机械设计手册弹簧设计

合集下载

弹簧设计计算

弹簧设计计算

D(mm)
K1
Fc(N)
100
0.686
62724.63
100
0.686
15846.15
100
0.686
9093.29
分别为959219N和15846N)均大于工作载荷F(13186.81N),所 。
F/Fc 0.210 0.832 荷F下的变形量)
4*E 824000
1-μ² 0.91
碟簧片数 5
0.384
.2-2查得)
Fσ(许用载荷)/N 48000 13100 8610
f=0.75·h0 f(变形量)/mm
1.65 2.1 2.63
σⅡ或σⅢ/Mpa
1420 1050 1240
t代替
5/32
0.15625
H0/t 1.366666667
H0/t-1 0.366666667
C2验算
(H0/t-1)²
h0(碟簧压平时
H0
变形量)/mm (自由高度)/mm
A100
100
51
6
2.2
8.2
B100
100
51
3.5
2.8
6.3
C100
100
51
2.7
3.5
6.2
由C=D/d=100/51=1.96 从表7.2-5查得系数 K1=0.686
D(外径)/mm d(内径)/mm
C
100
51
1.96
⑴ 采用A系列外径D=100mm 碟形复合组合弹簧(A100-1GB/T1972-1992)
Fc(N)
h0/t
A100
2.2
6
13186.81

机械设计——弹簧机构设计

机械设计——弹簧机构设计

“弹簧”被组入到各种机构中,发挥出弹簧各自的作用。

但相对于显著的要素部件来说,它担当的是辅助的角色。

但是,它与可靠性、高速运动性能、小型轻量化和操作性等之间有很深的关系。

即使在今后的技术进步中,弹簧也是一种重要的LCA部件。

弹簧的种类和特点「弹簧」按照形状分类如下。

【表1】按照形状分类的弹簧种类施加在弹簧上的负载:P和挠度(形变量):δ成比例(线性)关系,根据「胡克定律」。

比例常数k称为「弹簧常数」。

【图1】显示了负载和形变之间的关系。

在这个图中,斜度表示弹簧常数:k。

利用这一特性,我们设计和制造了测量物体重量的“弹簧秤”、需要一定力量动作的安全阀用弹簧等。

(2)具有不同负载特性的弹簧弹簧的负载-形变关系除了上述(1)所述的线性特性以外,还有非线性的弹簧。

以压缩螺旋弹簧为例,其中负载和形变为非线性特性的有以下3种。

非线性压缩螺旋弹簧中[1]螺旋直径,[2]间距和[3]线径中的至少一个以上的设计参数,通过变换螺旋弹簧的位置,负载的增加,来实现线条或线条与座位表面相互接触。

・在拉伸弹簧中,即使在无负载的状态下,弹簧圈之间相互作用的力:可以形成初张力。

・这种初张力在由密着状态形成时,通过弹簧线在螺旋方向紧密缠绕扭转而获得的。

・在通过冷成型紧密卷绕加工形成弹簧的情况下,尽管在一定程度上产生了初张力,但是主动形成初始张力的弹簧被称为有初始张力的弹簧。

・没有初张力的弹簧和有初张力的弹簧的负载-形变量特性如下所示。

(【图1】)・【图1】的拉伸弹簧负载-形变量关系式用【公式A】来表示。

有初张力的弹簧拉伸弹簧的负载-形变量关系式用【公式B】来表示。

【公式A】负载P(N)=弹簧常量k(N/mm)x形变量δ(mm)【公式B】荷重P(N)=初张力Pi(N)由下述公式算出。

+弹簧常量k(N/mm)x形变量δ(mm)・初张力Pi(3)拉伸弹簧的各种形状拉伸螺旋弹簧的形状在弹簧特性面上有时不具有非线性,大致有圆筒形和双重拉伸两种。

机械设计手册第五版(目录)

机械设计手册第五版(目录)

