2011年全国各地中考数学真题分类汇编:第20章__相交线与平行线
中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)

中考数学复习----《相交线与平行线之平行线》知识点总结与专项练习题(含答案解析)知识点总结1. 三线八角:同位角,内错角,同旁内角。
2. 平行线定义:两条永不相交的直线的位置关系是平行线。
3. 平行线性质:①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
④同一平面内,过直线外一点有且只有一条直线与已知直线平行。
⑤平行于同一直线的两直线平行。
即c b b a ∥,∥,则c a ∥。
4. 平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角相等,两直线平行。
④垂直于同一直线的两直线平行。
即若c a b a ⊥⊥,,则c a ∥。
⑤平行于同一直线的两直线平行。
即若c b b a ∥,∥,则c a ∥。
5. 平行线间的距离:平行线间的距离处处相等。
练习题9.(2022•青海)数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示()A.同旁内角、同位角、内错角B.同位角、内错角、对顶角C.对顶角、同位角、同旁内角D.同位角、内错角、同旁内角【分析】两条线a、b被第三条直线c所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【解答】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:D.10.(2022•贺州)如图,直线a,b被直线c所截,下列各组角是同位角的是()A.∠1与∠2 B.∠1与∠3 C.∠2与∠3 D.∠3与∠4【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是对顶角,故A错误;B、∠1和∠3是同位角,故B正确;C、∠2和∠3是内错角,故C错误;D、∠3和∠4是邻补角,故D错误.故选:B.11.(2022•东营)如图,直线a∥b,一个三角板的直角顶点在直线a上,两直角边均与直线b相交,∠1=40°,则∠2=()A.40°B.50°C.60°D.65°【分析】先由已知直角三角板得∠4=90°,然后由∠1+∠3+∠4=180°,求出∠3的度数,再由直线a∥b,根据平行线的性质,得出∠2=∠3=50°.【解答】解:如图:∵∠4=90°,∠1=40°,∠1+∠3+∠4=180°,∴∠3=180°﹣90°﹣40°=50°,∵直线a∥b,∴∠2=∠3=50°.故选:B.12.(2022•资阳)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.50°C.40°D.30°【分析】如图,易知三角板的∠A为直角,直尺的两条边平行,则可得∠1的对顶角和∠2的同位角互为余角,即可求解.【解答】解:如图,根据题意可知∠A为直角,直尺的两条边平行,∴∠2=∠ACB,∵∠ACB+∠ABC=90°,∠ABC=∠1,∴∠2=90°﹣∠1=90°﹣40°=50°,故选:B.13.(2022•襄阳)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC=30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°【分析】根据平行线的性质求得∠ABD,再根据角的和差关系求得结果.【解答】解:∵m∥n,∠1=70°,∴∠1=∠ABD=70°,∵∠ABC=30°,∴∠2=∠ABD﹣∠ABC=40°,故选:B.14.(2022•锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°【分析】根据平行线的性质可得∠3=∠1=110°,则有∠4=70°,然后根据三角形外角的性质可求解.【解答】解:如图,∵a∥b,∠1=110°,∴∠3=∠1=110°,∴∠4=180°﹣∠3=70°,∵∠B=30°∴∠2=∠4﹣∠B=40°;故选:C.15.(2022•六盘水)如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°【分析】根据平行线的性质,得∠2=∠1=43°.【解答】解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.16.(2022•济南)如图,AB∥CD,点E在AB上,EC平分∠AED,若∠1=65°,则∠2的度数为()A.45°B.50°C.57.5°D.65°【分析】根据平行线的性质,由AB∥CD,得∠AEC=∠1=65°.根据角平分线的定义,得EC平分∠AED,那么∠AED=2∠AEC=130°,进而求得∠2=180°﹣∠AED=50°.【解答】解:∵AB∥CD,∴∠AEC=∠1=65°.∵EC平分∠AED,∴∠AED=2∠AEC=130°.∴∠2=180°﹣∠AED=50°.故选:B.17.(2022•丹东)如图,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,过点A作AC ⊥l2,垂足为C,若∠1=52°,则∠2的度数是()A.32°B.38°C.48°D.52°【分析】根据平行线的性质求出∠ABC,根据三角形内角和定理求出即可.【解答】解:∵直线l1∥l2,∠1=52°,∴∠ABC=∠1=52°,∵AC⊥l2,∴∠ACB=90°,∴∠2=180°﹣∠ABC﹣∠ACB=180°﹣52°﹣90°=38°,故选:B.18.(2022•南通)如图,a∥b,∠3=80°,∠1﹣∠2=20°,则∠1的度数是()A.30°B.40°C.50°D.80°【分析】根据平行线的性质可得∠1=∠4,然后根据三角形的外角可得∠3=∠4+∠2,从而可得∠1+∠2=80°,最后进行计算即可解答.【解答】解:如图:∵a∥b,∴∠1=∠4,∵∠3是△ABC的一个外角,∴∠3=∠4+∠2,∵∠3=80°,∴∠1+∠2=80°,∵∠1﹣∠2=20°,∴2∠1+∠2﹣∠2=100°,∴∠1=50°,故选:C.19.(2022•西藏)如图,l1∥l2,∠1=38°,∠2=46°,则∠3的度数为()A.46°B.90°C.96°D.134°【分析】根据平行线的性质定理求解即可.