电容器的制造过程

电容器的制造过程
电容器的制造过程

目录

摘要 (2)

第1章电容器的简介 (3)

1.1电容器的作用 (3)

1.2电容器的工作原理 (3)

1.3 铝电解电容器的使用须知 (3)

第2章电容器的制造过程 (4)

2.1点检表的使用 (4)

2.2制造路线 (4)

2.3捺印工程 (6)

2.4捺印工程的注意事项 (7)

第3章捺印过程中出现的问题及解决方案 (8)

3.1无捺印 (8)

3.2落下品的处理 (8)

第4章作业中必须遵守的内容 (8)

结论........................................... 错误!未定义书签。致谢........................................... 错误!未定义书签。参考文献....................................... 错误!未定义书签。

电容器的制造

摘要

本次毕业设计主要是制造电容器,机能性高分子铝电解固体电容器。铝电解电容的容体比较大,串联电阻较大,感抗较大,对温度敏感。它适用于温度变化不大、工作频率不高(不高于25kHz)的场合,可用于低频滤波(在高频率得时候电解电容的并联滤波效果较低频差)。铝电解电容具有极性,安装时必须保证正确的极性,否则有爆炸的危险。

本设计详细地介绍了电容器的制造过程。

关键词:电容器制造

第1章电容器的简介

常简称其为电容,用字母C表示。定义1:电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。英文名称:capacitor。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。制作电容器,制造部分很多小部门,但不是流水线工作,再每个产品打包之前,都会经过严格的检验,抵制不良品。

1.1电容器的作用

电力电容器是一种无功补偿装置。电力系统的负荷和供电设备如电动机、变压器、互感器等,除了消耗有功电力以外,还要“吸收”无功电力。如果这些无功电力都由发电机供给,必将影响它的有功出力,不但不经济,而且会造成电压质量低劣,影响用户使用。

电容器在交流电压作用下能“发”无功电力(电容电流),如果把电容器并接在负荷(如电动机)或供电设备(如变压器)上运行,那么,负荷或供电设备要“吸收”的无功电力,正好由电容器“发出”的无功电力供给,这就是并联补偿。并联补偿减少了线路能量损耗,可改善电压质量,提高功率因数,提高系统供电能力。

如果把电容器串联在线路上,补偿线路电抗,改变线路参数,这就是串联补偿。串联补偿可以减少线路电压损失,提高线路末端电压水平,减少电网的功率损失和电能损失,提高输电能力。

电力电容器包括移相电容器、电热电容器、均压电容器、藕合电容器、脉冲电容器等。移相电容器主要用于补偿无功功率,以提高系统的功率因数;电热电容器主要用于提高中频电力系统的功率因数;均压电容器一般并联在断路器的断口上作均压用;藕合电容器主要用于电力送电线路的通信、测量、控制、保护;脉冲电容器主要用于脉冲电路及直流高压整流滤波。

随着国民经济的发展,负荷日益增多,供电容量扩大,无功补偿工作必须相应跟上去。用电容器作为无功补偿时,投资少,损耗小,便于分散安装,使用较广。当然,由于系统稳定的要求,必须配备一定比例的调相机。

1.2电容器的工作原理

交流电的正半周到来,先向电容充电,形成充电电流,根据电容的大小决定此电流的大小,负半周到来时电容上被充上的正电荷又向负端放电,形成放电电流,此时正半周又同时向电容的另一端充电,一个半波过去,又会重复上述过程,这样,电容虽说是绝缘的,不会有任何电流流过,但在电路里却形成了交变电流,这就是电容的功能,接上负载,电流流过负载做功。

1.3 铝电解电容器的使用须知

1、直流电解电容器只能使用在直流电路上,其极性必须标明在适当的位置或在导针/端子旁边。

2、在电路回路中如不清楚或不明确线路的极性时,则建议使用无极性电解容器。

3、电解电容器的工作环境温度不能超过规定的使用温度范围。

4、电解电容器应储存于低温及干燥场所,如储存期较长则使用前,应用额定电压对其重新老练。

5、通过电解电容器的纹波电流不应超过其充许范围.如超过了规定值.需选用耐大纹波电流的电解电容器。

6、使用时,电解电容器的工作电压不应超过其额定电压。

7、电烙铁等高温发热装置应与电解电容器塑料外壳保持适当的距离,以防止过热造成塑料套破裂。

8、在焊接电解电容器时,其焊接时间和焊接温度不应超过10秒钟及260

摄氏度。

9、对导针、端子,如施加超过规定的力,将会破坏电解电容器的内部结构。

第2章电容器的制造过程

2.1点检表的使用

2-1点检表

点检表(见图2-1),每个班次开始必须填写,上面有关于捺印机的最重要信息,要是其中随意一项没有符合要求,则无法再继续作业,请机修修理完成后才能作业。

2.2制造路线

制造过程如下: 1.履历发行2.铜引脚/铁引脚卷上3.橡胶安装4.bar熔接5.化成6.含浸聚合7.苏子热处理8.引脚整理9.制皮洗涤10.捺印11.老化试验12.去荷检查13.外观检查14.偏带拆除15.引脚整形16.捆包贴塑料袋标签17.装箱贴标签补充。

发行履历票

2-2履历票

从原材料开始,履历票(2-2)就会跟着产品一直流动,虽然不是流水线工作。每个工位之间靠着周转箱来运输制品,每个工位的员工严格地进行各项指标的检查与核实,质检员会进行进一步地稽核验收,坚决抵制废品和次品。

卷上

通过把长短2个引脚(铜引脚或铁引脚)和胶带还有导体板连接起来,中间用绿色绝缘体隔开。

橡胶

把卷上完成的制品,用橡胶安装起来。

熔接

在高温下,将铝壳把橡胶抱起来的制品再包装起来。

捺印

在铝壳上面印上该有的图章。见图2-3。

2-3捺印

外观检查

通过外观检查,来把前工程做出来的电容器筛选出不良品和良品。

捆包

将制品包装起来销售。见图2-4

2-4捆包

2.3捺印工程

整个捺印部门,占地面积不大,却有百台设备,有2种类型,台湾世宏机和无锡普通机。台湾机不仅速度快而且不良率相当小,无锡机相比较就稍微差点。捺印的基本工作就是从置场取料,检测容量是否合格,填写履历票,然后就开始作业。下来详细介绍。