机械设计手册第五版〔目录〕第一卷第1篇:一般设计资料第一章、常用基础资料和公式第二章、铸件设计的工艺性和铸件结构要素第三章、锻造和冲压设计的工艺性和结构要素第四章、焊接和铆接设计的工艺性第五章、零部件冷加工设计工艺性与结构要素第六章、热处理第七章、外表技术第八章、装配工艺性第九章、工程用塑料和粉末冶金零件设计要素第十章、人机工程学有关功能参数第十一章、符合造型、荷载、材料等因素要求的零部件结构设计准则第十二章、装备要求及设备基础第2篇:机械制图、极限与配合、形状和位置公差及外表结构第一章、机械制图第二章、极限与配合第三章、形状和位置公差第四章、外表结构第五章、孔间距偏差第3篇:常用机械工程材料第一章、黑色金属材料第二章、有色金属材料第三章、非金属材料第四章、其他材料及制品第4篇:机构第一章、机构分析的常用方法第二章、基本机构的设计第三章、组合机构的分析与设计第四章、机构参考图例第二卷第5篇:连接与紧固第一章、螺纹及螺纹连接第二章、铆钉连接第三章、销、键和花键连接第四章、过盈连接第五章、胀紧连接和型面连接第六章、锚固连接第七章、粘结第6篇:轴及其连接第一章、轴和软轴第二章、联轴器第三章、离合器第四章、制动器第7篇:轴承第一章、滑动轴承第二章、滚动轴承第三章、直线运动滚动功能部件第8篇:起重运输机械零部件第一章、起重机械零部件第二章、输送机械零部件第9篇:操作件、小五金及管件第一章、操作间及小五金第二章、管件第三卷第10篇:润滑与密封第一章、润滑方法及润滑装置第二章、润滑剂第三章、密封第四章、密封件第11篇:弹簧第一章、弹簧的类型、性能及应用第二章、圆柱螺旋弹簧第三章、截锥螺旋弹簧第四章、蜗卷螺旋弹簧第五章、多股螺旋弹簧第六章、蝶形弹簧第七章、开槽蝶形弹簧第八章、膜片弹簧第九章、环形弹簧第十章、片弹簧第十一章、板弹簧第十二章、发条弹簧第十三章、游丝第十四章、扭杆弹簧第十五章、弹簧的特殊处理及热处理第十六章、橡胶弹簧第十七章、橡胶---金属螺旋复合弹簧〔简称复合弹簧〕第十八章、空气弹簧第十九章、膜片第二十章、波纹管第二十一章、压力弹簧管第12篇:螺旋传动、摩擦轮传动第一章、螺旋传动第二章、摩檫轮传动第13篇:带、链传动第一章、带传动第二章、链传动第14篇:齿轮传动第一章、渐开线圆柱齿轮传动第二章、圆弧圆柱齿轮传动第三章、锥齿轮传动第四章、涡杆传动第五章、渐开线圆柱齿轮行星传动第六章、渐开线少齿查行星齿轮传动第七章、销齿传动第八章、活齿传动第九章、点线啮合圆柱齿轮传动第十章、塑料齿轮第四卷第15篇:多点啮合柔性传动第一章、概述第二章、悬挂安装结构第三章、悬挂装置的设计计算第四章、柔性支撑的结构形式和设计计算第五章、专业技术特点第六章、整体结构的技术性能、尺寸系列及选型方法第七章、多点啮合柔性传动动力学计算第16篇:减速器、变速器第一章、减速器设计一般资料第二章、标准减速器及产品第三章、机械无极变速器及产品第17篇:常用电机、电器及电动〔液〕推杆及升降机第一章、常用电机第二章、常用电器第三章、电动、电液推杆及升降机第18篇:机械振动的控制及利用第一章、概述第二章、机械振动的基础资料第三章、线性振动第四章、非线性振动机随机振动第五章、振动的控制第六章、机械振动的利用第七章、机械振动测量技术第八章、轴和轴系的临界转速第19篇:机架设计第一章、机架结构概论第二章、机架设计的一般规定第三章、梁的设计与计算第四章、柱和立架的设计与计算第五章、桁架的设计与计算第六章、框架的设计与计算第七章、其他形式的机架第20篇:塑料制品与塑料注射成型模具设计第一章、塑料制品设计第二章、塑料注射成型工艺第三章、塑料注射成型模具设计第四章、热固性塑料注射成型模具第五章、塑料注射成型模具实例第六章、塑料注射成型模具标准模架第七章、塑料注射成型模具设计程序与CAD第五卷第21篇:液压传动第一章、基础标准与液压流体力学常用公式第二章、液压系统设计第三章、液压基本回路第四章、液压工作介质第五章、液压泵和液压马达第六章、液压缸第七章、液压控制阀第八章、液压辅助件及液压泵站第九章、液压传动系统的安装、使用和维护第22篇:液压控制第一章、控制理论基础第二章、液压控制概述第三章、液压控制元件、液压动力元件、伺服阀第四章、液压伺服系统的设计计算第五章、电液比例系统的设计计算第六章、伺服阀、比例阀及伺服缸主要产品简介第23篇:气压传动第一章、基础理论第二章、压缩空气站、管路网络及产品第三章、压缩空气净化处理装置第四章、气动执行元件及产品第五章、方向控制阀、流体阀、流量控制阀及阀岛第六章、电--气比例/伺服系统及产品第七章、真空元件第八章、传感器第九章、气动辅件第十章、新产品、新技术第十一章、气动系统第十二章、气动相关技术标准及资料第十三章、气动系统的维护及故障处理。