【解答】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.20.(2022•兰州)如图,直线a∥b,直线c与直线a,b分别相交于点A,B,AC⊥b,垂足为C.若∠1=52°,则∠2=()A.52°B.45°C.38°D.26°【分析】根据平行线的性质可得∠ABC=52°,根据垂直定义可得∠ACB=90°,然后利用直角三角形的两个锐角互余,进行计算即可解答.【解答】解:∵a∥b,∴∠1=∠ABC=52°,∵AC⊥b,∴∠ACB=90°,∴∠2=90°﹣∠ABC=38°,故选:C.21.(2022•通辽)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM=35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.22.(2022•潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面AB与CD平行,入射光线l与出射光线m平行.若入射光线l与镜面AB的夹角∠1=40°10',则∠6的度数为()A.100°40' B.99°80' C.99°40' D.99°20'【分析】先根据反射角等于入射角求出∠2的度数,再求出∠5的度数,最后根据平行线的性质得出即可.【解答】解:∵入射角等于反射角,∠1=40°10',∴∠2=∠1=40°10',∵∠1+∠2+∠5=180°,∴∠5=180°﹣40°10'﹣40°10'=99°40',∵入射光线l与出射光线m平行,∴∠6=∠5=99°40'.故选:C.23.(2022•新疆)如图,AB与CD相交于点O,若∠A=∠B=30°,∠C=50°,则∠D=()A.20°B.30°C.40°D.50°【分析】根据∠A=∠B=30°,得出AC∥DB,即可得出∠D=∠C=50°.【解答】解:∵∠A=∠B=30°,∴AC∥DB,又∵∠C=50°,∴∠D=∠C=50°,故选:D.24.(2022•柳州)如图,直线a,b被直线c所截,若a∥b,∠1=70°,则∠2的度数是()A.50°B.60°C.70°D.110°【分析】由两直线平行,同位角相等可知∠2=∠1.【解答】解:∵a∥b,∴∠2=∠1=70°.故选:C.25.(2022•雅安)如图,已知直线a∥b,直线c与a,b分别交于点A,B,若∠1=120°,则∠2=()A.60°B.120°C.30°D.15°【分析】本题要注意到∠1的对顶角与∠2同旁内角,并且两边互相平行,可以考虑平行线的性质及对顶角相等.【解答】解:∵∠1=120°,∴它的对顶角是120°,∵a∥b,∴∠2=60°.故选:A.26.(2022•宿迁)如图,AB∥ED,若∠1=70°,则∠2的度数是()A.70°B.80°C.100°D.110°【分析】根据两直线平行,同旁内角互补和对顶角相等解答.【解答】解:∵∠1=70°,∴∠3=70°,∵AB∥ED,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:D.27.(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.28.(2022•吉林)如图,如果∠1=∠2,那么AB∥CD,其依据可以简单说成()A.两直线平行,内错角相等B.内错角相等,两直线平行C.两直线平行,同位角相等D.同位角相等,两直线平行【分析】由平行的判定求解.【解答】解:∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),故选:D.29.(2022•台州)如图,已知∠1=90°,为保证两条铁轨平行,添加的下列条件中,正确的是()A.∠2=90°B.∠3=90°C.∠4=90°D.∠5=90°【分析】根据平行线的判定逐项分析即可得到结论.【解答】解:A.由∠2=90°不能判定两条铁轨平行,故该选项不符合题意;B.由∠3=90°=∠1,可判定两枕木平行,故该选项不符合题意;C.∵∠1=90°,∠4=90°,∴∠1=∠4,∴两条铁轨平行,故该选项符合题意;D.由∠5=90°不能判定两条铁轨平行,故该选项不符合题意;故选:C.30.(2022•郴州)如图,直线a∥b,且直线a,b被直线c,d所截,则下列条件不能判定直线c∥d的是()A.∠3=∠4 B.∠1+∠5=180°C.∠1=∠2 D.∠1=∠4【分析】根据平行线的判定定理进行一一分析.【解答】解:A、若∠3=∠4时,由“内错角相等,两直线平行”可以判定c∥d,不符合题意;B、若∠1+∠5=180°时,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意;C、若∠1=∠2时,由“内错角相等,两直线平行”可以判定a∥b,不能判定c∥d,符合题意;D、由a∥b推知∠4+∠5=180°.若∠1=∠4时,则∠1+∠5=180°,由“同旁内角互补,两直线平行”可以判定c∥d,不符合题意.故选:C.。
2011年全国各地中考数学试卷试题分类汇编——第9章《一元二次方程》

B. 1731 2x 0 0 127 D. 127 1 x 0 0 173
2
C. 173 1 x 0 0 127
2
【答案】C 25. (2011 湖北武汉市,5,3 分)若 x1,x2 是一元二次方程 x +4x+3=0 的两个根,则 x1x2 的 值是 A.4. 【答案】B 26. (2011 湖北黄冈,11,3 分)下列说法中 ①一个角的两边分别垂直于另一个角的两边,则这两个角相等 ②数据 5,2,7,1,2,4 的中位数是 3,众数是 2 ③等腰梯形既是中心对称图形,又是轴对称图形 ④Rt△ABC 中,∠C=90°,两直角边 a,b 分别是方程 x -7x+ 7=0 的两个根,则 AB 边 上的中线长为 正确命题有( A.0 个 【答案】C 27. (2011 湖北黄石,9,3 分)设一元二次方程(x-1) (x-2)=m(m>0)的两实根分别为 α , β ,则 α ,β 满足 A.
289 1 x 256
2
B. 256 1 x 289
2
289(1-2x)=256
D.256(1-2x)=289
【答案】A 5. (2011 山东威海,9,3 分)关于 x 的一元二次方程 x (m 2) x m 1 0 有两个相
2
2 2 2
.
