1)y =11-cos x; (2)y =sin x +1-tan x . 2.求下列函数的值域:(1)y =sin x +cos x ; (2)y =sin 2x -cos x +1; (3)y =cos x 2cos x +1.3.已知函数f (x )=1-2sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π8cos ⎝⎛⎭⎫x +π8. (1)求函数f (x )的最小正周期;(2)求函数f (x )的单调递增区间.4.用五点作图法画出函数y =2cos 2sin3x x +的图象.5.不必画图说明由y =sin x 的图象经过怎样的变换可得到y =3sin ⎝⎛⎭⎫2x +π3的图象.6.已知函数f (x )=5sin x cos x -53cos 2x +235(x ∈R). (1)求f (x )的最小正周期;(2)求f (x )的单调区间;(3)求f (x )图象的对称轴,对称中心.7.是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎣⎡⎦⎤0,π2上的最大值是1?若存在,求出对应的a 值;若不存在,说明理由.8.设ω>0,函数y =sin ⎝⎛⎭⎫ωx +π3+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是________.【针对性训练】1.函数y =1-2cos x +lg(2sin x -1)的定义域为________.2.求函数y =7-4sin x cos x +4cos 2x -4cos 4x 的最大值与最小值.3.求下列函数的单调减区间:(1)y =cos ⎝⎛⎭⎫2x -π3; (2)y =sin ⎝⎛⎭⎫π4-x .4.已知函数f (x )=1)42(s 2+-πx in .(1)求它的振幅、周期、初相; (2)在给定的坐标中,画出函数y =f (x )在⎥⎦⎤⎢⎣⎡22-ππ,上的图象.5.将函数y =sin x 的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________.6.已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为2π.(1)求f (8π)的值; (2)将函数y =f (x )的图象向右平移 π6 个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间.7.已知函数f (x )=sin x 2cos x 2+cos 2x 2-2.(1)将函数f (x )化简成A sin(ωx +φ)+B (A >0,ω>0,φ∈[0,2π))的形式,并指出f (x )的周期;(2)求函数f (x )在⎣⎡⎦⎤π,17π12上的最大值和最小值.【课堂效果检测】1.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为________.2.函数f (x )=2sin 2x -3sin x x +2的值域为________. 3.已知向量a =(3sin x ,cos x ),b =(cos x ,cos x ),设函数f (x )=2a ·b +2m -1(x ,m ∈R ).(1)求函数f (x )的解析式及单调递增区间;(2)当x ∈⎣⎡⎦⎤0,π2时,函数f (x )的最小值为5,求m 的值.4.已知函数f (x )=sin 2ωx +3sin ωx ·sin ⎝⎛⎭⎫ωx +π2(ω>0)的最小正周期为π.(1)求ω的值; (2)求函数f (x )在区间⎣⎡⎦⎤0,2π3上的取值范围.【课外优化练习】1.设定义在区间⎝⎛⎭⎫0,π2上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________.。

三角函数的图像和变换以及经典习题和答案

三角函数的图像和变换以及经典习题和答案

3.4函数sin()y A x ωϕ=+的图象与变换【知识网络】1.函数sin()y A x ωϕ=+的实际意义;2.函数sin()y A x ωϕ=+图象的变换(平移平换与伸缩变换) 【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(1)32; 14π;26x π+;6π (2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 . (2)(,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦(3) 将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 ( )(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移6π个单位长度,得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像(5)将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是 ( )(A )x cos (B )x cos 2 (C )x sin (D )x sin 2 (5)B 提示: 212sin cos 2y x x =-=的图象关于x 轴对称的曲线是cos 2y x =-,向左平移4π得cos 2()sin 24y x x π=-+=2sin cos x x =[例2]已知函数2()2cos 2,(01)f x x x ωωω=+<<其中,若直线3x π=为其一条对称轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 三角函数图像习题大全
2.求下列各函数的定义域:
(1)y =11-cos x
; (2)y =sin x +1-tan x . 2.求下列函数的值域:(1)y =sin x +cos x ; (2)y =sin 2x -cos x +1; (3)y =cos x 2cos x +1
.
3.已知函数f (x )=1-2sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π8cos ⎝⎛⎭
⎫x +π8. (1)求函数f (x )的最小正周期;
(2)求函数f (x )的单调递增区间.
4.用五点作图法画出函数y =2cos 2sin
3x x +的图象.
5.不必画图说明由y =sin x 的图象经过怎样的变换可得到y =3sin ⎝
⎛⎭⎫2x +π3的图象.
6.已知函数f (x )=5sin x cos x -53cos 2x +
2
35(x ∈R). (1)求f (x )的最小正周期;
(2)求f (x )的单调区间;
(3)求f (x )图象的对称轴,对称中心.
7.是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32
在闭区间⎣⎡⎦⎤0,π2上的最大值是1?若存在,求出对应的a 值;若不存在,说明理由.
8.设ω>0,函数y =sin ⎝⎛⎭⎫ωx +π3+2的图象向右平移4π3
个单位后与原图象重合,则ω的最小值是________.
【针对性训练】
1.函数y =1-2cos x +lg(2sin x -1)的定义域为________.
2.求函数y =7-4sin x cos x +4cos 2x -4cos 4x 的最大值与最小值.
3.求下列函数的单调减区间:
(1)y =cos ⎝⎛⎭⎫2x -π3; (2)y =sin ⎝⎛⎭
⎫π4-x .
4.已知函数f (x )=1)42(s 2+-π
x in .
(1)求它的振幅、周期、初相; (2)在给定的坐标中,画出函数y =f (x )在⎥⎦⎤⎢⎣⎡22-
ππ,上的图象.
5.将函数y =sin x 的图象上所有的点向右平行移动10π
个单位长度,再把所得各点的横坐标伸
长到原来的2倍(纵坐标不变),所得图象的函数解析式是________.
6.已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为2π.(1)求f (8
π)的值; (2)将函数y =f (x )的图象向右平移 π6 个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间.
7.已知函数f (x )=sin x 2cos x 2+cos 2x 2
-2.(1)将函数f (x )化简成A sin(ωx +φ)+B (A >0,ω>0,φ∈[0,2π))的形式,并指出f (x )的周期;(2)求函数f (x )在⎣
⎡⎦⎤π,17π12上的最大值和最小值.
【课堂效果检测】
1.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦
⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为________.
2.函数f (x )=2sin 2x -3sin x x +2
的值域为________. 3.已知向量a =(3sin x ,cos x ),b =(cos x ,cos x ),设函数f (x )=2a ·b +2m -1(x ,m ∈R ).
(1)求函数f (x )的解析式及单调递增区间;
(2)当x ∈⎣⎡⎦
⎤0,π2时,函数f (x )的最小值为5,求m 的值.
4.已知函数f (x )=sin 2ωx +3sin ωx ·sin ⎝
⎛⎭⎫ωx +π2(ω>0)的最小正周期为π.(1)求ω的值; (2)求函数f (x )在区间⎣
⎡⎦⎤0,2π3上的取值范围.
【课外优化练习】
1.设定义在区间⎝⎛⎭
⎫0,π2上的函数y =6cos x 的图象与y =5tan x 的图象交于点P ,过点P 作x 轴的垂线,垂足为P 1,直线PP 1与函数y =sin x 的图象交于点P 2,则线段P 1P 2的长为________.。

相关文档
最新文档