机械设计中的弹簧设计

机械设计中的弹簧设计

机械设计中的弹簧设计机械设计中,弹簧是一种常见而重要的元件,它具有存储和释放能量的特性,广泛应用于各种机械系统中。

弹簧设计的合理与否直接影响到机械系统的性能和可靠性。

本文将介绍机械设计中的弹簧设计原理和方法。

一、弹簧的作用和分类弹簧作为机械系统中的重要部件,主要用于以下几个方面:1. 传递和储存能量:弹簧可以通过外力使其变形,并在去除外力后恢复原状,从而实现储存和释放能量的功能。

2. 平衡力和控制力:弹簧可以在机械系统中起到平衡或控制力的作用,使系统保持稳定或按照设计需求进行运动。

根据弹簧的形状和用途,可以将其分为以下几大类:1. 压缩弹簧:压缩弹簧是一种常见的弹簧类型,其通过受到压缩力而变形,并在去除压缩力后恢复原状。

压缩弹簧广泛应用于螺旋弹簧减震器、销轴弹簧等设备中。

2. 张力弹簧:张力弹簧是另一种常见的弹簧类型,其通过受到拉伸力而变形,并在去除拉伸力后恢复原状。

张力弹簧常被应用于张力计量装置、拉力试验机等设备中。

3. 扭转弹簧:扭转弹簧是指通过扭转力矩使其变形,具有储存和释放扭转能量的特点。

扭转弹簧广泛应用于手摇发电机、时钟发条等装置中。

二、弹簧设计的基本原理在机械设计中,弹簧设计的基本原理可概括为以下几点:1. 弹簧刚度的计算:刚度是衡量弹簧硬度和弹性的重要指标,可通过弹簧的几何参数和材料特性来计算。