【答案】1 11. (2011 四川宜宾,12,3 分) 已知一元二次方程 x 2 6 x 5 0 的两根为 a、 b, 则 值是____________. 【答案】
致力打造最专业的中小学学科网,服务于教师,服务于教育,服务于社会
【答案】D 29. (2011 湖南湘潭市,7,3 分)一元二次方程 ( x 3)(x 5) 0 的两根分别为 A. 3, -5 【答案】D 30. (2011 浙江省舟山,2,3 分)一元二次方程 x( x 1) 0 的解是( (A) x 0 【答案】C (B) x 1 (C) x 0 或 x 1 ) B. -3,-5 C. -3,5 D.3,5
中考数学复习解答题专项集训之相交线与平行线

中考数学复习解答题专项集训之相交线与平行线1.已知:如图,△ABC中,点D、E分别在AB、AC上,EF交DC于点F,∠3+∠2=180°,∠1=∠B.(1)求证:DE∥BC;(2)若DE平分∠ADC,∠3=3∠B,求∠2的度数.2.如图,AB∥CD,AB∥EF,AF平分∠BAE,∠DAE=10°,∠ADC=120°.求∠AFE 的度数.3.如图,在△ABC中,AD平分∠BAC交BC于点D,E为边AB上一点,AE=DE.(1)求证:AC∥DE.(2)若DE=2,BE=4,CD=32,求BC的长.4.如图,点F在线段AB上,点E,G在线段CD上,AB∥CD,∠1=∠2.(1)求证:FG∥AE;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=120°,求∠1的度数.5.如图,在四边形ABCD中,AD∥BC,∠B=∠D,点E在BA的延长线上,连接CE.(1)求证:∠E=∠ECD;(2)若∠E=60°,CE平分∠BCD,请判断△BCE的形状,证明你的结论.6.如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面EF,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,∠AOE=∠BNM.(1)求证:OE∥DM;(2)若OE平分∠AOF,∠ODC=30°,求扶手AB与靠背DM的夹角∠ANM的度数.7.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.连接DE,若∠ADE =3∠CDE.(1)若∠AED=60°,求∠CDE的度数;(2)若∠AEB=60°,探究DE与BE的位置关系,并说明理由.8.已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.9.综合与实践问题情境:“综合与实践”课上,老师将一副直角三角板摆放在直线MN上(如图1,∠EDC=90°,∠DEC=60°,∠ABC=90°,∠BAC=45°).保持三角板EDC不动,老师将三角板ABC绕点C以每秒5°的速度顺时针旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转.各小组解决老师给出的问题,又提出新的数学问题,请你解决这些问题.深入探究:①老师提出,如图2,当AC转到与∠DCE的角平分线重合时,∠ECB﹣∠DCA=15°,当AC在∠DCE内部的其他位置时,结论∠ECB﹣∠DCA=15°是否依然成立?请说明理由.②勤学小组提出:若AC旋转至∠DCE的外部,∠DCA与∠ECB是否还存在如上数量关系?若存在,请说明理由;若不存在,请写出∠DCA与∠ECB的数量关系,并说明理由.拓展提升:③智慧小组提出:若AC旋转到与射线CM重合时停止旋转.在旋转过程中,直线DE与直线AC是否存在平行的位置关系?若存在,请直接写出t的值;若不存在,请说明理由.10.如图,已知∠E=∠F,∠A=∠D.求证:∠1=∠2.11.如图,四边形ABCD中,点E,F分别在AD,BC上,G在AB的延长线上,若∠D+∠GBC=180°,AD∥BC,EF∥DC.求证:AB∥EF.12.如图,AB∥DG,∠1+∠2=180°.(1)试判断AD与EF的位置关系,并说明理由.(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.13.如图,已知∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=135°,求∠AFG的度数.14.图1为科研小组研制的智能机器,水平操作台为l,底座AB固定,高AB为50cm,始终与平台l垂直,连杆BC长度为60cm,机械臂CD长度为40cm,点B,C是转动点,AB,BC与CD始终在同一平面内.(1)转动连杆BC,机械臂CD,当张角∠ABC=120°且CD∥AB时(如图2),求机械臂臂端D到操作台l的距离.(2)转动连杆BC,机械臂CD,要使机械臂端D能碰到操作台l上的物体M,则物体M 离底座A的最远距离是多少?15.已知,如图所示,直线AB∥CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.16.课堂上同学们独立完成了这样一道问题:“如图,已知AB∥CD,AD∥BC,求证:∠1=∠2.”小莲同学解答如下:∵AB∥CD,∴∠1+∠BCD=180°,∵AD∥BC,∴∠2+∠BCD=180°,∴∠1=∠2.小莲的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.17.如图1是长方形纸带,∠DEF=28°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠DHF的度数是.18.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.19.如图,△ABC中,D是AC上一点,过D作DE∥BC交AB于E点,F是BC上一点,连接DF.若∠1=∠AED.(1)求证:DF∥AB.(2)若∠1=50°,DF平分∠CDE,求∠C的度数.20.如图1,AB∥CD,E为AB与CD之间的一点,连接BE,过点E作EF⊥BE,与CD相交于点F.(1)求证:∠1+∠2=90°.(2)如图2,E为AB上方的一点,其他条件不变,(1)中的结论是否仍然成立?如果成立,请给予证明;如果不成立,请写出正确结论并证明.(3)如图3,E为AB下方的一点,其他条件不变,(1)中的结论是否仍然成立?如果成立,请给予证明;如果不成立,请直接写出正确结论.。
2012年全国部分地区中考数学试题分类解析汇编 第20章 相交线与平行线

2012年全国各地中考数学真题分类汇编第20章相交线与平行线1.(2012某某)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.140°考点:平行线的性质;直角三角形的性质。
解答:解:∵AB∥CD,DB⊥BC,∠1=40°,∴∠3=∠1=40°,∵DB⊥BC,∴∠2=90°﹣∠3=90°﹣40°=50°.故选B.2.(2012某某)如图,直线a、b被直线c所截,下列说法正确的是()A.当∠1=∠2时,一定有a∥bB.当a∥b时,一定有∠1=∠2C.当a∥b时,一定有∠1+∠2=90°D.当∠1+∠2=180°时,一定有a∥b考点:平行线的判定;平行线的性质。
解答:解:A.若∠1=∠2不符合a∥b的条件,故本选项错误;3.(2012中考)如图,直线a∥b,直线c与a,b相交,∠1=65°,则∠2=(B)A.115°B.65°C.35°D.25°4.(2012某某)如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于()A.35°B.40°C.45°D.50°考点:平行线的性质。
