机器人控制系统组成、分类及要求资料
机器人本体结构描述

3.三自由度手腕
1)液压直接驱动三自由度 BBR手腕
M1、M2、M3是液压马达,直接驱动手腕,实现 偏转、俯仰和翻转三个自由度。
M1
M2
M3
关键是设计和加工出尺寸小、重量轻、驱动力矩 大,驱动特性好的液压驱动马达。
2) 齿轮-链轮传动三自由度 RBR腕部
齿轮链轮传动三自由度手腕原理图 1—油缸; 2—链轮; 3、4—锥齿轮; 5、6—花键轴 T;7—传动轴 S;8—腕架; 9—行星架; 10、11、22、24—圆柱齿轮; 12、13、14、15、16、17、18、20—锥齿轮; 19—摆动轴;
l
l
F ? k(l ? l0 )
M0
?
k(l
? l0 )r1r2 l
cos?
3. 气动和液压平衡方法 平衡的原理和弹簧平衡的原理很相似 优点:
1)平衡缸中的压力恒定; 2)平衡缸的压力容易调节和控制 . 缺点: 1)需要动力源和储能器,系统比较复杂 2)需考虑动力源一旦中断时的防范措施。
6.3 腕部及手部结构
三、机器人本体结构
手部
机器人本体结构:机械
小臂
结构和机械传动系统。
包括:
传动部件
腕部
机身及行走机构
大臂
臂部
腕部
手部
腰部
基座
6.2 机身及臂部结构
机器人机身又称为立柱,是支撑臂部的部件,能 实现手臂的升降、回转或俯仰运动。 机器人必须有一个便于安装的基础件,这就是机 器人的机座,机座往往与机身做成一体。 机身设计要求:
T手腕
二自由度手腕图例:
BR手腕
BB手腕
RR手腕(属于单自由度)
三自由度手腕的结合方式:
RRR型手腕结构示意
《工业机器人系统》课件

介绍用于工业机器人编程的集成开发 环境(IDE),如ROS、Keithley等, 以及如何安装和使用。
工具链
介绍工业机器人编程所需的工具链, 如建模软件、仿真软件等,以及它们 在编程中的作用。
控制策略与算法
在此添加您的文本17字
控制策略
在此添加您的文本16字
介绍工业机器人常用的控制策略,如PID控制、模糊控制 等,以及它们的原理和应用场景。
分类
根据应用领域和功能,工业机器人可 以分为搬运机器人、装配机器人、焊 接机器人、喷涂机器人等类型。
工业ห้องสมุดไป่ตู้器人的应用领域
汽车制造业
工业机器人在汽车制造业中广 泛应用于焊接、装配、喷涂等 环节,提高了生产效率和产品
质量。
电子制造
电子制造领域中,工业机器人 能够完成高精度、高速度的贴 片、检测、组装等任务,提高 了生产效率。
03
人机界面提高了机器人的易用性和可维护性,降低了对操作人员的技 能要求。
04
人机界面的未来发展方向是更好的用户体验、更高的交互性和更强的 智能化功能。
03
工业机器人编程与控 制
编程语言与工具
编程语言选择 介绍工业机器人常用的编程语言,如 Python、C等,以及它们的特点和适
用场景。
集成开发环境(IDE)
04
工业机器人应用案例
装配线上的机器人
总结词
装配线上的机器人主要用于自动 化装配作业,提高生产效率。
详细描述
装配线上的机器人能够快速、准 确地完成零件的抓取、搬运和组 装,减少了人工操作,提高了生 产效率,降低了生产成本。
搬运机器人
总结词
搬运机器人主要用于物料搬运,减轻工人劳动强度,提高搬 运效率。
1.1工业机器人的系统组成

MMT
三种驱动方式比较:
电气驱动方式:电气驱动所用能源简单,机构速度变化范围大,效率高,速
度和位置精度都很高,且具有使用方便、噪声低和控制灵活的特点。
MMT
【背景知识】 2.机械结构系统
工业机器人的机
械结构系统是工业机 器人为完成各种运动 的机械部件。系统由 骨骼(杆件)和连接它 们的关节(运动副)构 成,具有多个自由度, 主要包括手部、腕部、 臂部、机身等部件, 如右图所示。
2MMT
机械结构系统——手腕
手腕是连接末端执 行器和手臂的部件,它的作 用是调整或改变工件的方位, 因而它具有独立的自由度, 以使机器人——手臂
手臂是机器人执行 机构中重要的部件,它的作 用是将被抓取的工件运送到 给定的位置上。