刚度的大小直接影响到弹簧的变形量和恢复力。

2. 最大应力的考虑:弹簧在工作过程中需要承受一定的应力,为了保证弹簧的工作寿命和可靠性,需要考虑弹簧的最大应力是否超过材料的许用应力。

3. 自由长度的确定:弹簧的自由长度是指弹簧在不受外力约束时的长度。

在弹簧设计中,需要根据实际需求确定弹簧的自由长度,以保证其在工作过程中具有所需的力学特性。

4. 装配与安装方式的选择:弹簧在实际应用中通常需要与其他零部件进行装配和安装。

因此,在弹簧设计过程中,需要考虑适合的装配方式和安装方式,以保证弹簧在工作时能够正常运动并满足设计要求。

机械设计手册弹簧设计

机械设计手册弹簧设计

机械设计手册弹簧设计
弹簧设计是机械设计手册中的重要章节之一。

在机械工程中,弹簧起着接收和
释放机械能的作用,其设计必须满足一些关键要求。

首先,弹簧设计时需要考虑载荷的大小和类型。

弹簧的负载可以是静态的或动
态的,因此设计师必须确定所需的载荷范围并选择适当的弹簧类型。

常见的弹簧类型包括拉伸弹簧、扭转弹簧和压缩弹簧,具体使用哪种类型要根据具体的应用情况决定。

其次,弹簧设计中需要考虑弹簧的材料选择。

弹簧常用的材料包括高碳钢、不
锈钢和合金钢等。

材料的选择必须考虑弹性模量、强度、耐腐蚀性和疲劳寿命等因素。

此外,材料的选择还会受到成本和生产可行性的影响。

弹簧设计还需要考虑弹簧的几何参数,包括线径、线圈数、自由长度和硬度等。

这些参数对弹簧的刚度和工作范围都有影响。

线径的选择通常需要根据弹簧的工作负荷和可用空间来确定。

线径越大,弹簧的刚度越大;线圈数的选择也会影响弹簧的刚度和长度。

设计师需要在满足设计要求的前提下,平衡刚度和长度之间的关系。

此外,弹簧设计还需要考虑弹簧的预紧缩量和工作限制。

预紧缩量是指弹簧在
非工作状态下的初始压缩或拉伸量。

工作限制是指弹簧在工作状态下的最大压缩或拉伸量。

预紧缩量和工作限制的选择需要根据设计要求和安全因素进行合理确定。

总之,在机械设计手册的弹簧设计章节中,设计师需要综合考虑载荷、材料、
几何参数、预紧缩量和工作限制等因素,以确保弹簧设计满足要求的功能和安全性。

只有在充分理解弹簧设计原理和遵循相关规范的前提下,才能设计出满足工程需求的可靠弹簧。

机械设计教程 第3版 第十五章 弹簧设计

机械设计教程 第3版 第十五章 弹簧设计

一、弹簧的功用
第一节 概述
图15-1 弹簧应用示例 a)离心离合器 b)钟表发条
第一节 概述
二、弹簧的类型
弹簧的类型很多,根据受载的性质,弹簧可分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧 四种。根据弹簧的形状又可分为螺旋弹簧、碟形弹簧、环形弹簧、涡卷弹簧和板弹簧。此 外,除金属弹簧之外,还有空气弹簧和橡胶弹簧等。表15-1列出了各种常用弹簧的基本形式。 螺旋弹簧是用弹簧丝卷绕制成的,由于制造简便,价格较低,易于检测和安装,所以应用最广。 它既可以制成圆柱形和圆锥形,又可以制成受压缩载荷作用的压缩弹簧、受拉伸载荷作用 的拉伸弹簧,还可以制成承受转矩作用或完成扭转运动的扭转弹簧,见表15-1。 碟形弹簧和环形弹簧刚性较大,可以承受很大的冲击载荷,具有良好的吸振能力,常用于各种 缓冲装置中。在载荷相当大和弹簧轴向尺寸受限制的地方,可以采用碟形弹簧。环形弹簧 是目前减振缓冲能力最强的弹簧,常用于近代重型机车、锻压设备和飞机起落装置中。平 面涡卷弹簧轴向尺寸小,能在较大的变形范围内保持作用力不变,常用于仪器和钟表的储能 装置中。板弹簧能承受较大的弯曲作用,常用于受载方向尺寸有限而变形量又较大的场合。 由于板弹簧有较好的消振能力,所以在汽车、拖拉机和铁路车辆的悬挂装置中均普遍使用 这种弹簧。螺旋扭转弹簧是扭转弹簧中最常用的一种。由于圆柱形螺旋弹簧应用较广,尤 以螺旋压缩弹簧的受力分析和设计计算都比较典型,所以本章主要讨论圆柱形螺旋压缩弹 簧。关于其他类型弹簧,读者可参考文献[19]。
第二节 弹簧的材料、选材与制造
三、弹簧的制造
螺旋弹簧的制造工艺过程如下:①绕制。②钩环制造。③端部的制作与精加工。④热 处理。⑤工艺试验等。重要的弹簧还要进行强压处理。 弹簧通常用卷制成形方法制造,其绕制方法分冷卷法与热卷法两种。当弹簧丝直径 d≤8mm时用冷卷法绕制,冷态下卷绕的弹簧常用冷拉并经预先热处理的优质碳素弹 簧钢丝,卷绕后一般不再进行淬火处理,只需低温回火以消除卷绕时的内应力。当弹簧 丝直径较大(d>8mm)时则要用热卷法绕制。在热态下卷制的弹簧,卷好后要进行淬火 和回火处理。 弹簧的疲劳强度与抗冲击强度在很大程度上取决于弹簧的表面状况,所以弹簧丝表面 必须光洁,没有裂缝和伤痕等缺陷。表面脱碳会严重影响材料的疲劳强度和抗冲击性 能,因此,脱碳层深度和其他表面缺陷都须在验收弹簧的技术条件中详细规定。 对于重要的弹簧,还要进行工艺检验和冲击疲劳等试验。