解答:解:∵∠CEF=140°,∴∠FED=180°﹣∠CEF=180°﹣140°=40°,∵直线AB∥CD,∴∠A∠FED=40°.故选B.5.(2012潜江)如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于()A.70°B.26°C.36°D.16°考点:平行线的性质;三角形内角和定理。
分析:由AB∥CD,根据两直线平行,内错角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E的度数.解答:解:∵AB∥CD,∠A=48°,∴∠1=∠A=48°,∵∠C=22°,∴∠E=∠1﹣∠C=48°﹣22°=26°.故选B.点评:此题考查了平行线的性质与三角形外角的性质.此题比较简单,注意掌握两直线平行,内错角相等定理的应用.6.(2012某某)图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF 的大小为(D)A.60°B.75°C.90°D.105°【考点】平行线的性质;三角形内角和定理.【专题】探究型.【分析】先根据三角形外角的性质求出∠1的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1是△ABC的外角,∠ABC=30°,∠BAC=75°,∴∠1=∠ABC+∠BAC=30°+75°=105°,∵直线BD∥EF,∴∠CEF=∠1=105°.故选D.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.7.(2012某某)如图,将三角尺与直尺贴在一起,使三角尺的直角顶点C (∠ACB=90°)在直尺的一边上,若∠1=60°,则∠2的度数等于( )A.75° B . 60° C . 45° D . 30°考点:平行线的性质;余角和补角。
中考数学专项练习相交线与平行线(含解析)

中考数学专项练习相交线与平行线(含解析)一、单选题1.下面四个图形中,∠1与∠2互为对顶角的是()A.B. C.D.2.下列说法:(1)同角的余角相等(2)相等的角是对顶角(3)在同一平面内,不相交的两条直线叫平行线(4)直线外一点与直线上各点连接的所有线段中,垂线段最短中,正确的个数是()A.1B.2C.3D.43.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°4.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()A.10°B.15°C.20°D.30°5.如图,已知直线AB、CD相交于点O,OB平分∠EOD,若∠EOD= 110°,则∠AOC的度数是()A.35°B.55°C.70°D.110°6.如图,在△ABC中,∠CAB=70º,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB, 则∠BAD的度数为()A.30°B.35°C.40°D.50°7.如图所示,在Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于点H,EF⊥AB于点F,则下列结论中,不正确的是()A.ACD=B B.CH=CE=EF C.AC=AF D.CH=HD8.如图,以下推理正确的是()A.若AB∥CD,则∠1=∠2B.若AD∥BC,则∠1=∠2C.若∠B=∠D,则AB∥CDD.若∠CAB=∠ACD,则AD∥BC9.如图,下列说法中,正确的是()A.因为∠A+∠D=180°,因此AD∥BC B.因为∠C+∠D=18 0°,因此AB∥CDC.因为∠A+∠D=180°,因此AB∥CD D.因为∠A+∠C=18 0°,因此AB∥CD10.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是()A.3B.4C.4D.2二、填空题11.填写理由AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?什么缘故?解:BE∥/DF∵AB⊥BC,∠ABC=________即∠3+∠4=________又∵∠1+∠2=90°,且∠2=∠3∴________=________理由是:________∴BE∥DF理由是:________12.如图,a∥b,∠1=65°,∠2=140°,则∠3等于________.13.如图,直角三角尺的直角顶点在直线b上,∠3 = 25°,转动直线a,当∠1=________,时,a∥b14.如图一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是依照________15.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=________度.16.如图,在正方体中,与线段AB平行的线段有________.17.如图,已知AB∥CD,O是∠BAC与∠ACD的平分线的交点.OE ⊥AC于E,OE=2,则点O到AB与CD的距离之和为________.18.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,O D∥AB交BC于D,OE∥AC交BC于E,若BC=10 cm,则△ODE的周长________cm.三、运算题19.如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.20.如图在四边形ABCD中,∠B=∠D=90°,AE、CF分别平分∠BA D和∠BCD.试问直线AE、CF的位置关系如何?请说明你的理由.21.如图,已知EF∥AD,∠1=∠2,∠BAC=68°,求∠AGD的度数.22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.四、解答题23.如图,直线l1∥l2,∠BAE=125°,∠ABF=85°,则∠1+∠2等于多少度?24.如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.25.已知:如图,a//b,∠1=55°,∠2=40°,求∠3和∠4的度数.五、综合题26.如图,点M(4,0),以点M为圆心,2为半径的圆与x轴交于点A、B,已知抛物线y= x2+bx+c过点A和B,与y轴交于点C.(1)求点C的坐标,并画出抛物线的大致图象.(2)点P为此抛物线对称轴上一个动点,求PC﹣PA的最大值.(3)CE是过点C的⊙M的切线,E是切点,CE交OA于点D,求O E所在直线的函数关系式.答案解析部分一、单选题1.【答案】C【考点】对顶角、邻补角【解析】【解答】解:依照对顶角的定义可知:C中∠1、∠2属于对顶角,故选C.【分析】依照对顶角的定义来判定,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,如此的两个角叫做对顶角.2.【答案】C【考点】余角和补角,对顶角、邻补角,垂线段最短【解析】【解答】解:同角的余角相等,故(1)正确;如图:∠ACD=∠BCD=90°,但两角不是对顶角,故(2)错误;在同一平面内,不相交的两条直线叫平行线,故(3)正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故(4)正确;即正确的个数是3,故选C.