2MMT
机械结构系统——腰部和基座
【背景知识】 3.感受系统
感受系统由内部传感器和外部传感器构成。 传感器处于连接外界环境与机器人的接口位 置,是机器人获取信息的窗口 。
MMT
【背景知识】 3.感受系统
感受系统由内部传感器和外部传感器构成。 传感器处于连接外界环境与机器人的接口位置, 是机器人获取信息的窗口 。
机器人对传感器的要求 ①精度高、重复性好; ② 稳定性和可靠性好; ③ 抗干扰能力强; ④ 质量轻、体积小、安装方便。
MMT
(1)传感器的分类 根据传感器在机器人上应用目的与使用范围的 不同,将其分成两类:内部传感器和外部传感器。 内部传感器:用于检测机器人自身的状态,如: 测量回转关节位置的轴角编码器、测量速度以控制 其运动的测速计。 外部传感器:用于检测机器人所处的环境和对 象状况,如视觉传感器,可为更高层次的机器人控 制提供大得多的适应能力,也是给工业机器人增加 了自动检测能力。外部传感器可进一步分为末端执 行器传感器和环境传感器。
机器人的组成结构及原理

机器人的组成结构及原理机器人是一种能够自动执行任务的机械设备。
它们可以被用于各种各样的任务,从工业制造到医疗保健和军事应用等。
机器人的组成结构和原理是机器人技术的核心,这篇文章将会介绍机器人的组成结构和原理,以及机器人的应用领域。
一、机器人的组成结构机器人通常由以下几个部分组成:1. 机械结构:机械结构是机器人的骨架,它包括机器人的机身、关节、连接器、执行器等。
机械结构的设计直接影响机器人的稳定性、精度和速度。
2. 传感器:传感器是机器人的感知器,它们能够感知环境中的信息并将其转化为机器人能够理解的数据。
传感器包括摄像头、激光雷达、声音传感器、触摸传感器等。
3. 控制系统:控制系统是机器人的大脑,它负责控制机器人的运动和行为。
控制系统包括计算机、控制器、运动控制器等。
4. 能源系统:能源系统是机器人的动力源,它提供机器人所需的能量。
能源系统包括电池、液压系统、气压系统等。
二、机器人的原理机器人的原理是通过机械结构、传感器和控制系统的协同作用来实现机器人的运动和行为。
机器人的运动和行为通常通过以下几个步骤来实现:1. 感知环境:机器人通过传感器感知环境中的信息,并将其转化为机器人能够理解的数据。
2. 分析数据:机器人的控制系统对感知到的数据进行分析,并根据分析结果制定相应的行动计划。
3. 运动控制:机器人的控制系统通过运动控制器控制机械结构的运动,从而实现机器人的运动和行为。
4. 反馈控制:机器人在运动和行为过程中,通过传感器不断反馈环境的变化信息给控制系统,从而实现机器人的自适应控制。
三、机器人的应用领域机器人的应用领域非常广泛,以下是几个典型的应用领域:1. 工业制造:机器人在工业制造中的应用非常广泛,如汽车制造、电子制造、食品加工等。
机器人能够提高生产效率、降低成本、提高产品质量。
2. 医疗保健:机器人在医疗保健中的应用也越来越广泛,如手术机器人、康复机器人、护理机器人等。
机器人能够提高手术精度、减少手术创伤、提高康复效果。
工业机器人驱动方式、传动系统、传感器及控制系统

题目:1、工业串联机器人常用的驱动方式、传动系统、传感器类型,比较2、智能移动机器人的驱动方式、传动系统、传感器类型,比较3、现在机器人的控制系统、控制结构概述:机器人问世已有几十年,但没有一个统一的意见。
原因之一是机器人还在发展,另一原因主要是因为机器人涉及到了人的概念,成为一个难以回答的哲学问题。
也许正是由于机器人定义的模糊,才给了人们充分的想象和创造空间。
美国机器人协会(RIA):一种用于移动各种材料、零件、工具或专用装置的,通过程序动作来执行各种任务,并具有编程能力的多功能操作机。
美国家标准局:一种能够进行编程并在自动控制下完成某些操作和移动作业任务或动作的机械装置。
1987年国际标准化组织(ISO)对工业机器人的定义:“工业机器人是一种具有自动控制的操作和移动功能,能完成各种作业的可编程操作机。
日本工业标准局:一种机械装置,在自动控制下,能够完成某些操作或者动作功能。