车架缓冲弹簧设计计算说明

车架缓冲弹簧设计计算说明

车架缓冲弹簧设计计算说明
弹簧最大载荷及最小载荷的确定:
取整车最大总重量为100Kg 则最大G=m*g 取g=9.8
当机构在地面行走时,该弹簧作用为履带行走机构中的支重轮缓冲弹簧,当路面不平整时,取至少有4组弹簧接地工作,其分单侧布为:前端为履带导向轮,后端为履带驱动轮,中间为3组弹簧。

由上述条件及预测工作状态得: 最大工作载荷N G P n 2454/==
最小工作载荷1P :由上述弹簧作用及其安装位置得,预测最小工作载荷为前导向轮和后驱动轮完全接地,并承受所有重量,中间支重轮无支重,则弹簧最小载荷为01=P 或在特殊情况下取601=P 。

注:上表中的所有数据计算参数以及所查表格参数均查机械设计手册(第五版)单行版. 弹簧/成大先主编. —化学工业出版社,2010.1 ISBN 978-7-122-07143-9。

第16章机械设计弹簧PPT教案

第16章机械设计弹簧PPT教案
▲ 对于重要压缩弹簧,为了保证承载面与轴线垂直,端部应磨平▲ 拉伸弹簧,为了便于联接与加载,两端制有拉构,
工艺试验包括:耐冲击、疲劳等试验
第4页/共41页
三、弹簧的材料及许用应力
要求:高的弹性极限、疲劳极限、一定的冲击韧性、 塑性和良好的热处理性能。
材料:优质碳素弹簧钢、合金弹簧钢、有色金属合金。
拉伸弹簧
(1)各圈相互并紧δ=0;
(2)制作完成后具有初拉力;
(3)端部做有拉钩,以便安装 和加载。
拉钩形式:半圆钩环型、圆钩环型、转钩、可调转钩。
改进后的结构
拉伸弹簧的结构尺寸计算与压缩弹簧相同。
特点:结构简单、制造容易、但弯曲应力大。应用于中小载荷与不重要的场合。
特点:弯曲应力小。适用于变载荷的场,但成本较高。
(4)试算簧丝直径
(2) 选择旋绕比C,通常可取C ≈5 ~8,并算出补偿系数K值;
第22页/共41页
(5)根据变形条件求出弹簧工作圈数
对于有预应力的拉伸弹簧
对于压缩弹簧或无预应力的拉伸弹簧
(6) 检查D2、D1、H0是否符合安装要求等;
(7) 验算
强度验算
振动验算
稳定性验算
①强度校核
弹簧的材料
碳素弹簧钢:含碳量在0.6 % ~0.9%之间,如65、70、85
合金弹簧钢:硅锰钢、铬钒钢。
有色金属合金:硅青铜、锡青铜、铍青铜。
优点:容易获得、价格便宜、热处理后具有较高的强 度,适宜的韧性和塑性。
缺点:当d>12 mm,不易淬透,故仅适用于小尺寸的 弹簧。
强度条件
当弹簧的设计计算及材力学性能数据精确性高时,取: SS =1.3~1.7; 当精确性低时,取: SS =1.8~2.2。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计手册弹簧设计
【原创实用版】
目录
1.弹簧设计概述
2.弹簧的分类
3.弹簧选型与设计原则
4.弹簧材料及其性能
5.弹簧几何参数的设计
6.弹簧的应力与变形
7.弹簧的疲劳强度与寿命
8.弹簧设计实例
9.弹簧设计规范与标准
正文
一、弹簧设计概述
弹簧是机械设计中常见的一种弹性零件,它能够在受到外力作用时产生变形,并在外力去除后恢复原状。