【分析】依照余角定义,对顶角定义,垂线段最短,平行线定义逐个判定即可.3.【答案】C【考点】平面中直线位置关系【解析】【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故答案为:C.【分析】第一依照同位角相等,两直线平行可得a∥b,再依照平行线的性质可得∠3=∠5,再依照邻补角互补可得∠4的度数.4.【答案】B【考点】平行线的性质【解析】【解答】过点P作PM∥AB,∴AB∥PM∥CD,∴∠BAP=∠APM,∠DCP=∠MPC,∴∠APC=∠APM+∠CPM=∠BAP+∠DCP,∴45°+α=(60°-α)+(30°-α),解得α=15°.故选B.【分析】过点P作一条直线平行于AB,依照两直线平行内错角相等得:∠APC=∠BAP+∠PCD,得到关于α的方程,解即可.注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系.5.【答案】B【考点】角平分线的定义,对顶角、邻补角【解析】【解答】解:∵∠EOD=110°,OB平分∠EOD,∴∠BOD = ∠EOD=55°,∴∠AOC=∠BOD=55°,故选:B.【分析】依照角平分线定义可得∠BOD= ∠EOD,由对顶角性质可得∠A OC=∠BOD.6.【答案】C【考点】平行线的性质,全等三角形的判定与性质,旋转的性质【解析】【分析】因为△ADE是由△ABC绕点A逆时针旋转得到的,因此△ADE≌△ABC,因此∠CAB=∠EAD=70º,AE=AC,因为EC∥AB,因此∠CAB=∠ECA=70°,因为AE=AC,因此∠AEC=70°,因此∠EAC=180°-70°×2=40°,因此∠CAD=∠EAD-∠EAC=70º-40°=30°,因此∠BAD=∠CAB-∠CAD =70º-30°=40°.【点评】该题是常考题,要紧考查学生对图形旋转的意义,以及对全等三角形性质和角的等量代换的应用。
2011全国中考数学真题解析120考点汇编 线段和角

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆线段和角一、选择题1.(2011某某崇左,5,2分)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.考点:线段的性质:两点之间线段最短.分析:根据线段的性质:两点之间线段最短解答.解答:解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了两点之间线段最短的性质,是基础题,比较简单.2.(2011某某,6,3分)已知∠α=35°,则∠α的余角是()A.35°B.55°C.65°D.145°考点:余角和补角.专题:计算题.分析:根据互为余角的两个角的和为90度作答.解答:解:根据定义∠α的余角度数是90°﹣35°=55°.故选.点评:本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单.3.(2011•某某)已知∠α=20°,则∠α的余角等于70°.考点:余角和补角。
分析:若两个角的和为90°,则这两个角互余;根据已知条件可直接求出角α的余角.解答:解:∵∠α=20°,∴∠α的余角=90°﹣20°=70°.故答案为:70°.点评:本题考查了余角的定义,解题时牢记定义是关键.4.(2011•某某)如图,在所标识的角中,互为对顶角的两个角是()A、∠2和∠3B、∠1和∠3C、∠1和∠4D、∠1和∠2考点:对顶角、邻补角。
专题:推理填空题。
分析:两条直线相交后,所得的只有一个公共顶点,且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角.解答:解:根据同位角、同旁内角、邻补角、对顶角的定义进行判断,A 、∠2和∠3是对顶角,正确;B 、∠1和∠3是同旁内角,错误;C 、∠1和∠4是同位角,错误;D 、∠1和∠2的邻补角是内错角,错误.故选A .点评:解答此类题确定三线八角是关键,可直接从截线入手.对平几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.5. (2011某某某某8,3分)已知线段AB =10cm ,点C 是线段AB 的黄金分割点(AC >BC ),则AC 的长为( )A cm )1055(-B cm )5515(-C cm )555(-D cm )5210(- 考点:黄金分割。
-全国各地中考数学试题分考点解析汇编 相交线、平行线.doc

2011-2012全国各中考数学试题分考点解析汇编相交线、平行线一、选择题1.(2011重庆4分)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于A、60°B、50°C、45°D、40°【答案】【考点】平行线的性质,三角形内角和定理。
【分析】根据三角形的内角和为180°,即可求出∠D=180°-80°-60°=40°,再根据两直线平行,内错角相等的平行线性质,即可得∠BAD=∠D=40°。
故选D。
2.(2011重庆綦江4分)如图,直线a∥b,AC丄AB,AC交直线b于点C,∠1=65°,则∠2的度数是A、65°B、50°C、35°D、25°【答案】D。
【考点】三角形内角和定理,平行线的性质。
【分析】由AC丄AB与∠1=65°,根据三角形内角和定理求得∠B=25°,的度数;由a∥b,根据两直线平行,同位角相等的性质,即可求得∠2=∠B=25°。
故选D。
3.(2011浙江绍兴4分)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是A、17°B、34°C、56°D、68°【答案】D。
【考点】平行线的性质,三角形外角定理。
【分析】由AB∥CD,根据两直线平行,内错角相等的性质,得∠ABC=∠C=34°;由BC平分∠ABE得∠ABC=∠CBD=34°;根据三角形的一外角等于与它不相邻的两内角之和,∠BED=∠C+∠CBE=68°。
故选D。
4.(2011浙江金华、丽水3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是A、30°B、25°C、20°D、15°【答案】B。
全国各地中考数学真题分类解析汇编:相交线与平行线