英国:貌似人的自动机,具有智力的和顺从于人的但不具有人格的机器。
中国:我国科学家对机器人的定义是:“机器人是一种自动化的机器,这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。
尽管各国定义不同,但基本上指明了作为“机器人”所具有的二个共同点:(1) 是一种自动机械装置,可以在无人参与下,自动完成多种操作或动作功能,即具有通用性。
(2)可以再编程,程序流程可变,即具有柔性(适应性)。
机器人是20世纪人类伟大的发明,比尔•盖茨预言:机器人即将重复PC机崛起的道路,彻底改变这个时代的生活方式。
机器人学集中了机械工程、材料科学、电子技术、计算机技术、自动控制理论及人工智能等多学科的最新研究成果,代表了机电一体化的最高成就,是当代科学技术发展最活跃的领域之一。
驱动方式现代工业机器人的驱动方式主要有三种:气动驱动、液压驱动和电动驱动。
气动驱动机器人气动驱动系统以压缩空气为动力源。
简述工业机器人的组成及每部分的功能。

简述工业机器人的组成及每部分的功能。
工业机器人主要由以下几个部分组成:
1. 机械结构:工业机器人的机械结构是实现机器人运动和操作的基础。
它包括臂架、关节、机械手、手爪等组件,可以具备多个自由度。
机械结构的主要功能是实现机器人的运动和操作。
2. 控制系统:工业机器人的控制系统是实现机器人工作的核心部分。
它包括控制器、编程设备、传感器等组件。
控制系统接收操作员或者计算机发出的指令,通过控制器对机械结构进行控制和操作。
同时,它还可以根据传感器的反馈信息,实现自适应和反馈控制。
3. 传感器系统:工业机器人的传感器系统主要用于获取周围环境的信息。
它可以包括接近传感器、视觉传感器、力传感器等。
传感器系统的主要功能是检测和感知周围环境的变化,为机器人的操作和决策提供数据支持。
4. 执行器:工业机器人的执行器是机械结构的驱动装置。
它可以包括电机、液压驱动器、气动驱动器等。
执行器的主要功能是将控制系统发出的信号转化为机械力或者运动,驱动机械结构进行工作和操作。
综上所述,工业机器人的组成部分主要包括机械结构、控制系统、传感器系统和执行器。
这些部分通过协同工作,实现机器人的运动、操作和感知能力,完成各种工业任务。
第二章_机器人的机械结构分析

关节型搬运机器人
关节型焊接机器人
第二章
机器人的机械结构
机器人的构型
5、平面关节型 (Selective Compliance Assembly Robot Arm ,简称SCARA) 仅平面运动有耦合性,控制较通用关节型简单。运动灵活 性更好,速度快,定位精度高,铅垂平面刚性好,适于装 配作业。
SCARA型装配机器人
有较大的作业空间,结构紧凑较复杂,定位精度较低。
极坐标型机器人模型
2018/11/2
Unimate
机器人
第二章
机ห้องสมุดไป่ตู้人的机械结构
机器人的构型
4、关节坐标型 (3R) 对作业的适应性好,工作空间大,工作灵活,结构紧凑, 通用性强,但坐标计算和控制较复杂,难以达到高精度。
2018/11/2
关节型机器人模型
2、圆柱坐标型 (R2P)
结构简单紧凑,运动直观,其运动耦合性较弱,控制也较 简单,运动灵活性稍好。但自身占据空间也较大,但转动 惯量较大,定位精度相对较低。
圆柱坐标型机器人模型
2018/11/2
Verstran 机器人
Verstran 机器人
第二章
机器人的机械结构
机器人的构型
3、极坐标型(也称球面坐标型)(2RP)
• 电动式
电源方便,响应快,驱动力较大,可以采用多种灵活的控制方案。
2018/11/2
第二章
机器人的机械结构
二、机器人的分类
1.按机器人的控制方式分类 (1)非伺服机器人 非伺服机器人按照预先编好的程序顺序进行工作, 使用限位开关、制动器、插销板和定序器来控制机器 人的运动。 (2)伺服控制机器人 通过传感器取得的反馈信号与来自给定装置的综合信 号比较后,得到误差信号,经放大后用以激发机器人 的驱动装置,进而带动手部执行装置以一定规律运动, 到达规定的位置或速度等,这是一个反馈控制系统。