1.置场取料

进入置场,置场内有相当多未捺印过的制品,不容许拿错周转箱,依照每台设备需要做的型号,来取制品,每台设备都只捺印一种型号的电容器。从周转箱内拿出履历票,先检查履历票上的的型格和工程卡片上的是否一致,然后看周转箱的型号是否和履历票填写的一致,最后观察制品,制品的引脚弯曲<3%和铝壳划伤<1%时,可以继续下面的作业;要是引脚弯曲>3%或者铝壳划伤大于1%,不允许作业并向班组长汇报。取制品要遵守先进先出的原则,不要挑拣制品,防止制品长时间滞留,初回、特级的制品要尽量先做。

2.填写履历票

履历票是跟着制品从原材料到成品的一张凭证。履历票上不允许有任何填写错误。首先要先检测容量,从中转箱内随机取出5个制品,在容量检测仪器上检测容量,容量在范围内的可以继续作业,不在范围内必须停止。其次填写履历票上捺印工程的内容。见图2-5 。

2-5履历票

上面需要敲章来再一次确认是否拿错制品,周转箱号的填写,还有作业者需要给老员工或组长确认下,在这么多繁琐的步骤之后,可以工作了。

3.制品的捺印

2-6捺印机

通过捺印机(见图2-6)把制品捺上相应的字符。首先将制品倒入振动盘中,其工作原理是将底部的制品通过振动,靠着桶壁慢慢传送到平送传输带上,中间有气流的辅助作用。跟着,制品就进入十二等分转盘中。十二等分转盘一共有4个检测位,第一个检测位检测是否有制品进入转盘;第二个检测位检测制品的长脚和短脚,并将长脚靠内短脚靠外;第三检测位检测制品,若有制品则捺印头捺印,若无,则捺印头将不会下来捺印;第四检测位检测制品的长短脚是否有弯曲和捺印负极是否有白点不清楚,如果好的制品,就将流下去进行烘干并进入良品盒中,如果不良品,则会在进行烘干前将不良品取出。

4.最后步骤

捺印完成后,将良品盒中的制品倒入周转箱内,检查捺印机台面上是否有电容器落下,必须清理干净,防止与下一个LOT混在一起,在履历票上填写完成时间和捺印机记录的作业个数。全部完成后,将履历票给组长巡检人员确认,他们会来检查,一切OK后,履历票放在周转箱内,一起放在捺印后的置场,然后接着下个LOT的作业

2.4捺印工程的注意事项

1、铝电解电容器有2个引脚,其中长脚为正极,短脚为负极。如果半圆在长脚侧则就形成了机逆,为捺印不良的重大不良,必须及时停止作业并向班组长汇报。

2、对于我们的产品必须做到轻拿轻放,防止乱丢乱放,造成产品的不良。

3、取作业产品是,应采取先进先出的原则,禁止挑拣制品。

4、检测容量的目的是为了防止混入,每个LOT测试5个产品,只要有1个不在范围内,不可以作业,振动盘的擦拭频度为每LOT2次。

5、捺印抽检时,每作业500个产品必须进行。每次取连续的5个产品,2个产品用胶带黏贴。中间确认使用带有酒精的抹布擦拭,确认数量为5个,胶带黏贴每个产品1次。如果捺印强度确认时有捺印脱落或不良品发生,应及时向班组长汇报。

6、振动盘中的制品不宜放过多,需要看得见振动盘底部,如果放过多的制品,会引起产品铝壳脏污和引脚弯曲。

第3章捺印过程中出现的问题及解决方案

3.1无捺印

1、捺印过的制品,周转箱内含有无捺印的制品,要注意以下几点:

2、拭打磨捺印头,将等分转盘上的产品排除后进行;如未将产品排除,当捺印的产品必须要拔除。

3、地面落下品废弃,禁止随意乱放,员工可能放入良品中。

4、手上拿着产品。禁止到处走动,要离开本台设备,必须是空手。

5、禁止将捺印好的产品放在箱盖上,而设备还在作业。

6、早班认真点检,查看颜色传感器,是否能正常工作。

7、设备落下品和擦拭好的再生品,是否正确摆放。

8、宏机履历票印章盖好后,当前捺印的产品是否取出。

3.2落下品的处理

落下品分为2大类,地面落下品和设备落下品。地面落下品全部废弃。设备落下品要仔细检查:观察是否有捺印标识,如果无标识,检查其品质,品质好的放入振动盘中;如果有标识,用带有酒精的抹布擦拭,当能擦拭掉,并要擦干净,检查品质,品质好的放入振动盘;当不能用带酒精的抹布擦去时,检查品质,品质好的放入良品盒内;品质不好的全部废弃。

第4章作业中必须遵守的内容

1、按照作业指导书规定的作业流程和作业方法进行作业。

2、前必须核对履历票上的型格、LOTNO、箱号与实际产品是否一致

3、性和有效期必须先给予确认。按照先进先出的原则使用。特级品优先于普通品。

4、和型格(LOT与LOT)之间禁止出现混装(混入)现象。为防止此种现象的发生,每个LOT作业结束后要及时清扫设备和地面;坐着作业的人员站起或每LOT作业结束后需检查自身是否带有制品。

5、红灯灯亮标识异常。当设备、材料、产品出现异常或不能做出判断时应及时联系组长,不要自作主张

6、问题时必须修理调整后再进行作业。控制机器出现异常:即将出现人身危险或设备部件相碰撞等,需紧急按下急停开关。

7、表必须认真点检,严肃处理虚假点检。点检要在上班后半小时内完成,出现异常及时联系,点检时点检内容要逐一对照,禁止点检表脱离岗位点检。重视点检,将点检工作贯穿于整个班,以便于及时发现异常,及时联络处理。

8、记录每一张履历票,书写时自己要工整,能使他人看清楚,写错时不允许用修正带、不允许乱涂,修改后签上自己的名字和日期

9、必须放置在制定场所。物品取出用完后放回原处,蓝色胶带区域为放置正常产品的场所,黄色胶带区域为放置等待处理的场所,红色胶带区域为放置不良品的场所。

10、轻拿轻放。产品与接触点的距离小于5CM时,手才可离开产品。

地上有螺丝螺母掉落时要关心是什么设备上掉下的,及时通知班组长、修理员安装。

11、备时用抹布进行擦拭,需用酒精擦拭时,必须先将酒精倒在抹布上再进行擦拭。禁止将酒精直接倒在设备。酒精用量不可过多,避免浪费。

12、外严禁使用任何物品按按钮或显示屏

铝电解电容器生产工艺流程

铝电解电容器生产工艺流程 (附图片) (2009/12/18 15:19) 铝电解电容器主要原材料: 阳极箔、阴极箔、电解纸、电解液、导箔、胶带、盖板、铝壳、华司、套管、垫片等 生产工序切割、卷绕、含浸、装配、老化、封口、印刷、套管、测量、包装、检验等 电解电容原材料分切 小型电解电容器自动卷绕机