相交线与平行线一、选择题1. (2014年广东汕尾,第6题4分)如图,能判定EB// AC的条件是()A ./ C= / ABEB . / A=Z EBD C. / C= / ABCD . / A= / ABE分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由三线八角”而产生的被截直线.解:A和B中的角不是三线八角中的角;C中的角是同一三角形中的角,故不能判定两直线平行.D中内错角/ A=Z ABE,贝U EB // AC.故选D .点评:正确识别三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2. (2014?襄阳,第5题3分)如图,BC丄AE于点C, CD // AB ,Z B=55 °则/ 1等于B . 45考平行线的性质;直角三角形的性质占:八、、♦分利用直角三角形的两个锐角互余”的性质求得/ A=35°然后利用平行线的性质得到析: / 仁/ B=35°.解解:如图,••• BC丄AE,答:•••/ ACB=90°.•••/ A+ / B=90°.又•••/ B=55° , •••/ A=35° . 又 CD // AB ,[来源:] •••/ 仁/ B=35°. 故选:A . 点 本题考查了平行线的性质和直角三角形的性质•此题也可以利用垂直的定义、邻补 评: 角的性质以及平行线的性质来求/ 1的度数. 3. (2014?邵阳,第 5 题 3 分)如图,在△ ABC 中,/ B=46 ° / C=54 ° AD 平分/ BAC , 交BC 于D , DE // AB ,交AC 于E ,则/ ADE 的大小是() 平行线的性质;三角形内角和定理 根据三角形的内角和定理求出/ BAC ,再根据角平分线的定义求出 / BAD ,然后根据两直线平行,内错角相等可得/ ADE = / BAD . 解:•••/ B=46° , / C=54° , •••/ BAC=180° -Z B -Z C=180° - 46° - 54°=80° , •/ AD 平分Z BAC , • Z BAD=丄Z BAC=-X80°=40° , 2 2 •/ DE // AB , • Z ADE= Z BAD=40° . 故选C . 本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记 性质与概念是解题的关键. 4. (2014?孝感,第4题3分)如图,直线l i / I 2, I 3丄hZ 仁44°那么Z 2的度数A 45 50 D 54 °A. /16 ° B .44 °1C.36 ° D.22 °考平行线的性质;垂线.占:八、、♦分根据两直线平行,内错角相等可得/ 3= / 1,再根据直角三角形两锐角互余列式计算析:即可得解.解解:T h // I2,答:•••/ 3= / 仁44°'•T3丄I 4,•••/ 2=90°-Z 3=90°- 44° =46°.故选A.点本题考查了平行线的性质,垂线的定义,熟记性质并准确识图是解题的关键.评:[来源:学#科#网]5. (2014?宾州,第3题3分)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A 同位角相等,B内错角相等,两直线平行两直线平行D两直线平行,内错角相等C两直线平行,同位角相等考点:作图一基本作图;平行线的判定分析:由已知可知/ DPF = / BAF,从而得出同位角相等,两直线平行.解答:解:I/ DPF=Z BAF ,••• AB// PD (同位角相等,两直线平行).点评:此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.B C6. (2014?德州,第5题3分)如图,AD是/ EAC的平分线,AD // BC,/ B=30 °则/ C 为()A . :30° B.(50 °C.80 °D.120 °考平行线的性质.占:八、、♦分根据两直线平行,同位角相等可得/ EAD= / B,再根据角平分线的定义求出析:/ EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解解:T AD // BC,Z B=30°,答:•••/ EAD= / B=30°••• AD是/ EAC的平分线,•••/ EAC=2 / EAD=2X30°=60°,•••/ C=Z EAC -Z B=60°- 30°=30°.[来源:学|科|网] 故选A.点本题考查了平行线的性质,角平分线的定义,以及三角形的一个外角等于与它不相评:邻的两个内角的和的性质,熟记性质是解题的关键.7. (2014?菏泽,第2题3分)如图,直线I // m/ n,等边△ ABC的顶点B、C分别在直线n 和m 上,边BC与直线n所夹的角为25°则Z a的度数为()I \ m | n »I I ■A 25 °45 ° C 35 °D30 °考点:平行线的性质;等边三角形的性质.分析:根据两直线平行,内错角相等求出Z 1,再根据等边三角形的性质求出Z 2,然后根据两直线平行,冋位角相等可得Z a Z 2.解答:解:如图,I m/ n,•Z 1=25°,•••△ABC是等边三角形,•Z ACB=60°,•Z 2=60°- 25° =35°,•/ I // m,•Z a=Z 2=35°.故选c .点评:本题考查了平行线的性质,等边三角形的性质,熟记性质是解题的关键,禾U用阿拉伯数字加弧线表示角更形象直观.二.填空题1. (2014?畐建泉州,第9题4分)如图,直线AB与CD相交于点O,/ AOD=50 °则/ BOC=50°.对顶角、邻补角.考:占:八、、分;根据对顶角相等,可得答案.析:解〕解;•••/ BOC与/ AOD是对顶角,答: •••/ BOC= / AOD=50°,故答案为:50.点: 本题考查了对顶角与邻补角,对顶角相等是解题关键. [来源:学科网]评:2. (2014?畐建泉州,第13题4分)如图,直线a// b,直线c与直线a, b都相交, / 1=65°,则/ 2=65 .平行线的性质.根据平行线的性质得出/ 1 = / 2,代入求出即可.解:•••直线a // b,•••/ 1= / 2,•••/ 1=65°,•••/ 2=65°,故答案为:65.本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.3. (2014年云南省,第10题3分)如图,直线a// b,直线a, b被直线c所截,[来源:学科网ZXXK]考点: 平行线的性质./ 1= 37°,则/ 2=.分析:根据对顶角相等可得/ 3=7 1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:7 3= 7仁37°(对顶角相等),•/ a // b,• 7 2=180°-7 3=180°- 37°=143°.故答案为:143°点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.4. ( 2014?温州,第12题5分)如图,直线 AB , CD 被BC 所截,若 AB // CD ,/仁45 ° / 2=35° ,则/ 3=80 度. 考— 占: 八、、♦ 分 ;平行线的性质. 根据平行线的性质求出/ C ,根据三角形外角性质求出即可. 解 〕答: 解:••• AB // CD ,/ 1=45° , •••/ C=Z 1=45° , •••/ 2=35° , •••/ 3= ZZ 2+ / C=35° +45° =80° ,[来源:] 故答案为:80. 点 : 评:丿 本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出/ C 的 度数和得出/ 3= /2+ / C .5. (2014年广东汕尾,第13题5分)已知a , b , c 为平面内三条不同直线,若 a 丄b , c 丄b ,贝U a 与c 的位置关系是. 分析:根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可 得答案. 解:T a 丄b , c 丄b ,「. a / c ,故答案为:平行. 点评:此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直 于同一条直线,那么这两条直线平行.6. ( 2014?湘潭,第13题,3分)如图,直线 a 、b 被直线c 所截,若满足 上仁上2,则 a 、b 平行.