工业机器人控制系统的基本原理

工业机器人控制系统20世纪80年代以后,由于微型计算机的发展,特别是电力半导体器件的出现,使整个机器人的控制系统发生了很大的变化,使机器人控制器日趋完善。
具有非常好的人机界面,有功能完善的编程语言和系统保护,状态监控及诊断功能。
同时机器人的操作更加简单,但是控制精度及作业能力却有很大的提高。
目前机器人已具有很强的通信能力,因此能连接到各种网络(CAN—BUS、PROFIBUS或ETHERNET)。
形成了机器人的生产线。
特别是汽车的焊接生产线、油漆生产线、装配生产线很多都是靠机器人工作的。
特别是控制系统已从模拟式的控制进入了全数字式的控制。
90年代以后,计算机的性能进一步提高,集成电路(IC)的集成度进一步的提高,使机器人的控制系统的价格逐渐降低,而运算的能力却大大提高,这样,过去许多用硬件才能实现的功能也逐渐地使用软件来完成。
而且机器人控制系统的可靠性也由最早几百小时提高到现在的6万小时,几乎不需要维护。
一、控制系统基本原理及分类工业机器人的控制器在要求完成特定作业时,需要做下述几件事:示教:通过计算机来接受机器人将要去完成什么作业。
也就是给机器人的作业命令,这个命令实质上是人发出的。
计算:这一部分实际上就是机器人控制系统中的计算机来完成的,它通过获得的示教信息要形成一个控制策略,然后再根据这个策略(也称之为作业轨迹的规划)细化成各轴的伺服运动的控制的策略。
同时计算机还要担负起对整个机器人系统的管理,采集并处理各种信息。
因此,这一部分是非常重要的核心部分。
伺服驱动:就是通过机器人控制器的不同的控制算法将机器人控制策略转化为驱动信号,驱动伺服电动机,实现机器人的高速、高精度运动,去完成指定的作业。
反馈:机器人控制中的传感器对机器人完成作业过程中的运动状态、位置、姿态进行实时地反馈,把这些信息反馈给控制计算机,使控制计算机实时监控整个系统的运行情况,及时做出各种决策。
图1 机器人控制基本原理图控制系统可以有四种不同分类方法:控制运动方式、控制系统信号类型、控制机器人的数目以及人机的相互关系等分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人控制系统
一、工业机器人控制系统应具有的特点
工业机器人控制系统的主要任务是控制工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等项。
其中有些项目的控制是非常复杂的,这就决定了工业机器人的控制系统应具有以下特点:
(1)工业机器人的控制与其机构运动学和动力学有着密不可分的关系,因而要使工业机器人的臂、腕及末端执行器等部位在空间具有准确无误的位姿,就必须在不同的坐标系中描述它们,并且随着基准坐标系的不同而要做适当的坐标变换,同时要经常求解运动学和动力学问题。
(2)描述工业机器人状态和运动的数学模型是一个非线性模型,随着工业机器人的运动及环境而改变。
又因为工业机器人往往具有多个自由度,所以引起其运动变化的变量不止个,而且各个变量之间般都存在耦合问题。
这就使得工业机器人的控制系统不仅是一个非线性系统,而且是一个多变量系统。
(3)对工业机器人的任一位姿都可以通过不同的方式和路径达到,因而工业机器人的控制系统还必须解决优化的问题。
二、对机器人控制系统的一般要求
机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下:
•记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。
•示教功能:离线编程,在线示教,间接示教。
在线示教包括示教盒和导引示教两种。
•与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。
•坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。