大型电解电容器自动卷绕机 电解电容芯子含浸 电解电容高温老化 电解电容性能测试 铝电解电容制造进程:第一步:铝箔的腐化。 倘若拆开一个铝电解液电容的外壳,你会看到内里是几多层铝箔和几多层电解纸,铝箔和电解纸贴附在一起,卷绕成筒状的机关,这样每两层铝箔中间便是一层吸附了电

解液的电解纸了。 铝箔的制造要领。为了增大铝箔和电解质的战争面积,电容中的铝箔的外观并不是平滑的,而是通过电化腐化法,使其外观形成崎岖不屈的形状,这样不妨增大7~8倍的外观积。电化腐化的工艺是较量庞杂的,此中涉及到腐化液的种类、浓度、铝箔的外观状态、腐化的速率、电压的动态均衡等等。第二步:氧化膜形成工艺。 铝箔通过电化腐化后,就要运用化学方法,将其外观氧化成三氧化二铝——也便是铝电解电容的介质。在氧化之后,要仔细检讨三氧化二铝的外观,看是否有雀斑也许龟裂,将不足格的清除在外。 第三步:铝箔的切割。 这个措施很简单明白。便是把一整块铝箔,切割成几多小块,使其适当电容制造的必要。 第四步:引线的铆接。 电容外部的引脚并不是直连接到电容内部,而是经过内引线与电容内部连结的因此,在这一步当中我们就必要将阳极和阴极的内引线,与电容的外引线经过超声波键正当连结在一起。外引线通常采纳镀铜的铁线也许氧化铜线以削减电阻,而内引线则直接采纳铝线与铝箔直接相连。大众注意这些小小的措施无一过错细密加工要求很高。 第五步:电解纸的卷绕。 电容中的电解液并非直接灌进电容,呈液态浸泡住铝箔,而是经过吸附了电解 液的电解纸与铝箔层层贴合。这当中,选用的电解纸与平凡纸张的配方有些分 歧,是呈微孔状的,纸的外观不及有杂质,不然将影响电解液的身分与性能。 而这一步,便是将没有吸附电解液的电解纸,和铝箔贴在一块,然后卷进电容外壳,使铝箔和电解纸形成近似“ 101010”的隔断状态。 第六步:电解液的浸渍。当电解纸卷绕完毕之后,就将电解液灌进去,使电解液浸渍

电容器生产工艺讲义

电容器基础培训资料 一、基本常识 1、什么叫电容器及表示法、薄膜电容器主要用途 两个金属导体,中间隔一介质,在电场的作用下,可储存电荷的一种装置。 表示法——并用字母“C”表示,单位为μF,法拉(F)=106微法(μF)=1012皮法(pF) 用途:主要用于单相电机的启动与运转、灯具的补偿或触发作用。 2、本公司生产电容器的型号 CBB60型——塑壳、圆柱型结构、有导线或端子引出,用于电机; CBB61型——塑壳、方型结构、有导线或端子引出,用于电机; CBB65型——铝壳,圆柱型结构,有导线或端子引出,用于电机、灯具; CBB65A/B型——铝壳防爆圆柱型或椭圆形结构,均为端子引出,用于电极、压缩机、灯具; CBB80型——白色塑壳、圆柱型结构,其引出为接插件(刺破性连接)。专用于灯具配套。 BKMJ型——专用直流高压脉冲电容器 二、工艺流程图: 三、具体工艺 1、卷绕: ①卷绕间温度-10℃~+26℃,相对湿度≤60%; ②跑偏≤0.5mm,错边0.8~1.2mm,容量:圆芯-3%~+1%,扁芯-7%~-4%; ③卷前应检查辊轴的转动灵活性,核对穿膜路线是否正确,膜面质量检查:膜有无划伤、擦伤、氧化、起皱; 190机张力=膜宽x膜厚x 1.8~2.0/100,180机张力=膜宽x膜厚x 1.2~1.5/10 ④试装外壳。

2、压扁芯子压扁 ①冷压:上下对称排放,冷压压力≥0.6MPa。 3、喷金、点焊: ①喷金厚度为0.6±0.1mm; ②喷金后芯子端面根据制造工作单或其他工艺文件规定预点焊焊点,焊接时间不大于3秒,点焊温度 320℃~420℃; ③如点焊的芯子直径小于20mm时,允许用100W的电烙铁,其余须用200W电烙铁; ④去除外包纸时,千万不可划伤芯子,并检查芯子表面应无残留喷金灰尘,特别注意两极连极现象发生。 4、热聚合:按《电容器芯子热聚合工艺汇总表》 ①芯子热聚合后降温60℃以下,方可流入下一道工序; ②严防温度失控,发生质量大事故。 5、半测: ①赋能:交流低压50V、交流高压250V、直流低压100V/μm 直流高压:5μm为710V、6μm为852V、7、8μm为1278V、9、10μm为1420V; ②交流耐压:2Un0+20,5S ③C、tgδ测量,1KHz ,具体见《芯子和成品电容量、损耗角正切测量要求数据汇总表》; ④严防错测、漏测。 ⑤BKMJ脉冲电容: 直流脉冲电容:直流高压赋能电压按上表交流电压计算,即2.84x交流数 极间耐电压:交流:按以上膜厚的交流电压值的1.8倍,历时2s,无击穿现象。 直流:1.2倍Un,历时10s,无击穿现象。 6、电容器芯子点焊引出端 ①点焊产品外观质量要求无严重打火痕迹,引出端应半埋于喷金层下,焊接强度要求沿芯子喷金面方向 引出端能承受30N拉力。 ②点焊位置应避免靠近芯子边缘和芯管,以防止焊伤芯子和打火,同一位置不允许连续点焊2次以上。 7、焊接装配:焊接注意防止烫伤芯子;装配注意极壳绝缘。 8、灌注: ①环氧预处理:≥60℃、≥0.5h; ②固化剂桶(4kg/桶),充分搅拌至少3分钟,每桶环氧封小样 ③《电容器灌注工艺、环氧树脂固化条件汇总表》 9、成品测试: ①交流耐压测试:T-T:2Un0+20(V)/5s; T-C: 2000V AC/10s, 铝壳:T-C:2500V AC/10s; BKMJ 型T-T:1.2Un/10s; T-C:Un≤3KV AC3KV AC /10s 、Un>3KV AC 1.2Un(AC)/10s ②电容、损耗角正切测量:1KHz 具体见《芯子和成品电容量、损耗角正切测量要求数据汇总表》 ③严防错测、漏测。 10、电容器产品打印、包装、入库: 打印前核对图纸、做好首检。