考 占: 八、、♦ 平行线的判定. 分 ;析: 根据同位角相等两直线平行可得/ i = / 2时,a // B . 解 : 答: 解:•••/ 仁 / 2, • a / b (同位角相等两直线平行), 故答案为:/仁/ 2. 占 八、、 - 评: 此题主要考查了平行线的判定,关键是掌握冋位角相等两直线平行. 7. ( 2014?株洲,第 15 题,3 分)直线 y=k i x+b i (k i >0)与 y=k 2x+b 2 (k 2< 0)相交于点 (-2, 0),且两直线与y 轴围城的三角形面积为 4,那么b i - b 2等于4. 考 两条直线相交或平行问题. 占: 八、、♦ 分 根据解读式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积 析:公式即可求得. 解 解:如图,直线 y=k i x+b i (k i >0)与y 轴交于B 点,贝U OB=b i ,直线y=k 2x+b 2 ( k ?< 答:0)与y 轴交于C ,则OC= - b 2, •••△ ABC 的面积为4, ••• OA?OB+占 A ・0C =4, 叶护(一切)=4, 解得:b i - b 2=4. 故答案为4.点本题考查了一次函数与坐标轴的交点以及数形结合思想的应用•解决此类问题关键评:是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.[来源:Z+xx+k.Com]8. (2014?泰州,第11题,3分)如图,直线a、b与直线c相交,且a// b,Z a=55 °则/ 3=125°.考平行线的性质.占:八、、♦分根据两直线平行,同位角相等可得/ 1 = /a,再根据邻补角的定义列式计算即可得析:解.解解:••• a// b,答:•••/ 1 = / a=55°,•••/ 3=180°-/ 仁125°.故答案为:125°点本题考查了平行线的性质,是基础题,熟记性质是解题的关键.评:三.解答题1. (2014?广东,第19题6分)如图,点D在厶ABC的AB边上,且/ ACD = / A . (1)作/ BDC的平分线DE,交BC于点E (用尺规作图法,保留作图痕迹,不要求写作法);(2 )在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).考点:作图一基本作图;平行线的判定.分析:(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得/ BDE= / BDC,根据三角形内角与外角的性质可得2/ A= ' Z BDE,再根据同位角相等两直线平行可得结论.2解答:解:(1)如图所示:(2)DE // AC•「DE 平分Z BDC ,•••Z BDE=—Z BDC ,2vZ ACD = Z A,Z ACD+ Z A= Z BDC ,•Z A= Z BDC,2•Z A= Z BDE ,•DE // AC.点评:此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.2. (2014?武汉,第19题6分)如图,AC和BD相交于点O, 0A=0C , 0B=0D .求证:DC // AB .考点:全等三角形的判定与性质;平行线的判定专题:证明题.分析:根据边角边定理求证△ ODC◎△ OBA,可得/ C=ZA (或者 / D=Z B),即可证明DC // AB .解答:证明:•••在△ ODC和厶OBA中,r0D=0B.OCR A•••△ ODC ◎△ OBA (SAS),•••/ C=Z A (或者/ D = Z B)(全等三角形对应角相等),• DC // AB (内错角相等,两直线平行).点评:此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解答此题的关键是利用边角边定理求证△ODC◎△ OBA .3. (2014?湘潭,第24题)已知两直线L i:y=k!x+b i, L?:y=k2x+S,若L」L?,则有k i?k2= - 1.(1)应用:已知y=2x+1与y=kx- 1垂直,求k;(2)直线经过A (2, 3),且与y= —x+3垂直,求解读式.3考两条直线相交或平行问题占:八、、♦分(1)根据L1丄L2,则心永2= - 1,可得出k的值即可;析:(2)根据直线互相垂直,则k1?k2= - 1,可得出过点A直线的k等于3,得出所求的解读式即可.解解:(1)v L1 丄L2,则k1?k2= - 1,答:••• 2k=- 1,••• k=-; (2):•过点A 直线与y x+3垂直, 3 •设过点A 直线的直线解读式为 y=3x+b , 把A (2, 3)代入得,b= - 3, •解读式为y=3x - 3. 点 本题考查了两直线相交或平行问题,是基础题,当两直线垂直时,两个 k 值的乘积 评:为-1. 4. ( 2014?益阳,第 15 题,6分)如图,EF // BC , AC 平分/ BAF ,/ B=80 ° 求/ C 的度 数. (第2题图) 考 :占: 八、、♦ 平行线的性质. 分 1 析:丿 根据两直线平行,同旁内角互补求出/ BAF ,再根据角平分线的定义求出/ CAF ,然 后根据两直线平行,内错角相等解答. 解 丿答: 解:••• EF // BC , •••/ BAF=180° -Z B=100°, •/ AC 平分Z BAF , • Z CAF= Z BAF=50° , 2 •/ EF // BC , • Z C=Z CAF =50°. 点 ; 评: 本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20章 相交线与平行线
一、选择题
1.如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于 (A )55° (B ) 60° (C )65° (D ) 70°
2.如图,已知直线AB CD ∥,125C ∠=°,45A ∠=°,那么E ∠的大小为( )
(A )70° (B )80° (C )90° (D )100°
3.如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=200,则∠α的度数为( )
A.250
B.300
C.200
D.350 4. 如图,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( )
(A )∠C=60° (B )∠DAB=60° (C )∠EAC=60° (D )∠BAC=60°
E
D
C
B
A
5.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )
l 1
l 2
1
2
3
A.30°B.40°C.60°D.70°
6.如图,直线AB、CD相交于点O,OT⊥AB于O,CE∥AB交CD 于点C,若∠ECO=30°,则∠DOT=()
A.30°
B.45°
C. 60°
D. 120°
7.(2011河北,2,2分)如图1∠1+∠2=()
图1
A.60° B.90°C.110°D.180°
8.如图所示,AB∥CD,∠E=37°,∠C=20°,∠EAB的度数为
A. 57° B. 60° C. 63° D
. 123°
9.如图,直尺一边AB与量角器的零刻度线CD平行,若量角器的一条刻度线OF的读书为70°,OF与AB交于点E,那么AEF
∠=度.