•人机接口:示教盒、操作面板、显示屏。
•传感器接口:位置检测、视觉、触觉、力觉等。
•位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。
•故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障
自诊断。
三、机器人控制系统的组成(图1)
(1)控制计算机控制系统的调度指挥机构。
一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其他类型CPU。
(2)示教盒示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。
(3)操作面板由各种操作按键、状态指示灯构成,只完成基本功能操作。
(4)硬盘和软盘存储存储机器人工作程序的外围存储器。
(5)数字和模拟量输入输出各种状态和控制命令的输入或输出。
(6)打印机接口记录需要输出的各种信息。
(7)传感器接口用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。
(8)轴控制器完成机器人各关节位置、速度和加速度控制。
(9)辅助设备控制用于和机器人配合的辅助设备控制,如手爪变位器等。
(10)通信接口实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。
(11)网络接口
1)Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。
2)Fieldbus接口:支持多种流行的现场总线规格,如Device net、AB Remote I/O、Interbus-s、profibus-DP、M-NET等。
四、机器人控制系统的分类
程序控制系统:给每一个自由度施加一定规律的控制作用,机器人就可实现要求的空间轨迹。
自适应控制系统:当外界条件变化时,为保证所要求的品质或为了随着经验的积累而自行改善控制品质,其过程是基于操作机的状态和伺服误差的观察,再调整非线性模型的参数,一直到误差消失为止。
这种系统的结构和参数能随时间和条件自动改变。
人工智能系统:事先无法编制运动程序,而是要求在运动过程中根据所获得的周围状态信息,实时确定控制作用。
运动方式:
点位式。
要求机器人准确控制末端执行器的位姿,而与路径无关;
轨迹式。
要求机器人按示教的轨迹和速度运动。
控制总线:
·国际标准总线控制系统。
采用国际标准总线作为控制系统的控制总线,如VME、MULTI-bus、STD-bus、PC-bus。
·自定义总线控制系统。
由生产厂家自行定义使用的总线作为控制系统总线。
编程方式:
·物理设置编程系统。
由操作者设置固定的限位开关,实现起动,停车的程序操作,只能用于简单的拾起和放置作业。
·在线编程。
通过人的示教来完成操作信息的记忆过程编程方式,包括直接示教(即手把手示教)模拟示教和示教盒示教。
·离线编程。
不对实际作业的机器人直接示教,而是脱离实际作业环境,生成示教程序,通过使用高级机器人,编程语言,远程式离线生成机器人作业轨迹。
五、机器人控制系统结构
机器人控制系统按其控制方式可分为三类。
·集中控制方式:用一台计算机实现全部控制功能,结构简单,成本低,但实时性差,难以扩展,其构成框图如图2所示。
·主从控制方式:采用主、从两级处理器实现系统的全部控制功能。
主CPU实现管理、坐标变换、轨迹生成和系统自诊断等;从CPU实现所有关节的动作控制。
其构成框图如图3所示。
主从控制方式系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。
·分散控制方式:按系统的性质和方式将系统控制分成几个模块,每一个模块各有不同的控制任务和控制策略,各模式之间可以是主从关系,也可以是平等关系。
这种方式实时性好,易于实现高速、高精度控制,易于扩展,可实现智能控制,是目前流行的方式,其控制框图如图4所示。