超级电容器综述

题目超级电容器技术综述 学号 班级_____________ 学生 _______________ 扌旨导教师_______ 杨莺_________________ ______ 2014 _______ 年

超级电容器技术综述 摘要:近年来,随着经济的迅猛发展,人们在实际应用中对储能装置各项技术指标的需求不断提高,而当前电池的标准设计能力已经逐渐无法满足人们的要求,超级电容器应运而生。超级电容器是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。作为一种新的储能元件,它填补了传统电容器和电池之间的空白, 能提供比普通电容器更高的能量和比二次电池更高的功率以及更长的循环寿命, 同时还具有比二次电池耐温和免维护的 优点。本文主要针对超级电容器的储能机理、超级电容器电极材料、超级电容器的发展动态以及未来应用的展望进行了简单的论述。 关键词:超级电容器;储能机理;活性炭;发展现状;应用展望。 A Review of the technology of super capacitor Abstract :In recent years,With the rapid development of economy,People advance the need that can equip each technique index sign to continuously raise at practical application 。But the standard design ability of the current battery have already canned not satisfy people's request gradually ,The super capacitor emerges with the tide of the times 。The super capacitor is a kind of new energy storing device, it has many characteristics such as short refresh time, long service life, good temperature characteristic, energy conservation,Environment protecting.As a new kind energy storage element, it filled up traditional capacitor and the blank of battery.It can provide energy than the common capacitor higher and the power than secondary battery higher and the longer circulating life.Meanwhile it has the advantage of rating of temperature and no maintenance than secondary battery.The text mainly aims at the keeping of super capacitor development dynamic state of ability mechanism, super capacitor electrode material, super capacitor and in the future apply of the outlook carried on simple treatise. Key Words :super capacitor; The energy storage mechanism; active carbon; development trend; Application trend . 引言近几年出现的超级电容器,它兼有物理电容和电池的特性,是人们未来探索的确定方向。超级电容器是比物理电容器更好的储能元件。目前,用于超级电容器的电极材料主要是炭材料,由于一些炭材料比如氧化锰低价高能,所以受到很多科学家的青睐。超级电容器自面市以来,全球需求量快速扩大,已成为化学电源领域内新的产业亮点。超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、消费性电子产品等众多领域有着巨大的应用价值和市场潜力,被世界各国所广泛关注。就目前的国际形势来看,超级电容器有着很大的应用前景。 1 超级电容器概述 1.1超级电容器的定义及特点

电容器的制造过程

目录 摘要 (2) 第1章电容器的简介 (3) 1.1电容器的作用 (3) 1.2电容器的工作原理 (3) 1.3 铝电解电容器的使用须知 (3) 第2章电容器的制造过程 (4) 2.1点检表的使用 (4) 2.2制造路线 (4) 2.3捺印工程 (6) 2.4捺印工程的注意事项 (7) 第3章捺印过程中出现的问题及解决方案 (8) 3.1无捺印 (8) 3.2落下品的处理 (8) 第4章作业中必须遵守的内容 (8) 结论........................................... 错误!未定义书签。致谢........................................... 错误!未定义书签。参考文献....................................... 错误!未定义书签。

电容器的制造 摘要 本次毕业设计主要是制造电容器,机能性高分子铝电解固体电容器。铝电解电容的容体比较大,串联电阻较大,感抗较大,对温度敏感。它适用于温度变化不大、工作频率不高(不高于25kHz)的场合,可用于低频滤波(在高频率得时候电解电容的并联滤波效果较低频差)。铝电解电容具有极性,安装时必须保证正确的极性,否则有爆炸的危险。 本设计详细地介绍了电容器的制造过程。 关键词:电容器制造

第1章电容器的简介 常简称其为电容,用字母C表示。定义1:电容器,顾名思义,是‘装电的容器’,是一种容纳电荷的器件。英文名称:capacitor。电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。定义2:电容器,任何两个彼此绝缘且相隔很近的导体(包括导线)间都构成一个电容器。制作电容器,制造部分很多小部门,但不是流水线工作,再每个产品打包之前,都会经过严格的检验,抵制不良品。 1.1电容器的作用 电力电容器是一种无功补偿装置。电力系统的负荷和供电设备如电动机、变压器、互感器等,除了消耗有功电力以外,还要“吸收”无功电力。如果这些无功电力都由发电机供给,必将影响它的有功出力,不但不经济,而且会造成电压质量低劣,影响用户使用。 电容器在交流电压作用下能“发”无功电力(电容电流),如果把电容器并接在负荷(如电动机)或供电设备(如变压器)上运行,那么,负荷或供电设备要“吸收”的无功电力,正好由电容器“发出”的无功电力供给,这就是并联补偿。并联补偿减少了线路能量损耗,可改善电压质量,提高功率因数,提高系统供电能力。 如果把电容器串联在线路上,补偿线路电抗,改变线路参数,这就是串联补偿。串联补偿可以减少线路电压损失,提高线路末端电压水平,减少电网的功率损失和电能损失,提高输电能力。 电力电容器包括移相电容器、电热电容器、均压电容器、藕合电容器、脉冲电容器等。移相电容器主要用于补偿无功功率,以提高系统的功率因数;电热电容器主要用于提高中频电力系统的功率因数;均压电容器一般并联在断路器的断口上作均压用;藕合电容器主要用于电力送电线路的通信、测量、控制、保护;脉冲电容器主要用于脉冲电路及直流高压整流滤波。 随着国民经济的发展,负荷日益增多,供电容量扩大,无功补偿工作必须相应跟上去。用电容器作为无功补偿时,投资少,损耗小,便于分散安装,使用较广。当然,由于系统稳定的要求,必须配备一定比例的调相机。 1.2电容器的工作原理 交流电的正半周到来,先向电容充电,形成充电电流,根据电容的大小决定此电流的大小,负半周到来时电容上被充上的正电荷又向负端放电,形成放电电流,此时正半周又同时向电容的另一端充电,一个半波过去,又会重复上述过程,这样,电容虽说是绝缘的,不会有任何电流流过,但在电路里却形成了交变电流,这就是电容的功能,接上负载,电流流过负载做功。 1.3 铝电解电容器的使用须知 1、直流电解电容器只能使用在直流电路上,其极性必须标明在适当的位置或在导针/端子旁边。 2、在电路回路中如不清楚或不明确线路的极性时,则建议使用无极性电解容器。