弹簧在机械设备中具有重要的功能,如减震、支撑、调节等。

因此,弹簧设计在机械工程领域具有广泛的应用。

二、弹簧的分类
根据弹簧的形状和功能,弹簧可分为以下几类:
1.螺旋弹簧:具有螺旋形状的弹簧,包括圆螺旋弹簧、矩形螺旋弹簧等。

2.平面弹簧:具有平面形状的弹簧,包括圆环弹簧、波纹弹簧等。

3.压力弹簧:主要用于承受压力的弹簧,如碟簧、环簧等。

4.拉力弹簧:主要用于承受拉力的弹簧,如拉伸弹簧、万能弹簧等。

三、弹簧选型与设计原则
在弹簧设计过程中,应遵循以下原则:
1.弹簧的类型应根据工作条件和设计要求进行选择。

2.弹簧的材料应具有良好的弹性、抗疲劳性和耐腐蚀性。

3.弹簧的几何参数应根据工作负荷、变形量和安装空间等因素进行设计。

4.弹簧的应力与变形应符合设计规范和标准。

四、弹簧材料及其性能
常用的弹簧材料包括碳钢、不锈钢、弹性合金等。

这些材料具有良好的弹性性能、抗疲劳性能和耐腐蚀性能,能够满足不同工作条件的要求。

五、弹簧几何参数的设计
弹簧几何参数的设计主要包括弹簧的直径、圈数、自由长度、工作长度等。

这些参数应根据工作负荷、变形量和安装空间等因素进行设计。

六、弹簧的应力与变形
弹簧的应力与变形是弹簧设计中的重要因素。

在设计过程中,应确保弹簧在工作过程中的应力不超过其允许应力,同时考虑弹簧的变形量和变形速率,以保证弹簧的使用寿命和工作性能。

七、弹簧的疲劳强度与寿命
弹簧在反复变形过程中,会受到疲劳应力的作用,导致疲劳损伤和寿命缩短。

因此,在弹簧设计过程中,应充分考虑弹簧的疲劳强度和寿命,以保证弹簧的可靠性和安全性。

八、弹簧设计实例
以螺旋弹簧为例,设计过程包括以下几个步骤:
1.根据工作负荷和安装空间选择弹簧类型。

2.根据工作负荷和变形量选择弹簧材料。

3.设计弹簧的直径、圈数、自由长度和工作长度等几何参数。

4.计算弹簧的应力、变形量和变形速率,确保符合设计要求。

5.校核弹簧的疲劳强度和寿命。

九、弹簧设计规范与标准
弹簧设计应遵循国家和行业的相关规范和标准,如 GB/T 12243-2005《圆螺旋弹簧》等。

这些规范和标准为弹簧设计提供了技术要求、试验方法、检验规则等,有助于保证弹簧的质量和性能。

总之,弹簧设计是机械设计中的重要环节,需要充分考虑弹簧的材料、几何参数、应力与变形等因素,以保证弹簧的可靠性、安全性和使用寿命。

相关文档
最新文档