10.如图,已知//,,34
AB CD BC ABE C BED
∠∠=︒∠
平分,则的度数是( ) A
C
D
E
A.17︒
B. 34︒
C. 56︒
D. 68︒
A
D
A. 60°
B. 25°
C. 35°
D. 45° 12.如图,AB ∥CD ,∠C =80°,∠CAD =60°
,则∠BAD 的度数等于( )
A .60°
B .50°
C . 45°
D . 40° 13.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A .30°
B .25°
C .20°
D .15°
14.图(二)中有四条互相不平行的直线L 1、L 2、L 3、
L 4所截出的七个角。
关于这七个角的度 数关系,下列何者正确?
A .742∠∠∠+=
B 。
61
3∠∠∠+= C .︒∠∠∠180641
=++ D 。
︒∠∠∠360532=++ 22.如图,直线a ∥b , AC ⊥AB ,AC 交直线b 于点C ,∠1=65°,则∠2的度数是( )
A. 65°
B. 50°
C. 35°
D. 25°
23. (2011湖南怀化,4,3分)如图2,已知直线a ∥b,∠1=40°,∠2=60°,则∠3等于 A.100° B.60° C .40° D.20°
26.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n
个点最多可确定21条直线,则n 的值为 A. 5 B. 6 C. 7 D. 8 29.如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是
A .40°
B .60°
C .80°
D .120° 31.如图,己知AB ∥CD ,B
E 平分∠ABC ,∠CDE =150°,则∠C 的度数是( )
A .100°
B .110°
C .120°
D .150°
【答案】 二、填空题
3.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:
①如果a ∥b ,a ⊥c ,那么b ⊥c ; ②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b ∥c . 其中真命题的是 .(填写所有真命题的序号)
4..如图,已知CD 平分∠ACD ,DE ∥AC ,∠1=30°,则∠2= 度.
9.如图2所示,直线a ∥b .直线c 与直线a ,b 分别相交于点A 、点B ,AM b ⊥,垂足
为点M ,若158∠=︒,则2∠= _________
第3题图
21
E D C B
A
图1
13.如图,AB ∥CP ,交AB 于O ,AO=PO ,若∠C = 50°,则∠A=____度
D
14.一个角的补角是3635
,这个角是 .
15.如图,ED ∥AB ,AF 交
ED 于点C ,∠ECF =138°,则∠A =______度.
(第11题图)
如图,AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°
,则∠BCE 等于( )
A .23°
B .16°
C .20°
D .26°
如图,己知AB ∥CD ,BE
平分∠ABC ,∠CDE=150°,则∠C 的度数是( )
A 、100°
B 、110°
C 、120°
D 、150°
图2
M b
a c A B
1 2
如图,直线l 1∥l 2,点A 在直线l 1上,以点A 为圆心,适当长为半径画弧,分别交直线l 1.l 2于B .C 两点,连接AC .BC .若∠ABC =54°,则∠1的大小为( )
A .36°
B .54°
C .72°
D .73° 如图,已知AB ∥CD ,OM 是∠BOF 的平分线,∠2=70°,则∠1的度数为( )
A.100°
B.125°
C.130°
D.140°
如图,直线AB .CD 交于点O ,O T ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DO T 等于( )
A .30°
B .45°
C .60°
D .120°
如图,已知AB ∥CD ,∠E =︒28,∠C =︒52,则∠EAB 的度数是( ) A .︒28 B .︒52 C .︒70 D .︒80
如图,AB ∥EF ∥CD ,∠ABC = 46,∠CEF = 154,则∠BCE 等于
A. 23
B. 16
C. 20
D. 26
将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )
B
A
D
C
E
F 154
46
(第5题图)
A、43°
B、47°
C、30°
D、60°
在同一平面内有n条直线,任何两条不平行,任何三条不共点.当n=1时,如图(1),一条直线将一个平面分成两个部分;当n=2时,如图(2),两条直线将一个平面分成四个部分;则:当n=3时,三条直线将一个平面分成7部分;当n=4时,四条直线将一个平面分成11部分;若n条直线将一个平面分成a n个部分,n+1条直线将一个平面分成a n+1个部分.试探索a n、a n+1、n之间的关系.
如图:AB∥CD,直线MN分别交AB、CD于点E、F,EG平分∠AEF.EG⊥FG于点G,若∠BEM=50°,则∠CFG=.
B。