超级电容器电极材料研究现状及存在问题

功能材料课程报告 指导老师: 学院:材料科学与工程学院专业:材料加工工程 姓名: 学号: 日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题 摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。 关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状 1.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。 碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出 C=ε·ε0Ad 式中:ε ε为电导体和内部赫姆霍兹面间区域的相对0为自由空间的绝对介电常数, 介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。 近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。 多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电

超级电容器材料综述

超级电容器是一种新型的储能装置,具备充放电快、效率高、稳定性好等优点,是一种清洁的绿色能源,是21 世纪的新型绿色能源。超级电容器有很大的市场潜力。通过对超级电容器电极材料进行研究,发现多孔碳材料作为超级电容器电极材料的电化学性能的影响。 目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植

物硬壳、石油焦、橡胶等各种原材料中得来。是一种已经商品化的超级电容器电极材料。活性炭材料的活化方法多种多样,可以分为物理活化和化学活化两种。 2、炭气凝胶电极材料 炭气凝胶是一种交联结构的网状的碳材料有多孔性,导电性好,表面积大,孔隙率高,孔径分布广,是唯一可以导电的气凝胶,电导率高。密度跨度大,孔隙率好,而且质量较轻,属于非晶态的纳米碳材料,同时,在制备的时候,可以通过调节工艺参数控制其孔径分布和微粒尺度。 3、碳纳米管 碳纳米管这是一种有类似石墨的六边形组成的碳材料,微观上看两端封闭的多层的管子,直径有几十纳米,层间距要比石墨层间距稍大。从超级电容器对电极材料的要求上看,碳纳米管材料是非常适合用来做电极材料的,因为碳纳米管的结构是空管的形状,表面积大,尤其是壁很薄的碳纳米管,比表面积更大,非常有利于双电层电容的储备。碳纳米管要是制成电极时,还会具备特殊的孔,这些孔是由微观状态下,碳纳米管互相缠绕,好似网状结构,管与管之间就形成了孔洞的结构,孔与孔之间都是互相连通的,没有堵死的情况,这在用作电极的时候,对于电解液的流通的很重要的。而且这种由管径互相缠绕得到的孔不会太小,一般都是属中孔,这会使电极的内阻很低,这些都是超级电容器电极所需要具备的。目前对碳纳米管作为超级电容器电极材料的研究主要集中在将它直接用于超级电容器上,或者将

超级电容器电极材料综述

超级电容器电极材料 超级电容器,作为当下储能研究的一大热点,普遍具有以下优势: 1、快速的充放电特性 2、很高的功率密度 3、优良的循环特性 然而,它的不足完全制约了它的实际应用——能量密度很低。目前,商用的超级电容器可以提供10WhKg-1,而相比之下,锂离子电池的能力密度高达18010WhKg-1。因此,如何能提高超级电容器的能量密度,称为眼下超级电容器研究领域亟待解决的首要问题。学术圈致力于通过开发新的电极材料、电解质、独创的器件设计方案等方法,来实现这一问题的突破。 想要通过更好的电极材料(同时需要价格低廉,环境友好)来实现在超级电容器性能上的重大的进展,需要对电荷储存机理,离子电子的传输路径,电化学活性位点有全面、深远的认识。由此,纳米材料因为其可控的离子扩散距离、电化学活性位点数量的扩大等特点成为研究热门。 根据储能机理的不同,超级电容器可以分为:双电层电容器EDLC,赝电容。EDLC通过物理方法储存电荷——在电解质、电极材料界面上发生可逆的离子吸附。而赝电容通过化学方法储存电荷——在电极表面(几纳米深)发生氧化还原反应。通常,EDLC的电极材料为碳材料,包括活性炭,碳纳米管,石墨烯等。然而赝电容的电极材料包括:金属氧化物(RuO2, MnO2, CoOx, NiO,Fe2O3),导电高分子(PPy,

PANI,Pedot)。 设计一款高性能的超级电容的标准是: 1、很高的比容量 (单位质量的比容量,单位体积的比容量,或者是活性物质的面积) 2、很高的倍率性能 在高的扫速下200mV/s或电流密度下,容量的保持率。 3、很长的循环寿命 另外,活性材料的价格与毒性也需要计入考量。 为了制备高容量的电极材料,上述因素需要进一步讨论。 1、表面积:因为电荷是储存在电容器电极的表面,具有更高表面积的电极可以提高比容量。纳米结构的电极可以很好的提高电极的表面积。 2、电子和离子的导电性:因为比容量、倍率性能是由电子、离子的导电性共同决定,高的离子、电子电导将会很好的维持CV曲线中的矩形图线,以及GCD中充放电曲线的对称性。 同时,这也将减少充电电流增大后的比容量损失。 典型的增加电子电导的方法有: (1)Binder-free electrode design 不实用粘结剂 (2)纳米结构集流体设计——这可以为电子传输的提供高效途径 增加离子电导的方法:

铝电解电容生产步骤(附图)

铝电解电容器生产工艺流程(附图片) (2009/12/18 15:19) 铝电解电容器主要原材料: 阳极箔、阴极箔、电解纸、电解液、导箔、胶带、盖板、铝壳、华司、套管、垫片等 生产工序 切割、卷绕、含浸、装配、老化、封口、印刷、套管、测量、包装、检验等 电解电容原材料分切 小型电解电容器自动卷绕机

大型电解电容器自动卷绕机 电解电容芯子含浸 电解电容高温老化 电解电容性能测试

铝电解电容制造进程: 第一步:铝箔的腐化。 倘若拆开一个铝电解液电容的外壳,你会看到内里是几多层铝箔和几多层电解纸,铝箔和电解纸贴附在一起,卷绕成筒状的机关,这样每两层铝箔中间便是一层吸附了电解液的电解纸了。 铝箔的制造要领。为了增大铝箔和电解质的战争面积,电容中的铝箔的外观并不是平滑的,而是通过电化腐化法,使其外观形成崎岖不屈的形状,这样不妨增大7~8倍的外观积。电化腐化的工艺是较量庞杂的,此中涉及到腐化液的种类、浓度、铝箔的外观状态、腐化的速率、电压的动态均衡等等。 第二步:氧化膜形成工艺。 铝箔通过电化腐化后,就要运用化学方法,将其外观氧化成三氧化二铝——也便是铝电解电容的介质。在氧化之后,要仔细检讨三氧化二铝的外观,看是否有雀斑也许龟裂,将不足格的清除在外。 第三步:铝箔的切割。 这个措施很简单明白。便是把一整块铝箔,切割成几多小块,使其适当电容制造的必要。 第四步:引线的铆接。 电容外部的引脚并不是直连接到电容内部,而是经过内引线与电容内部连结的。因此,在这一步当中我们就必要将阳极和阴极的内引线,与电容的外引线经过超声波键正当连结在一起。外引线通常采纳镀铜的铁线也许氧化铜线以削减电阻,而内引线则直接采纳铝线与铝箔直

超级电容器的关键材料

超级电容器的关键材料 超级电容器的关键材料包括电极材料?电解质?隔膜和集电材料等? (一)电极材料 电极材料是决定电容器电容量大小的主要因素,对电极材料的要求是电导率较高且不与电解质发生化学反应,表面积尽可能大,价格便宜,制备过程中易于成形? 目前,超级电容器电极材料的代表是RuO2·nH2O,比电容已达到720F/g,但Ru资源稀缺且价格昂贵?而成本较低的?比表面积较高的多孔碳电极材料,其比电容只能达到200F/g左右? (二)电解质 在电化学超级电容器中,电解质也是关键的组成部分,它不仅在电容器的性能上起着许多决定性的作用,还在相当大程度上决定着电容器实用的可靠性?现在应用和研究的电解质大致可分为固态和液态两种,液态电解质又包含水溶液和有机溶液两类? 1.水系电解质 在使用活性炭作为电极的EDLC中,H2SO4由于具有较低的凝固点,而且不存在KOH所具有的沉积结晶现象而被广泛应用?考虑到电

导率等因素,研究者们认为30%是最佳浓度?相对于H2SO4溶液而言,KOH水溶液导电性稍差,但腐蚀性弱于H2SO4,集电极可采用高导电的金属材料,因而被人们采用?其他水溶液电解质,如HCl?H3PO4?HNO3及HClO4等,也被尝试作为EDLC的电解质,但效果不佳? 2.有机电解质 有机电解质的一个重要研究内容是支持有机溶剂的电解质盐的开发和选用?应用于EDLC的支持电解质种类不多,目前使用的阳离子主要是季铵盐(R4N+)和锂盐(Li+),此外季磷盐(R4P+)和芳香咪唑盐(EMI)也有报道;阴离子主要有ClO4-?BF4-?PF6-?AsF6-和(CF3SO2)2N-等?在各种电解质盐中,Et4NBF由于具有良好的综合性能,因而在EDLC中得到了广泛的应用? 3.固体电解质 固体电解质由于良好的可靠性?无电解质泄漏?可薄型化和可延长寿命等优点而备受青睐,也实现了全固态EDLC?运用于EDLC的固体电解质分为无机固体电解质和有机固体电解质? 1)无机固体电解质 无机固体电解质本身具有良好的导电性,人们对其用做EDLC的可能性进行了大量研究,尝试使用Rb2Cu8I3C17?β-Al2O3?HUO2PO4·H2O 和RbAg4I4等固态电解质作为EDLC的电解质,其中RbAg4I4最受人

超级电容器材料综述

目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达 1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植物硬壳、石油焦、橡胶等各种原材料中得来。是一种已经商品化的超级电容器电极材料。活性炭材料的活化方法多种多样,可以分为物理活化和化学活化两种。 2、炭气凝胶电极材料

炭气凝胶是一种交联结构的网状的碳材料有多孔性,导电性好,表面积大,孔隙率高,孔径分布广,是唯一可以导电的气凝胶,电导率高。密度跨度大,孔隙率好,而且质量较轻,属于非晶态的纳米碳材料,同时,在制备的时候,可以通过调节工艺参数控制其孔径分布和微粒尺度。 3、碳纳米管 碳纳米管这是一种有类似石墨的六边形组成的碳材料,微观上看两端封闭的多层的管子,直径有几十纳米,层间距要比石墨层间距稍大。从超级电容器对电极材料的要求上看,碳纳米管材料是非常适合用来做电极材料的,因为碳纳米管的结构是空管的形状,表面积大,尤其是壁很薄的碳纳米管,比表面积更大,非常有利于双电层电容的储备。碳纳米管要是制成电极时,还会具备特殊的孔,这些孔是由微观状态下,碳纳米管互相缠绕,好似网状结构,管与管之间就形成了孔洞的结构,孔与孔之间都是互相连通的,没有堵死的情况,这在用作电极的时候,对于电解液的流通的很重要的。而且这种由管径互相缠绕得到的孔不会太小,一般都是属中孔,这会使电极的内阻很低,这些都是超级电容器电极所需要具备的。目前对碳纳米管作为超级电容器电极材料的研究主要集中在将它直接用于超级电容器上,或者将碳纳米管和别的材料复合用作超级电容器。 4、活性炭纤维 活性炭纤维是一种环保材料,具有比活性炭更加优越的吸附性能,由它得到的高表面积的活性炭纤维布已经成功用于商业化的电极

金属氧化物超级电容器简介

金属氧化物超级电容器简介 超级电容器,是一种介于普通静电电容器与二次电池之间的新型储能元件。由于它具有比功率高、比容量大、成本低、循环寿命长、无记忆、充放电效率高,不需要维护和保养等优点,因此在移动通讯、信息技术、电动汽车、航空航天和国防科技等方面具有广阔的应用前景。世界各国都给予了高度重视,并将其作为重点开发项目和战略研究进行研发。 超级电容器储能机理 超级电容器按原理可分为双电层电容器和赝电容电容器。作为第一类导体的电极与第二类导体的电解质溶液接触时,充电时则在电极/溶液界面发生电子和离子或偶极子的定向排列,形成双电层电容。双电层电容器的电极通常为具有高比表面积的多孔炭材料,目前常用的炭材料有:活性炭粉末、活性炭纤维、炭黑、碳气凝胶、碳纳米管、玻璃碳、网络结构炭以及某些有机物的炭化产物。 赝电容,也称法拉第准电容,是在电极表面或体相中的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附,脱附或氧化,还原反应,产生和电极充电电位有关的电容。赝电容不仅在电极表面,而且可在整个电极内部产生,因而可获得比双电层电容更高的电容量和能量密度。在相同电极面积的情况下,赝电容可以是双电层电容量的10~100倍。

金属氧化物超电容电极材料最新进展 对电极材料研究主要集中在各种活性炭材料、金属氧化物材料、导电聚合物材料等。其中活性炭电极材料以产生的双电层为主,金属氧化物材料与导电聚合物材料以产生的赝电容为主,下面就介绍赝电容电极材料的研究进展情况。由于RuO2等活性物质在电极/溶液界面法拉第反应所产生的"准电容"要远大于活性炭材料表面的双层电容,有着广阔的研究前景,已经引起了不少研究者的重视。 1、超细微RuO2电极活性物质的制备与研究 超细微RuO2电极活性物质以其优异的催化活性已经在卤碱工业中得到了广泛的应用,但利用其不同寻常的比容量作为电化学电容的活性物质仅仅是近几年的事情。T.R.JOW对这一活性物质进行了系统的研究,他们使用溶胶凝胶方法制备了超细微RuO2颗粒,在175℃加热若干时间,然后制备成为电极进行测试,此种RuO2电极活性物质具有优异的大电流充放电性能,其单电极比容量高达760F/g。JOW认为制备含水的无定型的RuO2氧化物是加大材料电容量的关键,反应仅仅发生在氧化物电极表层。活性材料中加入大面积导电性碳黑后使材料的大电流放电性能有所改善,功率密度达到100KW/Kg。JOW制备的活性电极可在-52℃~73℃的范围之内连续充放电60,000次以上。JOW 等人给出的解释是RuO2?xH2O由于是无定型态,电解液容易进入电极材料,由它作电极时,是材料整体参加反应,即材料的利

超级电容器的三种测试方法详解

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ?Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电 galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化)

铝电解电容器生产工艺流程

铝电解电容器生产工艺流程(附图片) (2009/12/18 15:19) 铝电解电容器主要原材料: 阳极箔、阴极箔、电解纸、电解液、导箔、胶带、盖板、铝壳、华司、套管、垫片等 生产工序 切割、卷绕、含浸、装配、老化、封口、印刷、套管、测量、包装、检验等 电解电容原材料分切 小型电解电容器自动卷绕机

大型电解电容器自动卷绕机 电解电容芯子含浸 电解电容高温老化 电解电容性能测试

铝电解电容制造进程: 第一步:铝箔的腐化。 倘若拆开一个铝电解液电容的外壳,你会看到内里是几多层铝箔和几多层电解纸,铝箔和电解纸贴附在一起,卷绕成筒状的机关,这样每两层铝箔中间便是一层吸附了电解液的电解纸了。 铝箔的制造要领。为了增大铝箔和电解质的战争面积,电容中的铝箔的外观并不是平滑的,而是通过电化腐化法,使其外观形成崎岖不屈的形状,这样不妨增大7~8倍的外观积。电化腐化的工艺是较量庞杂的,此中涉及到腐化液的种类、浓度、铝箔的外观状态、腐化的速率、电压的动态均衡等等。 第二步:氧化膜形成工艺。 铝箔通过电化腐化后,就要运用化学方法,将其外观氧化成三氧化二铝——也便是铝电解电容的介质。在氧化之后,要仔细检讨三氧化二铝的外观,看是否有雀斑也许龟裂,将不足格的清除在外。 第三步:铝箔的切割。 这个措施很简单明白。便是把一整块铝箔,切割成几多小块,使其适当电容制造的必要。 第四步:引线的铆接。 电容外部的引脚并不是直连接到电容内部,而是经过内引线与电容内部连结的。因此,在这一步当中我们就必要将阳极和阴极的内引线,与电容的外引线经过超声波键正当连结在一起。外引线通常采纳镀铜的铁线也许氧化铜线以削减电阻,而内引线则直接采纳铝线与铝箔直接相连。大众注意这些小小的措施无一过错细密加工要求很高。 第五步:电解纸的卷绕。

超级电容器材料综述

超级电容器材料综述 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

超级电容器是一种新型的储能装置,具备充放电快、效率高、稳定性好等优点,是一种清洁的绿色能源,是21 世纪的新型绿色能源。超级电容器有很大的市场潜力。通过对超级电容器电极材料进行研究,发现多孔碳材料作为超级电容器电极材料的电化学性能的影响。 目前,用于超级电容器的电极材料主要是碳材料,市场上主要是活性炭材料,因为活性炭的成本较低,且活性炭具有很高的比表面积,这是超级电容器电极材料所必须具备的特点。但是,活性炭的导电性一般,微观结构主要以微孔形式存在,因此在电解液中会有很大的电阻,电解液浸透电极的过程会比较慢,在存储和传输电荷的时候也会比较慢,但是它的成本低,基本可以满足市场的要求,因此被作为市场上电容器的主要材料,其它的碳材料有比活性炭更优越的性能,但是成本较高,所以没有被用作商业化。因此,寻找性能好,成本低的电极材料是当前超级电容器领域的主要研究方向,从而制备出性能优越,成本低,能够广泛应用于市场的超级电容器,具有重大意义。 目前用于研究超级电容器电极材料的碳材料主要有活性炭、炭气凝胶、碳纳米管、玻璃碳、石墨烯、碳纤维以及碳/碳复合材料。碳材料原料低廉,表面积大,适合大规模生产。但是单纯不加修饰碳电极材料没有很高的比电容,还需要对其进行改性等研究。 1、活性炭材料 对于活性炭材料,不同的处理方法,会得到不同比表面积的活性炭,一般表面积可以高达1000~3000m2/g,而且具有不同的空隙,孔径范围宽,生产工艺简单,成本低廉,可以从沥青、植物硬壳、石油

电容生产工艺

抑制电磁干扰用聚丙烯薄膜 电容器(Y2类)的研制 上海飞乐股份有限公司王桂英 摘要:抑制电磁干扰电容器用于降低电子、电子设备或其他其他干扰源所产生的电磁干扰。本文主要分析了Y2类薄膜电容器的技术关键问题,简述了解决问题的思路及途径,并指出该类电容器的制造工艺要点。 关键词:聚丙烯薄膜电容器;抑制电磁干扰;脉冲电压试验;损耗 一.概述 随着电子科学技术的发展,家用电器和电子产品的技术含量及复杂程度不断增加,产生了大量的电磁辐射,使得电磁环境日益复杂起来。电气电子产品的电磁兼容性问题已受到各国政府和生产企业的日益重视。有关部门作出规定:所有电子产品只有达到电磁兼容的标准才能进入市场,尤其是国际市场。这就较大地促进了抗电磁干扰对策电子元件与电路保护电子元件的发展。抑制电磁干扰电容器用于电气和电子设备中,可以降低电气电子设备或其他干扰源所产生的电磁干扰,把电源中不需要的瞬态脉冲电压降低到可接收的水平,其在电路中应用参见图1。 图1. 抑制电磁干扰电容器在电路中的应用 抑制电磁干扰电容器执行IEC384-14国际标准,可分为X类电容器或RC组件与Y 类电容器或RC组件。X类电容器适用在电容器失效时不会导致电击危险的场合,跨接在导线之间以短路平衡干扰电流。Y类电容适用在电容器失效时会导致电击危险的场合,跨接在导线和机箱外壳或接地之间以短路不平衡的干扰电流,我公司为了适应市场对各类电子电气产品电磁兼容性的要求,并在国际市场占有一席之地,于03年下半年开始研制抑制电磁干扰用聚丙烯薄膜电容器(Y2类)(以下简称Y2类薄膜电容器)工作。根据国际国内法律规定,抑制电磁干扰电容器因为与市电相连而涉及人身财产安全,必须经过强制安全认证后才允许进入市场。我们在研制开发Y2类薄膜电容器过程中,同时积极开展了产品的安全检测和认证工作。 二.产品特点及技术指标、主要性能: 1.产品的技术指标 .额定电压: 250VAC .标称电容量: 1nF—47nF .使用环境温度:—40℃~+105℃ .电容器类别: Y2 .损耗角正切: tgδ≤0.0012 (10KHz).绝缘电阻:两引出端间 R>15000MΩ 引出端与外壳间 R>30000MΩ 2.产品的主要性能 .脉冲电压试验. Y2电容器应能承受5000V上升时间1.2~1.5μS的三次以上脉冲。如果波形出现阻尼振荡,震荡的峰-峰值U PP应不大于峰值脉冲电压(U P)的10%,如图2所示。 图2 .耐久性试验. 在+105℃温度和1.7U R的电压下承受1000h试验,每隔1小时将电压升高到1000V (有效值),持续时间0.1S。 . 阻燃性. 针焰燃烧试验,达到 IEC384

超级电容器电极材料科普

超级电容器电极材料科普 超级电容器主要由电极、集流体、电解质和隔膜等4部分组成,其中电极材料是影响超级电容器性能和生产成本的最关键因素。研究和开发高性能、低成本的电极材料是超级电容器研发工作的重要内容。目前研究较多的超级电容器电极材料主要有碳材料、金属氧化物(或者氢氧化物)、导电聚合物等,而碳材料和金属氧化物电极材料的商品化相对较成熟,是当前研究的热点。 1什么是超级电容器? 超级电容器(supercapacitors 或ultracapacitors)又称电化学电容器(electrochemical capacitors),是一种介于二次电池与常规电容器之间的新型储能器件,兼有二次电池能量密度高和常规电容器功率密度大的优点;此外,超级电容器还具有对环境无污染、效率高、循环寿命长、使用温度范围宽、安全性高等特点,在电动汽车、新能源发电、信息技术、航空航天等领域具有广泛的应用前景。 超级电容器还可以与充电电池组成复合电源系统,既能够满足电动车启动、加速和爬坡时的高功率要求,又可延长充电电池的循环使用寿命,实现电动车动力系统性能的最优化。当前,国内外已实现了超级电容器的商品化生产,但还存在着价格较高、能量密度低等问题,极大地限制了超级电容器的大规模应用。 超级电容器主要由电极、集流体、电解质和隔膜等4部分组成,其中电极材料是影响超级电容器性能和生产成本的最关键因素。研究和开发高性能、低成本的电极材料是超级电容器研发工作的重要内容。 目前研究较多的超级电容器电极材料主要有碳材料、金属氧化物(或者氢氧化物)、导电聚合物等,而碳材料和金属氧化物电极材料的商品化相对较成熟,是当前研究的热点。因此,本文将重点介绍碳材料、金属氧化物及其复合材料等高性能电极材料的最新研究进展以及商品化应用前景。

超级电容器电极材料的制备

渤海大学 学士学位论文 题 目: 超级电容器新型电极材料的制备及性能研究 学生姓名: 指导教师: 院 系: 化学化工与食品安全学院 专 业: 班 级: 论文答辩日期:2012.05.27

超级电容器新型电极材料的制备及性能研究 姓名 化学化工与食品安全学院 摘要:超级电容器是近年发展起来的一种新型储能元件,具有功率密度高、寿命长、无需维护及充放电迅速等特性。其中电极材料的性质和电解液的类型是影响超级电容器性能的关键因素。本论文以热稳定性高、绿色无污染的1-甲基-3-己基咪唑三氟乙酸离子液体([Hmim][CF3])为基础,微波下分别与葡萄糖、蔗糖和淀粉反应,合成新型的粘稠状的碳点离子液体复合物,用此复合物部分的代替传统活性炭极片制备中的黏结剂和导电剂,制备出新型的超级电容器电极材料。通过扫描电镜观察新型极片的表面微观结构;采用循环伏安、恒流充放电及交流阻抗等测试方法对新型电极材料进行电化学性能研究,其中,葡萄糖-碳点离子液体复合物的效果最好,比容量从285.7 F·g-1提高到365.5 F·g-1,内阻由1.92 Ω降低到0.61 Ω,充放电效率由89.9%分别提高到97.6 %。 关键词:活性炭;电极材料;碳点离子液体;超级电容器;电化学性能

Supercapacitor Energy Storage and Its Application 英文名 College of Chemistry, Chemical Engineering and Food Safety Abstract: The super capacitor is developed in recent years a new type of energy storage devices with high power density, long life, maintenance-free and charge and discharge quickly characteristics.The nature of the electrode materials and electrolyte type is a key factor affecting the performance of the super capacitor. Based on the papers to the high thermal stability, green pollution-free 1 - methyl - 3 - hexyl TFA ionic liquid ([Hmim] [CF3 groups), microwave, respectively, with glucose, sucrose and starch reaction, the synthesis of new viscous ionic liquid compound of carbon points to use instead of this complex part of the traditional activated carbon pole piece in the preparation of the binder and conductive agent, prepared a new type of electrode materials for supercapacitor. Microscopic structure of the new scanning electron microscope on the surface of the pole piece; by cyclic voltammetry, galvanostatic charge-discharge and AC impedance test electrochemical properties of new electrode materials, including the effect of glucose - Point Carbon ionic liquid complexes well, the specific capacity increased from 285.7 F ? g-1 to 365.5 F ? g-1, the internal resistance decreased to 0.61 from 1.92 ΩΩ, charge-discharge efficiency increased to 97.6% from 89.9%, respectively. Key word s: Activated carbon; electrode material; Point Carbon ionic liquid; super capacitor; electrochemical performance

相关文档
最新文档